Annual International Conference of the German-Operations-Research-Society, Saarbrücken, Almanya, 5 - 07 Eylül 2007, ss.83-88
The objective of this study is to develop a neural network based decision support system for selection of appropriate dispatching rules for a real-time manufacturing system, in order to obtain the desired performance measures given by a user, at different scheduling periods. A simulation experiment is integrated with a neural network to obtain the multi-objective scheduler, where simulation is used to provide the training data. The proposed methodology is illustrated on a flexible manufacturing system (FMS) which consists of several number of machines and jobs, loading/unloading stations and automated guided vehicles (AGVs) to transport jobs from one location to another.