Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe


Creative Commons License

Kambach S., Sabatini F. M., Attorre F., Biurrun I., Boenisch G., Bonari G., ...Daha Fazla

Nature communications, cilt.14, sa.1, ss.712, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1038/s41467-023-36240-6
  • Dergi Adı: Nature communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Geobase, INSPEC, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Sayfa Sayıları: ss.712
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

© 2023. The Author(s).Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.