On subinjectivity domains of finitely generated modules


Durğun Y., Özdemir S.

COMMUNICATIONS IN ALGEBRA, cilt.1, ss.1-13, 2025 (SCI-Expanded, Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1080/00927872.2025.2507144
  • Dergi Adı: COMMUNICATIONS IN ALGEBRA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-13
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

A module M is called FG-injective if every homomorphism from M to a finitely generated module factors through an injective module, generalizing the injective modules properly. If the subinjectivity domain of M consists of exactly the FG-injective modules, then M is said to be fg-indigent. Properties of FG-injective modules and of fg-indigent modules are studied, and the concept of si-portfolio is considered for finitely generated modules. The collection of all subinjectivity domains of all finitely generated modules is also considered, and the cases where this collection forms a chain or has a single or two elements are investigated.