ZOOLOGICA SCRIPTA, cilt.49, sa.1, ss.14-27, 2020 (SCI-Expanded)
Lacerta pamphylica and Lacerta trilineata are two currently recognized green lizard species with a historically problematic taxonomy. In cases of tangled phylogenies, next-generation sequencing and double-digest restriction-site-associated DNA protocols can provide a wealth of genomic data and resolve difficult taxonomic issues. Here, we generated genome-wide SNPs and mitochondrial sequences, and applied molecular species delimitation approaches to provide a stable taxonomy for the Aegean green lizards. Mitochondrial gene trees, genetic cluster delimitation and population structure analyses converged into recognizing the populations of (a) L. pamphylica, (b) east Aegean islands, Anatolia and Thrace (diplochondrodes lineage), (c) central Aegean islands (citrovittata), and (d) remaining Balkan populations and islands (trilineata), as separate clusters. Phylogenomic analyses revealed a split into two major clades, east and west of the Aegean Barrier, unambiguously showing a sister-clade relationship between pamphylica and diplochondrodes, rendering L. trilineata paraphyletic. Species delimitation models were tested in a Bayesian framework using the genomic SNPs: lumping all populations into a single 'species' had the lowest likelihood but the current taxonomy was also outperformed by all other models. All lines of evidence support the Pamphylian green lizard as a valid species; thus, east Aegean L. trilineata should also be considered a distinct species under the name Lacerta diplochondrodes. Finally, evidence from the mitochondrial and nuclear genomes is overwhelmingly in favour of recognizing the morphologically distinct Cycladian green lizards as a distinct species. We propose their elevation to full species under the name Lacerta citrovittata. All remaining insular and continental populations of the Balkan Peninsula represent the species L. trilineata.