Spatio-temporal outlier detection in large databases


Creative Commons License

BİRANT D., KUT R. A.

28th International Conference on Information Technology Interfaces, Cavtat, Hırvatistan, 19 - 22 Haziran 2006, ss.179-180, (Tam Metin Bildiri) identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/iti.2006.1708474
  • Basıldığı Şehir: Cavtat
  • Basıldığı Ülke: Hırvatistan
  • Sayfa Sayıları: ss.179-180
  • Anahtar Kelimeler: outlier detection, data mining, spatio-temporal data, data warehouse
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Outlier detection is one of the major data mining methods. This paper proposes a three-step approach to detect spatio-temporal outliers in large databases. These steps are clustering, checking spatial neighbors, and checking temporal neighbors. In this paper, we introduce a new outlier detection algorithm to find small groups of data objects that are exceptional when compared with rest large amount of data. In contrast to the existing outlier detection algorithms, new algorithm has the ability of discovering outliers according to the non-spatial, spatial and temporal values of the objects. In order to demonstrate the new algorithm, this paper also presents an example application using a data warehouse.