Forecasting Istanbul monthly temperature by multivariate partial least square

Ertac M., FİRUZAN E., Solum S.

THEORETICAL AND APPLIED CLIMATOLOGY, vol.121, pp.253-265, 2015 (SCI-Expanded) identifier identifier


Weather forecasting, especially for temperature, has always been a popular subject since it affects our daily life and always includes uncertainty as statistics does. The goals of this study are (a) to forecast monthly mean temperature by benefitting meteorological variables like temperature, humidity and rainfall; and (b) to improve the forecast ability by evaluating the forecasting errors depending upon the parameter changes and local or global forecasting methods. Approximately 100 years of meteorological data from 54 automatic meteorology observation stations of Istanbul that is the mega city of Turkey are analyzed to infer about the meteorological behaviour of the city. A new partial least square (PLS) forecasting technique based on chaotic analysis is also developed by using nonlinear time series and variable selection methods. The proposed model is also compared with artificial neural networks (ANNs), which model nonlinearly the relation between inputs and outputs by working neurons like human brain. Ordinary least square (OLS), PLS and ANN methods are used for nonlinear time series forecasting in this study. Major findings are the chaotic nature of the meteorological data of Istanbul and the best performance values of the proposed PLS model.