AEROSOL AND AIR QUALITY RESEARCH, cilt.15, sa.1, ss.11-43, 2015 (SCI-Expanded)
Source apportionment has most often been applied to a time series of data collected at a single site. However, in a complex airshed where there are multiple sources, it may be helpful to collect samples from multiple sites to ensure that some of them have low contributions from specific sources such that edges can be properly defined. In this study, samples were collected at multiple sites in the Aliaga region (38 degrees 40'-38 degrees 54'N and 26 degrees 50'-27 degrees 03'E) located in western Turkey on the coast of the Aegean Sea. This area contains a number of significant air pollution sources including five scrap iron-steel processing plants with electric arc furnaces (EAFs), several steel rolling mills, a petroleum refinery, a petrochemical complex, a natural gas-fired power plant, a fertilizer plant, ship breaking yards, coal storage and packaging, scrap storage and classification sites, large slag and scrap piles, heavy road traffic, very intense transportation activities including ferrous scrap trucks and busy ports used for product and raw material transportation. A total of 456 samples of PM10 at six sampling sites and 88 samples of PM2.5 at one site were collected for four seasons and the elemental composition was determined for 43 elements. The newest version of EPA PMF (V5.0) that has the capability of handling multiple site data was used for source apportionment. Eight factors were identified as iron-steel production from scrap (23.4%), re-suspended and road dust (23.3%), crustal (20.5%), marine aerosol (14.4%), biomass and wood combustion (7.2%), salvage activities (4.7%), coal combustion (3.7%) and residual oil combustion (2.8%). The pattern of source contributions and conditional probability function analysis were consistent with the locations of the known sources. Thus, the multiple site data allowed for a comprehensive identification of the primary sources of PM in this region.