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INDOOR DISTANCE BASED POSITIONING BY USING METRICS OF 

STANDARD COMMUNICATION TECHNOLOGIES 

ABSTRACT 

In recent years, indoor localization problem is a highly preferred topic to study. In 

this thesis, a positioning system based on wireless communication metrics is 

proposed and implemented for a 4 client robotic team in an indoor environment. It is 

aimed to estimate the distances between the clients by using the received signal 

strength measurements. By using the estimated distances, the relative positions of the 

clients are identified by the proposed no initial indoor positioning algorithm. 

In this thesis, besides the preferred wireless communication metric, Received 

Signal Strength Indicator (RSSI), the other metrics, Time Difference of Arrival 

(TDoA), Time of Arrival (ToA) and Two-Way ToA are also examined. With the 

selected hardware it is considered to use RSSI instead of time based metrics in order 

to implement a short range low cost indoor positioning system. The RSSI 

measurements are recorded more than once for two different indoor environments 

and four different client layouts. By using those recordings the distances between the 

clients are estimated. For 4 clients, 6 different distance values are estimated by using 

3 different Received Signal Strength (RSS) based distance estimation methods 

namely International Telecommunication Union (ITU) Indoor Path Loss Model, 

Two-Ray Ground Reflected Path Loss Model and the Experimentally Derived Signal 

Strength Distance Relation (EDR) Model. The distance estimations for 4 clients, 3 

distance estimation methods and two environments are recorded to be used in No 

Initial Indoor Positioning algorithm, the NOIP. The proposed positioning algorithm, 

the NOIP, is a triangulation based positioning algorithm that needs no initial 

conditions.  

The position estimations of the clients for all the client layouts are presented for 

the specific hardware and environment selection. The usability of the system is 
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discussed and some additional information is provided to improve the quality, 

efficiency and availability of the system. 

Keywords: RSSI, TDoA, ToA, triangulation, indoor positioning. 
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STANDART İLETİŞİM TEKNOLOJİLERİ METRİKLERİ 

KULLANILARAK İÇ MEKAN MESAFE TABANLI KONUMLAMA 

ÖZ 

Son yıllarda, kapalı alan konumlandırma problemi çalışmak için oldukça sık 

tercih edilen bir konu olmuştur. Bu tezde, kapalı bir mekanda 4 üyeli bir robot takımı 

için kablosuz haberleşme metriklerini temel alan bir pozisyon belirleme sistemi 

sunulmuş ve gerçekleştirilmiştir. Üyeler arasındaki mesafelerin alıcıya gelen sinyal 

şiddeti ölçümleri ile tahmin edilmesi amaçlanmıştır. Tahmin edilen mesafelerin 

kullanılmasıyla, üyelerin göreli konumları başlangıç koşulsuz pozisyon belirleme 

algoritması ile belirlenmiştir.  

Bu tezde, tercih edilen kablosuz haberleşme metriği, Alınan İşaret Şiddet 

Göstergesi’nin (RSSI) yanı sıra diğer metrikler, Varış Süre Farkı (TDoA), Varış 

Süresi (ToA) ve İki Yönlü Varış Süresi (Two-Way ToA) de incelenmiştir. Seçilen 

donanım ile, kısa mesafe düşük maliyetli kapalı alan pozisyon belirleme sisteminin 

gerçekleştirilebilmesi için zaman temelli metriklerin yerine RSSI metriğinin 

kullanılması düşünülmüştür. RSSI ölçümleri, 4 üye dizilimi ve 2 farklı ortam için 

birden fazla kez kaydedilmiştir. Bu kayıtlar kullanılarak üyeler arasındaki mesafeler 

tahmin edilmiştir. 4 üye için 6 farklı mesafe değeri, ITU Kapalı Alan Mesafe Kayıp 

Modeli, İki Işınlı Yerden Yansımalı Mesafe Kayıp Modeli ve Deneysel Olarak 

Türetilmiş İşaret Şiddeti Mesafe Alaka (EDR) Modeli ile olmak üzere 3 farklı Alınan 

İşaret Şiddeti (RSS) temelli mesafe kestirim yöntemi kullanılarak tahmin edilmiştir. 

Mesafe kestirimleri, Başlangıç Koşulsuz İç Mekan Pozisyon Belirleme 

algoritmasında, yani NOIP’te kullanılmak üzere, 4 üye, 3 mesafe kestirim yöntemi 

ve 2 ortam için yapılmıştır. Sunulan pozisyon belirleme algoritması, NOIP, başlangıç 

koşuluna ihtiyaç duymayan üçgenleme temelli bir pozisyon belirleme algoritmasıdır.  

