A penalty-based algorithm proposal for engineering optimization problems


Öztaş G. Z., Erdem S.

NEURAL COMPUTING AND APPLICATIONS, cilt.1, sa.1, ss.1-10, 2022 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s00521-022-08058-8
  • Dergi Adı: NEURAL COMPUTING AND APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Applied Science & Technology Source, Biotechnology Research Abstracts, Compendex, Computer & Applied Sciences, Index Islamicus, INSPEC, zbMATH
  • Sayfa Sayıları: ss.1-10
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

This paper presents a population-based evolutionary computation model for solving continuous constrained nonlinear optimization problems. The primary goal is achieving better solutions in a specific problem type, regardless of metaphors and similarities. The proposed algorithm assumes that candidate solutions interact with each other to have better fitness values. The interaction between candidate solutions is limited with the closest neighbors by considering the Euclidean distance. Furthermore, Tabu Search Algorithm and Elitism selection approach inspire the memory usage of the proposed algorithm. Besides, this algorithm is structured on the principle of the multiplicative penalty approach that considers satisfaction rates, the total deviations of constraints, and the objective function value to handle continuous constrained problems very well. The performance of the algorithm is evaluated with real-world engineering design optimization benchmark problems that belong to the most used cases by evolutionary optimization researchers. Experimental results show that the proposed algorithm produces satisfactory results compared to the other algorithms published in the literature. The primary purpose of this study is to provide an algorithm that reaches the best-known solution values rather than duplicating existing algorithms through a new metaphor. We constructed the proposed algorithm with the best combination of features to achieve better solutions. Different from similar algorithms, constrained engineering problems are handled in this study. Thus, it aims to prove that the proposed algorithm gives better results than similar algorithms and other algorithms developed in the literature.

This paper presents a population-based evolutionary computation model for solving continuous constrained nonlinear optimization problems. The primary goal is achieving better solutions in a specific problem type, regardless of metaphors and similarities. The proposed algorithm assumes that candidate solutions interact with each other to have better fitness values. The interaction between candidate solutions is limited with the closest neighbors by considering the Euclidean distance. Furthermore, Tabu Search Algorithm and Elitism selection approach inspire the memory usage of the proposed algorithm. Besides, this algorithm is structured on the principle of the multiplicative penalty approach that considers satisfaction rates, the total deviations of constraints, and the objective function value to handle continuous constrained problems very well. The performance of the algorithm is evaluated with real-world engineering design optimization benchmark problems that belong to the most used cases by evolutionary optimization researchers. Experimental results show that the proposed algorithm produces satisfactory results compared to the other algorithms published in the literature. The primary purpose of this study is to provide an algorithm that reaches the best-known solution values rather than duplicating existing algorithms through a new metaphor. We constructed the proposed algorithm with the best combination of features to achieve better solutions. Different from similar algorithms, constrained engineering problems are handled in this study. Thus, it aims to prove that the proposed algorithm gives better results than similar algorithms and other algorithms developed in the literature.