Factors affecting the shear strength behavior of municipal solid wastes


PULAT H. F., YÜKSELEN AKSOY Y.

WASTE MANAGEMENT, cilt.69, ss.215-224, 2017 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 69
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.wasman.2017.08.030
  • Dergi Adı: WASTE MANAGEMENT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.215-224
  • Anahtar Kelimeler: Municipal solid waste, Synthetic, Large-scale direct shear, Ageing, Composition, SLOPE FAILURE
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. (C) 2017 Elsevier Ltd. All rights reserved.