Üyelerin pozisyon tahminleri, spesifik donanım ve ortam seçimleri ile 4 farklı üye 

dizilimi için sunulmuştur. Sistemin kullanılabilirliği tartışılmış, kalitesini, 

verimliliğini ve geçerliliğini arttırmak için bazı ek bilgiler sağlanmıştır.  
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CHAPTER ONE 

INTRODUCTION 

 

For about the last decade, team robotics has gained a considerable importance. 

Robots entered our lives and they now are used for a large number of tasks even at 

home with the self-moving cleaning robots, robotic pets and user controlled robotics 

toys i.e. Sony AIBO is a great example to this type of robotic use for both the robots 

at home and team robotics applications. As an example, Quinlan et. al. (2003) used 

Sony AIBO to improve the locomotion and vision of the robot in the RoboCup 

Legged League by applying the Support Vector Machines and Hill Climbing 

techniques (Quinlan, Chalup, & Middleton, 2003). Besides the robotics in industry, 

this improvement of robotics enlarges the usage of robots, even for cleaning a house, 

delivering a cargo and also the entertainment of a child etc.  

 

In recent technologies the position information of either a person or a robot that in 

a team becomes very important for monitoring or doing the assigned task. In team 

robotics, any robot is assigned a different task or they have been given only one 

mission. To accomplish the given task successfully, the robots have to know the 

position of themselves and each other. For a factory building, again the position 

information is a must know information and also the factory workers’ positions may 

be wanted to monitored to increase the efficiency.  

 

In any case, the positions of the clients, either a robot or a person, have a 

significant value to complete a mission. To specify the significance of the position 

information of the client in robotics, autonomous team robots would be a reliable 

example. With the educational mini robots, e-pucks, one can make a team and assign 

a task for them. Mondada et al. (2006) presented the design of a robot, e-pucks, for 

the specific target of engineering education in university level (Mondada et al., 

2006).  

 

Regardless of the task, a robot or a number of robots have to know some initial 

information to complete a given task. And here, position information has a great 
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importance within the communication infrastructures. In the work of Liu et al. 

(2007), an overview of the existing wireless indoor positioning techniques and 

solutions are provided and also a specific method of positioning, triangulation, is said 

to be that needs multiple reference points in order to locate a point (Liu, Darabi, 

Banerjee, & Liu, 2007). A robot cannot be located without an established 

communication, either one way communication or two ways. To establish a data 

transaction with the robots, a wireless communication infrastructure needs to be 

integrated or a wired system may be set up but it is not preferable in this 

technological era, especially for robots. Larranaga et al. (2010) preferred ZigBee for 

an adaptive indoor positioning algorithm in 2010 (Larranaga, Muguira, Lopez-Garde, 

& Vazquez, 2010), Kovacs et al. (2011) used Bluetooth for a multi-robot exploration 

algorithm in 2011 (Kovács, Pásztor, & Istenes, 2011) and in the work of Winfield 

and Holland (2000) the wireless communication infrastructure is WLAN for the 

control of mobile robots even in 2000 (Winfield & Holland, 2000). Wired systems 

complicate the whole system and limit the movement of robots and flexibility of the 

system.  

 

There are a large number of wireless communication infrastructures such as Wi-

Fi, Bluetooth, ZigBee, Radio, Microwave, IR etc. to use but two of them are the most 

known and preferred ones which are Wi-Fi and Bluetooth. These wireless 

communication infrastructures have a big role in our lives besides the industrial and 

academic usage of them. Almost everywhere, including the streets (for some) a Wi-

Fi connection can be established or a Bluetooth pairing can be completed regardless 

of the environment just considering the range of the clients trying to connect their 

devices over Bluetooth.   

