MOLECULAR ONCOLOGY, 2025 (SCI-Expanded)
Transforming growth factor-beta (TGF-beta) signaling and cellular senescence are key hallmarks of hepatocellular carcinoma (HCC) pathogenesis. Despite provoking senescence-associated growth arrest in epithelial HCC cells, elevated TGF-beta activity paradoxically correlates with increased aggressiveness and poor prognosis in advanced tumors. Whether the transition between these dichotomous functions involves modulation of the senescence phenotype during disease progression remains elusive. Exploiting the epithelial HCC cell line Huh7 as a robust model, we demonstrate that chronic exposure to TGF-beta prompts escape from Smad3-mediated senescence, leading to the development of TGF-beta resistance. This altered state is characterized by an optimal proliferation rate and the acquisition of molecular and functional traits of less-differentiated mesenchymal cells, coinciding with differential growth capacity in 2D and 3D culture conditions, epithelial-to-mesenchymal transition (EMT), and increased invasiveness in vitro, and metastasis in vivo. Mechanistically, resistant cells exhibit defective activation and nuclear trafficking of Smad molecules, particularly Smad3, as ectopic activation of the TGF-beta/Smad3 axis is able to reinstate TGF-beta sensitivity. An integrated transcriptomic landscape reveals both shared and distinct gene signatures associated with senescent and TGF-beta resistant states. Importantly, genetic ablation and molecular studies identify microtubule affinity regulating kinase 1 (MARK1) and glutamate metabotropic receptor 8 (GRM8) as critical modulators of the resistance phenomenon, potentially by impairing spatiotemporal signaling dynamics of Smad activity. Our findings unveil a novel phenomenon wherein epithelial HCC cells may exploit senescence plasticity as a mechanism to oppose TGF-beta anti-tumor responses and progress towards more aggressive HCC phenotypes.