JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, vol.21, no.2, pp.175-192, 2002 (SCI-Expanded)
In this study, an elastic-plastic stress analysis is carried out in a thermoplastic composite cantilever beam loaded by a bending moment at the free end. The composite beam is reinforced unidirectionally by steel fibers at 0, 30, 45, 60, and 90 orientation angles. An analytical solution is performed for satisfying both the governing differential equation in the plane stress case and boundary conditions for small plastic deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. It is found that the intensity of the residual stress component of sigma(x) is maximum at the upper and lower surfaces or at the boundary of the elastic and plastic regions. The composite material is assumed to be as hardening linearly. The Tsai-Hill theory is used as a yield criterion.