Preparation of albumin nanoparticles in water-in-ionic liquid microemulsions


Demirkurt B., ÇAKAN AKDOĞAN G., Akdogan Y.

JOURNAL OF MOLECULAR LIQUIDS, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1016/j.molliq.2019.111713
  • Dergi Adı: JOURNAL OF MOLECULAR LIQUIDS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: Ionic liquids, Albumin nanoparticle, Microemuision, Surfactant, High speed homogenization, BOVINE SERUM-ALBUMIN, STARCH NANOPARTICLES, CONTROLLED-RELEASE, REVERSE MICELLES, DELIVERY, SIZE, SOLVENT, BINDING, SYSTEM, EPR
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Ionic liquids (Its) with a variety of properties have been considered a unique class of solvents. Using ILs in microemulsions as oil substitutes provides environmentally benign media for various applications including nanoparticle synthesis. Here, bovine serum albumin nanoparticles (BSA NPs) widely used in drug delivery studies were prepared in nano-sized water droplets of water-in-IL (W/IL) microemulsion systems. A hydrophobic IL of 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)) was used as oil component in place of oils (castor oil, olive oil, etc.) and/or conventional organic solvents (cyclohexane, dichloromethane, etc.) in an emulsification method. In order to obtain spherical BSA NPs, high speed homogenizer treatment was applied followed by glutaraldehyde addition. Effects of glutaraldehyde, speed of homogenizer, type of surfactants and compositional fractions of the microemulsion components on the formation of water droplets and/or preparation of BSA NPs were studied using FTIR, EPR, DLS, and SEM techniques. Optimization of these preparation parameters showed that 3 wt% of BSA in a water/Tween 20/BmimPF(6) microemulsion with 20:50:30 wt% yielded similar to 100 nm average sized BSA NPs based on the SEM analysis. Although, water droplet size strongly depends on the water content, BSA nanoparticle size did not show a significant dependency on the water content. On the other hand, surfactant/IL weight ratio is more crucial for obtaining more uniformly size distributed albumin nanoparticles. A significant cellular uptake of BSA NPs prepared in IL based microemulsions with high cell viability showed the potential of this technique in preparation of albumin nanoparticles that can be used also in drug delivery studies. (C) 2019 Elsevier B.V. All rights reserved.