Semiconductor Science and Technology, vol.33, no.8, 2018 (SCI-Expanded)
The layer dependent structural, electronic and vibrational properties of the 1T phase of two dimensional (2D) platinum diselenide are investigated by means of state-of-the-art first-principles calculations. The main findings of the study are: (i) monolayer platinum diselenide has a dynamically stable 2D octahedral structure with 1.66 eV indirect band gap, (ii) the semiconducting nature of 1T-PtSe2 monolayers remains unaffected even at high biaxial strains, (iii) top-to-top (AA) arrangement is found to be energetically the most favorable stacking of 1T-PtSe2 layers, (iv) the lattice constant (layer-layer distance) increases (decreases) with increasing number of layers, (v) while monolayer and bilayer 1T-PtSe2 are indirect semiconductors, bulk and few-layered 1T-PtSe2 are metals, (vi) Raman intensity and peak positions of the A1g and Eg modes are found to be highly dependent on the layer thickness of the material, hence; the number of layers of the material can be determined via Raman measurements.