Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study


SEKİ Y.

Waste Management, cilt.193, ss.54-61, 2025 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 193
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.wasman.2024.11.048
  • Dergi Adı: Waste Management
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, Geobase, INSPEC, MEDLINE, Metadex, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.54-61
  • Anahtar Kelimeler: Spent coffee, Cellulose, Hydrogen peroxide, Sodium chlorite, Whiteness index
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

This study compares several methods, such as sodium chlorite, nitric acid, and hydrogen peroxide treatments with alkali pre-treatments, for efficiency of extracting cellulose from spent ground coffee. The extracted cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), thermogravimetric analysis (TGA), colour analysis, chemical composition, and particle size analysis. FTIR confirmed the removal of non-cellulosic components from coffee, which correlates with chemical composition and colour analysis results. The highest cellulose content (96.7 %) and the highest whiteness index (71.24) were obtained for the cellulose materials extracted using nitric acid-sodium chlorite and sodium chlorite with alkali pre-treatments, respectively. XRD data reveals that the treated coffee presented exhibited a higher crystallinity index compared to the untreated one. The highest increase in crystallinity index (from 54.9 % to 66.3 %) was achieved for the cellulose extracted using a 20 % hydrogen peroxide treatment with alkali pre-treatment. The maximum degradation temperature of the spent ground coffee increased from 292.0 to 310.5 °C after treatment with 10 wt% hydrogen peroxide and alkali pre-treatment. In summary, these findings highlight the great potential of spent ground coffee as a source of cellulose.