JOURNAL OF FLUID MECHANICS, cilt.572, ss.189-217, 2007 (SCI-Expanded, Scopus)
Interaction of a deep-water wave with a cylinder gives rise to ordered patterns of the flow structure, which are quantitatively characterized using a technique of high-image-density particle image velocimetry. When the cylinder is stationary, the patterns of instantaneous flow structure take on increasingly complex forms for increasing Keulegan-Carpenter number KC. These patterns involve stacking of small-scale vorticity concentrations, as well as large-scale vortex shedding. The time-averaged consequence of these patterns involves, at sufficiently high KC, an array of vorticity concentrations about the cylinder.