Development and Characterization of a Wound-Healing System Based on a Marine Biopolymer


YILMAZ C. N., Yildirim M. S., Govem D., AYAR KAYALI H., YILMAZ O.

Gels, cilt.11, sa.11, 2025 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 11
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/gels11110881
  • Dergi Adı: Gels
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Directory of Open Access Journals
  • Anahtar Kelimeler: marine algae, Ulvan polysaccharide, boric acid, biopolymer modification, wound healing
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Marine algae are a sustainable and eco-friendly resource, growing rapidly without freshwater or arable land while aiding carbon sequestration. Their extract is rich in biodegradable polysaccharides like alginate, fucoidan, carrageenan, agar, and Ulvan which can be used further in wound healing thanks to their unique characteristics such as ensuring moisture balance and tissue regeneration by forming biocompatible hydrogels with antimicrobial, anti-inflammatory, and antioxidant properties, key requirements in wound healing. The present study explored the utilization of local grown marine algae (i.e., Aegean seashores from Türkiye) and transforming the waste into useful end-products for dermatocosmetics and healing systems. The extracted polyssacharide, e.g., Ulvan which was characterized by means of FT-IR spectroscopy, DSC, and antioxidant activity, was included inside a semi-solid formulation and combined with other polysaccharides from other natural sources such a chitosan, alginate, and hyaluronic acid to form bioactive hydrogels with wound closure activity. The formulated hydrogels exhibited significant swelling capacity, antioxidant activity, and the selected optimal formulation exhibited enhanced wound closure rates in vitro, demonstrating potential for wound-healing applications.