DPAGT1-CDG: Report of Two New Pediatric Patients and Brief Review of the Literature


ÖZSOY Ö., ÇİNLETİ T., GÜNAY Ç., SARIKAYA UZAN G., YEŞİLMEN M. C., Lochmueller H., ...Daha Fazla

MOLECULAR SYNDROMOLOGY, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Derleme
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1159/000529494
  • Dergi Adı: MOLECULAR SYNDROMOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, EMBASE
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Introduction: Congenital glycosylation disorders are multisystem diseases with heterogeneous clinical manifestations caused by defects in the synthesis of the glycan moiety of glycoproteins or glycolipids or the binding of glycans to proteins and lipids. DPAGT1 (UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphotransferase) is an initiating protein in the biosynthetic pathway of dolichol-linked oligosaccharides required for protein N-glycosylation. Pathogenic variants in DPAGT1 (UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphotransferase) gene cause a rare type of congenital glycosylation disorder called DPAGT1-CDG (formerly CDG-Ij) (OMIM #608093). It is a rare autosomal recessive disease or a milder version with congenital myasthenic syndrome known as DPAGT1-CMS. A severe disease course with hypotonia, cataracts, skeletal deformities, resistant epilepsy, intellectual disability, global developmental delay, premature death has been described in most patients with DPAGT1-CDG. Patient Presentation: We describe two patients with variants in the DPAGT1 gene: an 8-month-old boy with a homozygous, missense DPAGT1:c.339T>G (p.Phe113Leu) novel variant and a 13-year-old female patient with compound heterozygous variants, DPAGT1:c.466C>T (p.Arg156Cys, R156C) and DPAGT1:c.161+5G>A. While the 8-month-old patient was diagnosed with congenital cataract at the age of 1 month, had dysmorphic findings, and epilepsy, clinical symptoms in the other patient appeared later but with more prominent muscle weakness, behavioral disorder, dysmorphic findings, and no epilepsy. Discussion: Cholinesterase inhibitor therapy was found to be effective in patients against muscle weakness, supporting DPAGT1 deficiency as the underlying etiology. We started pyridostigmine treatment in our patient with more pronounced muscle weakness, and we saw its benefit. We aimed to present our patients diagnosed with DPAGT1-CDG due to different variants in the same gene and different clinical presentations, treatment and to compare them with other patients in the literature.