Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey


UYSAL İ., ERSOY E. Y., Dilek Y., Kapsiotis A., Sarifakioglu E.

LITHOS, cilt.246, ss.228-245, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 246
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1016/j.lithos.2016.01.004
  • Dergi Adı: LITHOS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.228-245
  • Anahtar Kelimeler: Peridotites, Upper mantle, Partial melting, Metasomatism, Ophiolites, Neotethys, MID-ATLANTIC RIDGE, ABYSSAL PERIDOTITES, SUBDUCTION ZONE, CHROMIAN SPINEL, ANKARA MELANGE, INTRAOCEANIC SUBDUCTION, CHEMICAL VARIATIONS, TECTONIC EVOLUTION, OTHRIS OPHIOLITE, SPREADING RIDGE
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

The Eldivan ophiolite along the Izmir-Ankara-Erzincan suture zone in north-central Anatolia represents a remnant of the Neotethyan oceanic lithosphere. Its upper mantle peridotites include three lithologically and compositionally distinct units: clinopyroxene (cpx)-harzburgite and Iherzolite (Group-1), depleted harzburgite (Group-2), and dunite (Group-3). Relics of primary olivine and pyroxene occur in the less refractory harzburgites, and fresh chromian spinel (Cr-spinel) is ubiquitous in all peridotites. The Eldivan peridotites reflect a petrogenetic history evolving from relatively fertile (lherzolite and cpx-harzburgite) toward more depleted (dunite) compositions through time, as indicated by (i) a progressive decrease in the modal cpx distribution, (ii) a progressive increase in the Cr#s [Cr / (Cr + Al)] of Cr-spinel (0.15-0.78), and (iii) an increased depletion in the whole-rock abundances of some magmaphile major oxides (Al2O3, CaO, SiO2 and TiO2) and incompatible trace elements (Zn, Sc, V and Y). The primitive mantle-normalized REE patterns of the Group-1 and some of the Group-2 peridotites display LREE depletions. Higher Yb-N and lower Sm-N/Yb-N ratios of these rocks are compatible with their formation after relatively low degrees (9-25%) of open-system dynamic melting (OSDM) of a Depleted Mid-ocean ridge Mantle (DMM) source, which was then fluxed with small volumes of oceanic mantle-derived melt [fluxing ratio (beta): 0.7-12%1. Accessory Cr-spinel compositions (Cr# = 015-0.53) of these rocks are consistent with their origin as residual peridotites beneath a mid-ocean ridge axis. Part of the Group-2 harzburgites exhibit lower YbN and higher SmN/YbN ratios, LREE-enriched REE patterns, and higher Cr-spinel Cr#s ranging between 0.54 and 0.61. Trace element compositions of these peridotites can be modeled by approximately 15% OSDM of a previously 17% depleted DMM, which was then fluxed (beta: 0.4%) with subduction-influenced melt. The Group-3 dunite samples contain Cr-spinel with elevated Cr#s (0.73-0.78) and low-TiO2 contents (<0.13 wt.%), implying higher degrees of melting (21-24%) of an already depleted DMM that was triggered by infiltration of low-Ti boninite melt with fluxing rates of 0.4-4.0%. The existence of interstitial, idiomorphic Cr-spinel (high Cr# and low Ti) in the Group-3 dunites is consistent with this interpretation. The occurrence of both MOR- and SSZ-type peridotites in the Eldivan ophiolite suggests that its heterogeneous upper mantle was produced as a result of different partial melting and melt -rock reaction processes in different tectonic settings within the Neotethyan realm. (C) 2016 Elsevier B.V. All rights reserved.