Diagnosis of Pancreatic Ductal Adenocarcinoma Using Deep Learning


Creative Commons License

Kavak F., Bora S., Kantarci A., Uğur A., ÇAĞAPTAY S., Gokcay D., ...Daha Fazla

Sensors, cilt.24, sa.21, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 21
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/s24217005
  • Dergi Adı: Sensors
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: deep learning, convolutional neural networks, classification, health services, pathology images, pancreatic ductal adenocarcinoma
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Recent advances in artificial intelligence (AI) research, particularly in image processing technologies, have shown promising applications across various domains, including health care. There is a significant effort to use AI for the early diagnosis and detection of diseases, offering cost-effective and timely solutions to enhance patient outcomes. This study introduces a deep learning network aimed at analyzing pathology images for the accurate diagnosis of pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). Utilizing a novel dataset comprised of cases diagnosed with PDAC and/or chronic pancreatitis, this study applies deep learning algorithms to assess the effectiveness and reliability of the diagnostic process. The dataset was enhanced through image duplication and the creation of a second dataset with varied dimensions, facilitating the training of advanced transfer learning models including InceptionV3, DenseNet, ResNet, VGG, EfficientNet, and a specially designed deep neural network. The study presents a convolutional neural network model, optimized for the rapid and accurate detection of pancreatic cancer, and conducts a comparative analysis with other models to select the most accurate algorithm for a decision support system. The results from Dataset 1 show that EfficientNetB0 achieved a high success rate of 92%. In Dataset 2, VGG16 was found to have high performance, with a success rate of 92%. On the other hand, ResNet50 achieved a remarkable success rate of 96% despite a moderate training time and showed high precision, recall, F1 score, and accuracy. These results provide valuable data to demonstrate and share the relevance of different deep learning models in pancreatic cancer diagnosis.