Asymptotic formulas with arbitrary order for nonseleadjoint differential operators


Duman M., Kirac A. A., Veliev O. A.

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, cilt.44, sa.3, ss.391-409, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 44 Sayı: 3
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1556/sscmath.2007.1026
  • Dergi Adı: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.391-409
  • Anahtar Kelimeler: nonselfadjoint differential operators, strongly regular boundary conditions, Riesz basis
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

We obtain asymptotic formulas with arbitrary order of accuracy for the eigenvalues and eigenfunctions of a nonselfadjoint ordinary differential operator of order n whose coefficients are Lebesgue integrable on [0,1] and the boundary conditions are strongly regular. The orders of asymptotic formulas are independent of smoothness of the coefficients.