vLong-term compressive strength and some other properties of controlled low strength materials made with pozzolanic cement and Class C fly ash


Türkel S.

JOURNAL OF HAZARDOUS MATERIALS, cilt.137, sa.1, ss.261-266, 2006 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 137 Sayı: 1
  • Basım Tarihi: 2006
  • Doi Numarası: 10.1016/j.jhazmat.2006.01.064
  • Dergi Adı: JOURNAL OF HAZARDOUS MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.261-266
  • Anahtar Kelimeler: controlled low strength material, fly ash, unconfined compressive strength, capillarity, toxicity, waste minimization, MATERIAL CLSM
  • Dokuz Eylül Üniversitesi Adresli: Evet

Özet

Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. CLSM (or flowable fill) require no tamping or compaction to achieve its compressive strength and typically has a load carrying capacity much higher than that of compacted soils, but can be proportioned to allow future excavation. In this study, several different CLSM mixtures containing Class C fly ash (FA) obtained from Soma Thermal Power Plant in Turkey, crushed limestone sand (CLS), and a minimal amount of pozzolanic cement (PZC) were produced. The mass of PZC was kept constant for all mixtures at 5% of FA by mass. The mechanical and physical properties of CLSM mixtures such as unconfined compressive strength, water absorption by capillarity and EP toxicity were investigated by a series of laboratory tests. CLSM mixtures with low PZC contents and high Class C FA and CLS contents can be produced with excellent flowability and low unconfined compressive strengths in the range of 1.16-2.80 MPa at 365-days age when re-excavation at later ages might be needed. The results presented here show a new field of application for Soma FA in CLSM mixtures, resulting in great advantages in waste minimization, as well as, conservation of resources and environment. (c) 2006 Elsevier B.V. All rights reserved.