ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, cilt.24, sa.36, ss.28102-28120, 2017 (SCI-Expanded)
The occurrence and atmospheric behavior of tri- to deca-polybrominated diphenyl ethers (PBDEs) were investigated during a 2-week campaign concurrently conducted in July 2012 at four background sites around the Aegean Sea. The study focused on the gas/particle (G/P) partitioning at three sites (Ag. Paraskevi/central Greece/suburban, Finokalia/southern Greece/remote coastal, and Urla/Turkey/rural coastal) and on the size distribution at two sites (Neochorouda/northern Greece/rural inland and Finokalia/southern Greece/remote coastal). The lowest mean total (G + P) concentrations of a(7)PBDE (BDE-28, BDE-47, BDE-66, BDE-99, BDE-100, BDE-153, BDE-154) and BDE-209 (0.81 and 0.95 pg m(-3), respectively) were found at the remote site Finokalia. Partitioning coefficients, K (P), were calculated, and their linear relationships with ambient temperature and the physicochemical properties of the analyzed PBDE congeners, i.e., the subcooled liquid pressure (P (L)A degrees) and the octanol-air partition coefficient (K (OA)), were investigated. The equilibrium adsorption (P (L)A degrees-based) and absorption (K (OA)-based) models, as well as a steady-state absorption model including an equilibrium and a non-equilibrium term, both being functions of log K (OA), were used to predict the fraction I broken vertical bar of PBDEs associated with the particle phase. The steady-state model proved to be superior to predict G/P partitioning of BDE-209. The distribution of particle-bound PBDEs across size fractions < 0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and > 7.2 mu m indicated a positive correlation between the mass median aerodynamic diameter and log P (L)A degrees for the less brominated congeners, whereas a negative correlation was observed for the high brominated congeners. The potential source regions of PBDEs were acknowledged as a combination of long-range transport with short-distance sources.