Innovations in Intelligent Systems and Applications Conference (ASYU), İzmir, Türkiye, 31 Ekim - 02 Kasım 2019, ss.172-177
In this study, the electrocardiography (ECG) arrhythmias have been classified by the proposed framework depend on deep neural networks in order to features information. The proposed approaches operates with a large volume of raw ECG time-series data and ECG signal spectrograms as inputs to a deep convolutional neural networks (CNN). Heartbeats are classified as normal ( N), premature ventricular contractions (PVC), right bundle branch block (RBBB) rhythm by using ECG signals obtained from MIT-BIH arrhythmia database. The first approach is to directly use ECG time-series signals as input to CNN, and in the second approach ECG signals are converted into time-frequency domain matrices and sent to CNN. The most appropriate parameters such as number of the layers, size and number of the filters are optimized heuristically for fast and efficient operation of the CNN algorithm. The proposed system demonstrated high classification rate for the time-series data and spectrograms by using deep learning algorithms without standard feature extraction methods. Performance evaluation is based on the average sensitivity, specificity and accuracy values. It is also worth to note that spectrogram increases the performance of classification since it extracts the useful time-frequency information of the signal.