 

The intensity of the usage of these wireless infrastructures, made the choice 

easier. In the work of Galvan et al. (2012) a combined positioning algorithm is 

proposed which is based on Bluetooth and Wi-Fi both (Galvan T., Galvan-Tejada, 

Sandoval, & Brena, 2012). To accomplish a communication and locate the clients, 

these two wireless communication infrastructures are preferred in this work.  
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After the communication infrastructures are set to be used, the next option in line 

until reaching the position information of a client is the metrics which are internally 

given by the Wi-Fi and Bluetooth Integrated Circuit (IC) (in our case it is a FN-Link 

Device containing Realtek RTL8723BU Wi-Fi & Bluetooth IC). Few of the many 

wireless communication metrics are RSSI (Received Signal Strength Indicator), 

TDoA (Time Difference of Arrival), ToA (Time of Arrival), Two-Way ToA (Two 

Way Time of Arrival) etc. While some of these metrics are automatically given by 

the wireless communication infrastructure, some are not. But with an additional 

hardware implementation the other metrics can also be added to the list of usable 

metrics. Grossman et al. (2008) used RSSI within a digital museum guide 

(Grossmann, Gansemer, & Suttorp, 2008), Gaber and Omar (2015) used TDoA along 

with DoA (Direction of Arrival) for a wireless indoor positioning study which has an 

achievable result of 1.5 cm for 2D indoor positioning (Gaber & Omar, 2015), in the 

work of Li et al. (2016) an indoor ultrasonic positioning system based on ToA for 

IoT (Internet of Things) is emphasized and the results are as precise as in the cm 

level for the moving objects in an indoor environment (Li, Han, Zhu, & Sun, 2016), 

and lastly, McCrady et al. (2000) choosed Two-Way ToA in order to exceed 

synchronization problem between the master and slave clients in their 

work(McCrady, Doyle, Forstrom, Dempsey, & Martorana, 2000). In this work, all 

the mentioned wireless communication metrics are studied and with one (RSSI) 

simulation and experimental procedure is realized with the reasons due to its 

preference.  

 

The next step in line to reach the position information of a client is the distance 

estimation procedure with using the selected wireless communication metric. RSSI is 

the preferred metric in this work and it gives the power of the signal that arrives to 

the belonging receiver. Kumar et al. (2009) used RSS based measurements, RSSI, in 

order to approximate the distances between the nodes in a wireless sensor network 

(WSN) (Kumar, Reddy, & Varma, 2009). But only RSSI information has no use 

when searching for the distance information between the clients. We need to 

establish a relation between RSSI and the distance between the clients.  
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To acquire the distance information between the clients, the relation models are 

examined in literature and two of them were selected. With the use of these relation 

models the estimation of a distance between the clients can be found by using RSSI 

data. Besides the selected 2 models, an experimental power-distance relation model 

that is called EDR (Experimental Signal Strength - Distance Relation Model) Model 

is also provided in this study. The relation models are; 

 International Telecommunication Union (ITU) Indoor Path Loss Model  

 Two-Ray Ground Reflected Propagation Model  

 Experimental Signal Strength – Distance Relation (EDR) Model  

With the use of these three signal strength-distance relation (SSDR) models the 

distances between the clients can be estimated by using RSSI data as an input. ITU 

indoor path loss model is emphasized for the measurements taken in indoor office 

environment for site-specific validation of the model in the work of Chrysikos et. al. 

(2009) (Chrysikos, Georgopoulos, & Kotsopoulos, 2009). The basis of the second 

model, Two-Ray, commonly known as Friis Equation, can also be used as a relation 

model and in the work of Lassabe et. al. (2005) it is used to locate Wi-Fi terminals in 

an indoor environment (Lassabe, Canalda, Chatonnay, Spies, & Baala, 2005). They 

also compare the accuracy results of their work with the other solutions. Friis 

Equation deals with only one, line of sight signal but Two-Ray Ground Reflected 

Propagation model adds the second signal which is the reflected signal from the 

ground as it is said in the name of the model, Two-Ray. Sommer and Dressler (2011) 

examined the Two-Ray Ground path loss models and they proposed an alternative 

model, not being for indoor positioning but it is for vehicles on the road, Inter-

Vehicle Communication Protocols (Sommer & Dressler, 2011). The last model that 

is proposed to be used in this work is the EDR model. This model is based on RSSI 

measurements and the real distances that RSSI measurements are recorded. Türkoral 

et al. (2016) proposed this experimental method as an alternative to the other indoor 

distance estimation techniques for a specific hardware implementation (Türkoral, 

Tamer, Yetiş, İnanç, & Çetin, 2016).  
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The distance values between the clients only are not enough for locating them. To 

do that, a positioning algorithm is proposed in this thesis called the NOIP (No Initial 

Indoor Positioning). This algorithm is based on the triangulation method but has no 

need for the initial position information of the first three clients. Triangulation is 

locating a point by using the distance information of three other initially known 

points (Türkoral, Tamer, Yetiş, & Çetin, 2017). Also Liu et. al. (2007) examine both 

the metrics and the trilateration methods as well as triangulation (Liu et al., 2007).  

