Phytic Acid-Containing Reactive Acrylic Emulsions in Leather Coating Applications


Canli K., YILMAZ C. N., Darie-Nita R. N., YILMAZ O.

Polymers, cilt.17, sa.21, 2025 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 21
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/polym17212905
  • Dergi Adı: Polymers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Compendex, INSPEC
  • Anahtar Kelimeler: reactive acrylic polymer, phytic acid, leather finishing, binder, emulsion polymerization, glycidyl methacrylate, vinyltriethoxysilane
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Phytic acid, as a natural originated compound with multi phosphate side groups, is known to increase the corrosion protection and thermal resistance of the coatings. In this study, two different acrylic emulsion polymers containing epoxy and silane reactive functional groups (glycidyl methacrylate (GMA) and vinyltriethoxysilane (VTES)) were synthesized via emulsion polymerization and mixed with phytic acid (PA) solution in different ratios (5, 10, 15 wt%) for use as binders in leather finishing applications. The colloidal stability, particle size distribution, and chemical structures of the synthesized polymers were characterized through comprehensive analyses. The resulting reactive copolymer dispersions were used as binders in finishing formulations and applied to crust shoe upper leathers The coating performance was evaluated in terms of rub fastness, flex resistance, water spotting, and thermal resistance, using the unmodified reactive acrylic binders (G0 and V0) as reference systems to assess the improvements achieved. Both phytic acid-modified binders exhibited strong film integrity and maintained high dry rub fastness up to 2000 cycles and wet rub fastness up to 250 cycles at phytic acid concentrations of 5–10 wt%. Increasing the phytic acid content beyond this range led to reduced dispersion stability and partial loss of coating performance. The results confirm that incorporating moderate levels of phytic acid into reactive acrylic emulsions enhances coating durability and thermal resistance without compromising film appearance, offering a safer and more sustainable alternative to conventional crosslinking systems for leather finishing applications.