TACO-miner: An ant colony based algorithm for rule extraction from trained neural networks

ÖZBAKIR L., Baykasoglu A., KULLUK S., Yapici H.

EXPERT SYSTEMS WITH APPLICATIONS, vol.36, no.10, pp.12295-12305, 2009 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 36 Issue: 10
  • Publication Date: 2009
  • Doi Number: 10.1016/j.eswa.2009.04.058
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.12295-12305
  • Keywords: Data mining, Artificial neural networks, Ant colony optimization, Classification rules, CLASSIFICATION RULES, ROUGH SETS, DISCOVERY
  • Dokuz Eylül University Affiliated: No


Extracting classification rules from data is an important task of data mining and gaining considerable more attention in recent years. In this paper, a new meta-heuristic algorithm which is called as TACO-miner is proposed for rule extraction from artificial neural networks (ANN). The proposed rule extraction algorithm actually works on the trained ANNs in order to discover the hidden knowledge which is available in the form of connection weights within ANN structure. The proposed algorithm is mainly based on a meta-heuristic which is known as touring ant colony optimization (TACO) and consists of two-step hierarchical structure. The proposed algorithm is experimentally evaluated on six binary and n-ary classification benchmark data sets. Results of the comparative study show that TACO-miner is able to discover accurate and concise classification rules. (C) 2009 Elsevier Ltd. All rights reserved.