MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, vol.44, pp.1-8, 2014 (SCI-Expanded)
A conformationally rigid half-sandwich organoruthenium (II) complex [(eta(6)-p-cymene)RuClTSCN-S]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)(2)TSCN-S] (2) have been synthesized from the reaction of [{(eta(6)-p-cymene) RuCl}(2)(mu-Cl)(2)] and [Ru(H)(Cl)(CO)(PPh3)(3)] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at -0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01-0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. (C) 2014 Elsevier B.V. All rights reserved.