On Multi-Order Fractional Differential Operators in the Unit Disk


Creative Commons License

Ibrahim R. W., Ozel C.

FILOMAT, cilt.30, sa.1, ss.73-81, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 1
  • Basım Tarihi: 2016
  • Doi Numarası: 10.2298/fil1601073i
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.73-81
  • Anahtar Kelimeler: analytic function, fractional calculus, fractional differential equation, unit disk, ANALYTIC-FUNCTIONS, OPTICAL PATHLENGTH, EXTINCTION
  • Dokuz Eylül Üniversitesi Adresli: Hayır

Özet

In this article, we generalize fractional operators (differential and integral) in the unit disk. These operators are generalized the Srivastava-Owa operators. Geometric properties are studied and the advantages of these operators are discussed. As an application, we impose a method, involving a memory formalism of the Beer-Lambert equation based on a new generalized fractional differential operator. We give solutions in terms of the multi-index Mittag-Leffler function. In addition, we sanctify the out come from a stochastic standpoint. We utilize the generalized Wright function to obtain the analytic formula of solutions.