The Impact of Oleuropein on Cisplatin-Induced Toxicity in Cochlear Cells in Relation to the Expression of Deoxyribonucleic Acid Damage-Associated Genes


Creative Commons License

Olgun Y., Altun Z. S., Tütüncü M., Kum Özşengezer S., Aktaş S., Güneri E. A.

JOURNAL OF INTERNATIONAL ADVANCED OTOLOGY, cilt.20, sa.3, ss.189-195, 2024 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 20 Sayı: 3
  • Basım Tarihi: 2024
  • Doi Numarası: 10.5152/iao.2024.231288
  • Dergi Adı: JOURNAL OF INTERNATIONAL ADVANCED OTOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MEDLINE, Directory of Open Access Journals
  • Sayfa Sayıları: ss.189-195
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

BACKGROUND: Different organs respond differently to cisplatin (CDDP)-induced toxicity. Oleuropein (OLE) is a natural phenolic antioxidant.

The purpose of this study was to determine the potential protective effect of OLE against CDDP-induced ototoxicity by evaluating expression of

genes associated with deoxyribonucleic acid (DNA) damage and repair in cochlear cells.

METHODS: House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were treated using CDDP, OLE, and OLE–CDDP. The water-soluble tetrazolium

salt assay was used for monitoring cell viability. Deoxyribonucleic acid damage in cells due to the CDDP, OLE, and combination treatments was

determined using a flow-cytometric kit. The change in the expression of 84 genes associated with CCDP, OLE, and OLE–CDDP treatments that

induced DNA damage was tested using the reverse transcription polymerase chain reaction array. Changes ≥3-fold were considered significant.

RESULTS: House Ear Institute-Organ of Corti 1 cell viability was significantly reduced by CDDP. The OLE–CDDP combination restored the cell

viability. Cisplatin increased the H2AX ratio, while OLE–CDDP combination decreased it. Some of the DNA damage-associated genes whose

expression was upregulated with CDDP were downregulated with OLE–CDDP, while the expression of genes such as Gadd45g and Rev1 was

further downregulated. The expression of DNA repair-related Abl1, Dbd2, Rad52, and Trp53 genes was downregulated with CDDP, whereas their

expression was upregulated with OLE–CDDP treatment.

CONCLUSION: In cochlear cells, the OLE–CDDP combination downregulated DNA damage-associated gene expression relative to that upregulated

mainly by CDDP. The results revealed that OLE has a potential protective effect on CDDP-induced ototoxicity in cochlear cells by altering

the expression of DNA damage-related genes.