Sustainability (Switzerland), cilt.17, sa.13, 2025 (SCI-Expanded)
The implementation of hybrid propulsion systems in vessels has gained prominence due to their significant advantages in energy efficiency and their reduction in harmful emissions, particularly during low engine load operations. This study evaluates hybrid propulsion system applications in two different tugboats, focusing on fuel consumption and engine load across eight distinct operational scenarios, including Istanbul Strait crossings and towing and pushing manoeuvres. The scenarios incorporate asynchronous electric motors with varying power ratings, lead-acid and lithium iron phosphate batteries with distinct storage capacities, and photovoltaic panels of different sizes. The highest fuel savings of 72.4% were recorded in the second scenario, which involved only towing and pushing operations using lithium iron phosphate batteries. In contrast, the lowest fuel savings of 5.2% were observed in the sixth scenario, focused on a strait crossing operation employing lead-acid batteries. Although integrating larger-scale batteries into hybrid propulsion systems is vital for extended ship operations, their adoption is often limited by space and weight constraints, particularly on tugboats. Nevertheless, ongoing advancements in hybrid system technologies are expected to enable the integration of larger, more efficient systems, thereby enhancing fuel-saving potential.