Patterns of proliferation and fibrosis in a rat model of endometriosis following administration of Allium cepa

Kula A. H., İlgen O., Kurt S., Yılmaz F.



Objective: Endometriosis is a common gynecological disease among reproductive-age women. Numerous hypotheses exist regarding the pathogenesis of endometriosis. In Turkey, the consumption of Allium cepa (commonly known as the "onion cure") is a popular treatment employed to alleviate a variety of gynecological disorders.

Methods: In this study, our objective was to assess the therapeutic mechanisms of the onion bulb A. cepa using an autologous endometriosis model in Sprague-Dawley rats. Previous research has shown that A. cepa possesses anti-inflammatory, antioxidant, and antiapoptotic properties. We evaluated the pathological condition of endometriotic implants by employing hematoxylin-eosin staining and Ki67 immunohistochemistry analysis. Transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) have been identified as profibrotic markers that are highly overexpressed in endometriotic tissues relative to eutopic endometrial tissue. Furthermore, TGF-β1 influences the differentiation and progression of endometriosis. To quantify profibrotic activity, we measured TGF-β1 and α-SMA using the immunosorbent assay method.

Results: Lower histologic evaluation scores for endometriotic implants were observed in the group receiving high-dose A. cepa relative to the other groups. Ki67 expression was reduced following the high-dose A. cepa regimen, which consisted of 30% A. cepa and 70% normal feed. However, no statistically significant differences in TGF-β1 or α-SMA levels were observed among the groups (p=0.7 and p=0.778, respectively).

Conclusion: The findings suggest that A. cepa could serve as a therapeutic agent in endometriosis treatment, as evidenced by the reduction in proliferative potential. Nevertheless, A. cepa was not associated with significantly lower levels of endometriosis-associated TGF-β1 or α-SMA.

Keywords: Alpha-smooth muscle actin; Fibrosis; Ki67; Proliferation; Transforming growth factor beta1.