Improved Static and Dynamic Behavior of Auxetic Structures with Radial Limb Design


Sayın S., Kıral Z.

APPLIED SCIENCES, cilt.15, ss.1-21, 2025 (SCI-Expanded, Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/app15179343
  • Dergi Adı: APPLIED SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-21
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Auxetic structures, also known as metamaterials, exhibit a negative Poisson’s ratio under applied load and have found use across a variety of applications. This behavior may arise from material properties or from the structural design itself. Depending on the intended application, such structures can be subjected to either static or dynamic loading conditions. New geometries that potentially enhance energy absorption or damping in both static and dynamic conditions were investigated in this work, using the well-known Reentrant design reported in earlier research articles as a benchmark. As an alternative to the cellular limb angles employed in the well-known Reentrant model, the effect of radial limb radius was analyzed in the novel cell designs called Arched-Reentrant. Four alternative designs have been proposed, and all analyses were conducted in ANSYS-2025-R1. The specimens were manufactured by using the 3D printing method with thermoplastic polyurethane (TPU) material having a shore hardness of 95A. In the evaluation of the outcomes resulting from different designs, the specimens were analyzed under static, impulsive, and harmonic loading conditions. The energy absorption capacities of the

samples were examined in relation to their design modifications. Within the scope of the study, it was observed that Arched-Reentrant structures are capable of absorbing higher amounts of energy under static loading and exhibit greater stiffness under dynamic loads compared to conventional Reentrant structures. The impulse analysis’s findings demonstrate that the suggested Arched-Reentrant-V3 model performs better, with over 50% less displacement and comparable reaction forces. In addition, the harmonic analysis findings show that the Arched-Reentrant-V3 model has lower ground reaction forces and displacement values. As a result, the suggested model can be regarded as an efficient damping component when dynamic loading occurs.