Generalized Taylor Series and Peano Kernel Theorem


Zürnacı Yetiş F., DİŞİBÜYÜK Ç.

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, sa.5, ss.5521-5530, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1002/mma.10616
  • Dergi Adı: MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, INSPEC, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.5521-5530
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

As in the polynomial case, non-polynomial divided differences can be viewed as a discrete analog of derivatives. This link between non-polynomial divided differences and derivatives is defined by a generalization of the derivative operator. In this study, we obtain a generalization of Taylor series using the link between non-polynomial divided differences and derivatives, and state generalized Taylor theorem. With the definition of a definite integral, the relation between the non-polynomial divided difference and non-polynomial B-spline functions is given in terms of integration. Also, we derive a general form of the Peano kernel theorem based on a generalized Taylor expansion with the integral remainder. As in the polynomial case, it is shown that the non-polynomial B-splines are in fact the Peano kernels of non-polynomial divided differences.MSC2020 Classification: 65D05, 65D07