Anatomic Footprint of the Direct Head of the Rectus Femoris Origin: Cadaveric Study and Clinical Series of Hips After Arthroscopic Anterior Inferior Iliac Spine/Subspine Decompression

Creative Commons License

Hapa O., Bedi A., Gürsan O., Akar M. S., Guevencer M., Havıtçıoğlu H., ...More

ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, vol.29, no.12, pp.1932-1940, 2013 (SCI-Expanded) identifier identifier identifier


Purpose: The purposes of this study were to define the anatomy of the anterior inferior iliac spine (AIIS) and its relation to the footprint of the rectus femoris tendon and to evaluate on the clinical outcomes after AIIS/subspine decompression. Methods: The rectus origin was dissected and detached in 11 male cadaveric hips with a mean age of 54.3 +/- 14.3 years (range, 33 to 74 years). The proximal-distal and medial-lateral extent of the footprint and its relation to the AIIS and acetabular rim were evaluated, with the 12-o'clock position defined as directly lateral at the insertion of the indirect head of the rectus tendon and the 1- to 6-o'clock positions defined as anterior acetabular positions. To assess the safety and efficacy of subspine decompression for AIIS deformity, clinical correlation of a series of 163 AIIS decompressions (mean age, 27.8 years; age range, 14 to 52 years) performed from January 2011 to January 2012 was completed, and outcome scores, strength deficits, and ruptures were assessed by manual muscle testing and postoperative radiographs. All patients presented with symptomatic FAI with proximal femoral and/or acetabular deformity and type 2 (131 hips) or type 3 (32 hips) AIIS morphology as defined by Hetsroni et al. Results: The mean proximal-distal and medial-lateral distances for the rectus origin footprint were 2.2 +/- 0.1 cm (range, 2.1 to 2.4 cm) and 1.6 +/- 0.3 cm (range, 1.2 to 2.3 cm), respectively. There was a characteristic bare area at the anteromedial AIIS. On the clock face, the lateral margin (1-o'clock to 1:30 position) and medial margin (2-o'clock to 2: 30 position) of the AIIS and the indirect head of the rectus (12 o'clock) were consistent for all specimens. In the clinical series, 163 AIIS decompressions were performed for symptomatic subspine impingement. The mean modified Harris Hip Score was 63.1 points (range, 21 to 90 points) preoperatively compared with 85.3 points (range, 37 to 100 points) at a mean follow-up of 11.1 +/- 4.1 months (range, 6 to 24 months) (P < .01). Short Form 12 scores improved significantly from a mean of 70.4 (range, 34 to 93) preoperatively to a mean of 81.3 (range, 31 to 99) postoperatively (P < .01). The mean pain score on a visual analog scale also improved significantly from a mean of 4.9 (range, 0.1 to 8.6) preoperatively to a mean of 1.9 (range, 0 to 7.8) postoperatively (P < .01). The mean alpha angle improved from 61.5 degrees (range, 35 degrees to 90 degrees) preoperatively to 49 degrees (range, 35 degrees to 63 degrees) postoperatively on anteroposterior radiographs and from 71 degrees (range, 45 degrees to 90 degrees) preoperatively to 44.3 degrees (range, 37 degrees to 60 degrees) postoperatively on lateral radiographs. No short-or long-term hip flexion deficits or rectus femoris avulsions were noted with up to 2 years' follow-up. Conclusions: The origin of the rectus femoris tendon is broad on the AIIS and protective against direct head detachment with subspine decompression. This broad origin and consistent bare area anteromedially on the AIIS can be readily used by surgeons to perform a safe AIIS resection in cases of symptomatic impingement. Arthroscopic subspine decompression in addition to osteoplasty for symptomatic cam- and/or pincer-type FAI deformities can reliably improve outcome scores without significant hip flexion deficits or AIIS/rectus femoris avulsions.