EUROPEAN JOURNAL OF NUCLEAR MEDICINE, vol.27, no.9, pp.1402-1404, 2000 (SCI-Expanded)
Drug-metabolising enzymatic activities have been detected in tracheobronchiolar, bronchiolar and alveolar regions in the lungs. Induction of phospholipidosis by amine drugs such as clorphentermine has also been shown. This study aimed to investigate the effect of fluoxetine and maprotiline, which contain amine groups in their structure, on pulmonary epithelial membrane permeability. Twenty-seven patients (mean age 36 +/- 12 years) with various psychiatric problems, of whom 17 were treated with fluoxetine and 10 with maprotiline, were included in this study. Technetium-99m diethylene triamine penta-acetic acid (DTPA) aerosol inhalation scintigraphy was performed before and after 4-6 weeks of therapy. Following the inhalation of 1450 MB Tc-99m-DTPA for 3 min, lung images in a 64 x 64 matrix were obtained every minute for 30 min. Regions of interest were drawn around the periphery of the lungs and on the major airways. Clearance half-times (T-1/2) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. There was no difference between the clearance rates of Tc-99m-DTPA before and after therapy for either the fluoxetine or the maprotiline group. After therapy, a significant decrease in PI was found in patients treated with fluoxetine (PI values before and after therapy: 0.53 +/- 0.03 and 0.49 +/- 0.05 respectively, P less than or equal to 0.05). This finding might have been due to the induction of increased synaptic serotonin (5-HT) by fluoxetine, which acts by inhibiting the re-uptake of 5-HT on presynaptic membranes. Bronchoconstriction of small and medium airways may be caused by direct and indirect effects of 5-HT on smooth muscle contraction.