MOLECULAR INFORMATICS, cilt.42, sa.3, 2023 (SCI-Expanded)
Computational drug repurposing aims to discover new treatment regimens by analyzing approved drugs on the market. This study proposes previously approved compounds that can change the expression profile of disease-causing proteins by developing a network theory-based drug repurposing approach. The novelty of the proposed approach is an exploration of module similarity between a disease-causing network and a compound-specific interaction network; thus, such an association leads to more realistic modeling of molecular cell responses at a system biology level. The overlap of the disease network and each compound-specific network is calculated based on a shortest-path similarity of networks by accounting for all protein pairs between networks. A higher similarity score indicates a significant potential of a compound. The approach was validated for breast and lung cancers. When all compounds are sorted by their normalized-similarity scores, 36 and 16 drugs are proposed as new candidates for breast and lung cancer treatment, respectively. A literature survey on candidate compounds revealed that some of our predictions have been clinically investigated in phase II/III trials for the treatment of two cancer types. As a summary, the proposed approach has provided promising initial results by modeling biochemical cell responses in a network-level data representation.