Recycling coral waste into eco-friendly UHPC: Mechanical strength, microstructure, and environmental benefits


He Z., Shen M., Shi J., Yalçınkaya Ç., Du S., Yuan Q.

THE SCIENCE OF THE TOTAL ENVIRONMENT AN INTERNATIONAL JOURNAL FOR SCIENTIFIC RESEARCH INTO THE ENVIRONMENT AND ITS RELATIONSHIP WITH MAN, cilt.836, ss.155424, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 836
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.scitotenv.2022.155424
  • Dergi Adı: THE SCIENCE OF THE TOTAL ENVIRONMENT AN INTERNATIONAL JOURNAL FOR SCIENTIFIC RESEARCH INTO THE ENVIRONMENT AND ITS RELATIONSHIP WITH MAN
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.155424
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

On islands far away from the mainland, the raw materials for concrete production are often more difficult to obtain. Converting the coral waste generated during the island construction process into a marine ultra-high performance concrete (UHPC) mixture is an eco-friendly strategy. Coral powder (CP) is used to partially replace cement and silica fume (SF), and its mechanical strength, microstructure and environmental benefits are evaluated. Results show that using a small amount of CP (5%) to replace cement can improve the mechanical properties of UHPC, but the strength of UHPC decreases with the further increase of CP content. From the perspective of nanoindentation test, an appropriate amount of CP refines the pore structure of the UHPC matrix and increases the content of C-S-H, especially the proportion of high-density C-S-H. When 15% of SF is replaced by CP (SF15), the strength of UHPC decreases due to the decrease of C-S-H phase and the deterioration of microstructure. In terms of the width of the interface transition zone, the width of the C5 sample (CP replace 5% cement) is decreased by 16.7% compared with the control group, while the width of the SF15 group is increased by 38.9%. Compared with conventional UHPC, CP-based UHPC has lower carbon emission and non-renewable energy consumption, which effectively utilizes waste and promotes sustainability.

On islands far away from the mainland, the raw materials for concrete production are often more difficult to obtain. Converting the coral waste generated during the island construction process into a marine ultra-high performance concrete (UHPC) mixture is an eco-friendly strategy. Coral powder (CP) is used to partially replace cement and silica fume (SF), and its mechanical strength, microstructure and environmental benefits are evaluated. Results show that using a small amount of CP (5%) to replace cement can improve the mechanical properties of UHPC, but the strength of UHPC decreases with the further increase of CP content. From the perspective of nanoindentation test, an appropriate amount of CP refines the pore structure of the UHPC matrix and increases the content of C-S-H, especially the proportion of high-density C-S-H. When 15% of SF is replaced by CP (SF15), the strength of UHPC decreases due to the decrease of C-S-H phase and the deterioration of microstructure. In terms of the width of the interface transition zone, the width of the C5 sample (CP replace 5% cement) is decreased by 16.7% compared with the control group, while the width of the SF15 group is increased by 38.9%. Compared with conventional UHPC, CP-based UHPC has lower carbon emission and non-renewable energy consumption, which effectively utilizes waste and promotes sustainability.