INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, cilt.13, sa.2, ss.216-230, 2017 (ESCI)
In this paper, we extend the definition of the fractional integral and derivative introduced in [Appl. Math. Comput. 218 (2011)] by Katugampola, which exhibits nice properties only for numbers whose real parts lie in [0,1]. We prove some interesting properties of the fractional integrals and derivatives. Based on these properties, the following concepts for the new type fractional differential equations are explored: Existence and uniqueness of solutions; Solutions of autonomous fractional differential equations; Dependence on the initial conditions; Greens function; Variation of parameters formula.