Value of volumetric and textural analysis in predicting the treatment response in patients with locally advanced rectal cancer


KARAHAN ŞEN N. P., Aksu A., Kaya G. C.

ANNALS OF NUCLEAR MEDICINE, cilt.34, sa.12, ss.960-967, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 12
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1007/s12149-020-01527-x
  • Dergi Adı: ANNALS OF NUCLEAR MEDICINE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, Biotechnology Research Abstracts, CINAHL, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.960-967
  • Anahtar Kelimeler: 18F-FDG PET, CT, MTV, Textural analysis, Rectal cancer, PATHOLOGICAL COMPLETE RESPONSE, POSITRON-EMISSION-TOMOGRAPHY, NEOADJUVANT CHEMORADIOTHERAPY, F-18-FDG PET/CT, TUMOR HETEROGENEITY, FDG-PET/CT, RADIOMICS, CHEMORADIATION, CHEMOTHERAPY, PRETREATMENT
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Objective The aim of this study was to assess the value of baseline 18F-FDG PET/CT in predicting the response to neoadjuvant chemo-radiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC) via the volumetric and texture data obtained from 18F-FDG PET/CT images. Methods In total, 110 patients who had undergone NCRT after initial PET/CT and followed by surgical resection were included in this study. Patients were divided into two groups randomly as a train set (n: 88) and test set (n: 22). Pathological response using three-point tumor regression grade (TRG) and metastatic lymph nodes in PET/CT images were determined. TRG1 were accepted as responders and TRG2-3 as non-responders. Region of interest for the primary tumors was drawn and volumetric features (metabolic tumor volume (MTV) and total lesion glycolysis (TLG)) and texture features were calculated. In train set, the relationship between these features and TRG was investigated with Mann-WhitneyUtest. Receiver operating curve analysis was performed for features withp < 0.05. Correlation between features were evaluated with Spearman correlation test, features with correlation coefficient < 0.8 were evaluated with the logistic regression analysis for creating a model. The model obtained was tested with a test set that has not been used in modeling before. Results In train set 32 (36.4%) patients were responders. The rate of visually detected metastatic lymph node at baseline PET/CT was higher in non-responders than responders (71.4% and 46.9%, respectively,p = 0.022). There was a statistically significant difference between TLG, MTV, SHAPE_compacity, NGLDMcoarseness, GLRLM_GLNU, GLRLM_RLNU, GLZLM_LZHGE and GLZLM_GLNU between responders and non-responders. MTV and NGLDMcoarseness demonstrated the most significance (p = 0.011). A multivariate logistic regression analysis that included MTV, coarseness, GLZLM_LZHGE and lymph node metastasis was performed. Multivariate analysis demonstrated MTV and lymph node metastasis were the most meaningful parameters. The model's AUC was calculated as 0.714 (p = 0.001,0.606-0.822, 95% CI). In test set, AUC was determined 0.838 (p = 0.008,0.671-1.000, 95% CI) in discriminating non-responders. Conclusions Although there were points where textural features were found to be significant, multivariate analysis revealed no diagnostic superiority over MTV in predicting treatment response. In this study, it was thought higher MTV value and metastatic lymph nodes in PET/CT images could be a predictor of low treatment response in patients with LARC.