Asymptotic formulas with arbitrary order for nonseleadjoint differential operators


Duman M., Kirac A. A., Veliev O. A.

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, vol.44, no.3, pp.391-409, 2007 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 44 Issue: 3
  • Publication Date: 2007
  • Doi Number: 10.1556/sscmath.2007.1026
  • Journal Name: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.391-409
  • Keywords: nonselfadjoint differential operators, strongly regular boundary conditions, Riesz basis
  • Dokuz Eylül University Affiliated: Yes

Abstract

We obtain asymptotic formulas with arbitrary order of accuracy for the eigenvalues and eigenfunctions of a nonselfadjoint ordinary differential operator of order n whose coefficients are Lebesgue integrable on [0,1] and the boundary conditions are strongly regular. The orders of asymptotic formulas are independent of smoothness of the coefficients.