A 4-hour Profile of 17-hydroxyprogesterone in Salt-wasting Congenital Adrenal Hyperplasia: Is the Serial Monitoring Strategy Worth the Effort?


Besci Ö., Erbaş İ. M., Küme T., Yüksek Acinikli K., Abacı A., Böber E., ...Daha Fazla

JCRPE JOURNAL OF CLINICAL RESEARCH IN PEDIATRIC ENDOCRINOLOGY, cilt.14, sa.2, ss.145-152, 2022 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 2
  • Basım Tarihi: 2022
  • Dergi Adı: JCRPE JOURNAL OF CLINICAL RESEARCH IN PEDIATRIC ENDOCRINOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CINAHL, EMBASE, MEDLINE, Directory of Open Access Journals, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.145-152
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Objective: Since there is no gold standard laboratory variable for adjustment of treatment in congenital adrenal hyperplasia (CAH), the aim was to assess the use of a 4-hour profile of serum 17-hydroxyprogesterone (17-OHP) to determine the most appropriate sample time and level of 17-OHP in predicting the metabolic control and evaluate the role of sex hormone-binding globulin (SHBG) in hyperandrogenemia.

Methods: This study included children with salt-wasting CAH. Measurements for 17-OHP and cortisol were made from samples obtained before and 1, 2, and 4 hours after the morning dose of hydrocortisone. Patients were designated to have poor metabolic control when androstenedione levels according to age and sex-specific reference intervals were high and annual height standard deviation score (SDS) changes were ≥0.5.

Results: The study cohort was 16 children (9 girls) with a median age of 7-years old. Premedication 17-OHP levels were strongly correlated with 17-OHP levels 1, 2, and 4 hours after the morning dose (rs=0.929, p<0.01; rs=0.943, p<0.01; rs=0.835, p<0.01, respectively). 17-OHP profiles (0, 1, 2, 4 hours) of poor (n=6) and good (n=10) metabolically controlled cases were similar. Among the patients with poor metabolic control, two cases had 17-OHP levels <2 ng/mL at all times. The remaining patients with poor metabolic control had median 17-OHP levels above 104 ng/mL, 82 ng/mL, 14 ng/mL, and 4 ng/mL, for baseline and 1, 2, and 4 hours, respectively. Differences between the poor and well-controlled group were androstenedione levels with respect to upper limit of normal [1.8 (1.5) and 0.5 (1.5) ng/mL, respectively p=0.03], annual change in height SDS [0.7 (0.2) and -0.03 (0.8) SDS, respectively, p=0.001], and daily hydrocortisone doses [7 (6) and 16 (8) mg/m2/day, respectively, p=0.02]. Androstenedione and SHBG levels were negatively correlated in the pubertal children (rs=-0.7, p=0.04).

Conclusion: We conclude that: (i) a 4-hour 17-OHP profile is not useful in predicting hyperandrogenemia; (ii) suppressed levels of 17-OHP do not always indicate overtreatment; (iii) reference intervals of 17-OHP for different time periods might be of importance; (iv) low hydrocortisone doses should be avoided; and (v) SHBG could be used in pubertal children as an indicator of hyperandrogenemia.