 

To estimate the position of a client, there are several other methods can be used 

besides the distance based location estimation techniques. Nuaimi and Kamel (2011) 

completed a survey on indoor positioning systems and algorithms and they mainly 

focused on two types of positioning; Fixed Indoor Positioning and Indoor Pedestrian 

Positioning (Nuaimi & Kamel, 2011). The subsections of the first method, Fixed 

Indoor Positioning Systems; Infrared Positioning Systems, Ultrasonic Positioning 

Systems, RF Positioning Systems and Optical Positioing Systems are also defined in 

their work. Where Nuaimi and Kamel did a survey on indoor positioning techniques, 

Moghtadaiee et al. (2011) used FM Radio Signals for indoor localization with a 

fingerprinting approach (Moghtadaiee, Dempster, & Lim, 2011). Also Guerrieri et al. 

(2006) used RFID tags in their indoor localization and communication systems for 

the first responders (Guerrieri et al., 2006). In the variety of these postioning 

techniques, we decided to coınstract a distance based indoor positioning system. 

 

Overall, the aim here is to design a communication system and a distance based 

positioning algorithm for a robotic team number of 4 for indoor environments.  
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CHAPTER TWO  

INDOOR LOCALIZATION PROBLEM 

 

Indoor localization is a highly preferable subject to be studied in academics. It is 

also studied in commercial applications to increase efficiency and to reduce the cost. 

Not being directly related with these concepts but localization problem lies under in 

any robotic system that needs to be located, or the location information of them is 

must to be known.  

 

In all the robotic systems containing movable clients, the position information is 

an essential factor. Regardless from the concept of the task they are given, all the 

clients are moving in an environment and in order to complete the mission they must 

operate in harmony. To do that, a communication method must be set between them. 

Even though they can communicate, that is not enough to complete the task. The 

missions of mobile robotic systems make the clients to move and moving are 

essential in the task, which is why the clients are mobile. Hence, the clients must 

know the positions of one another.  

 

The locations of the nodes, clients or another thing in an indoor environment can 

be found in several ways. There are a large number of methods are used to locate a 

node in a robotic team with being under the categories of Non-Radio Technologies 

(NRT) and Wireless Technologies (WT) (“Indoor Postioning System,” n.d.). 

Magnetic Positioning, Inertial Measurements, Positioning with Visual Markers and 

Positioning with Known Visual Features are the methods belonging to NRT.  

 

However, with the improvement of wireless technologies, especially in the last 

two decades, positioning methods that belong to WT have been developed. Received 

Signal Strength Indication, Time of Arrival and Angle of Arrival are the three 

subsections of WT (“Indoor Postioning System,” n.d.). By using a wireless 

infrastructure, say Wi-Fi or Bluetooth, wanting to construct an indoor positioning 

system, for a low cost, easy to access and feasible system, one can choose the RSS or 

Time based wireless communication metrics. To use AoA, extra devices must be 
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implemented containing antennas and the positioning process would not be as 

applicable as it would be with the other metrics.      

To estimate the locations of the members of a robotic team, wireless 

communication infrastructures and metrics, distance estimation models and 

positioning algorithms can be used as well.  

2.1 Wireless Communication Infrastructures 

To establish a communication between the clients in an indoor environment, 

several wireless communication infrastructures can be preferred with being easily 

accessible, considerably cheap, easy to use and above for all, should be universal in 

order to access the devices that are going to be used.  

In all wireless communication infrastructures that are mentioned in the previous 

chapter, two of them are the most recognized namely Wi-Fi and Bluetooth.  

We may prefer Wi-Fi and/or Bluetooth to connect the clients to one another and 

obtain the necessary measurements. When choosing the wireless communication 

infrastructure, one must note that the wireless communication metrics that are needed 

to be recorded are internally given by the chosen structures or not besides all the 

definitions. 

2.2 Wireless Communication Metrics 

As mentioned in the previous section, the most common metrics are RSSI, TDoA 

ToA, Two-Way ToA with being used the metric RSSI in this study, and the other 

metrics are also examined.  
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2.2.1 Received Signal Strength Indicator 

RSSI is the power indicator value of a received signal that is sent from a client. 

RSSI metric is provided by the chosen wireless infrastructure. With a proper coding, 

one can list the wireless devices that are in the range and the signal strengths of them 

on a screen.  

To acquire proper RSSI values, a line of sight between the elements is needed, 

reflections must be prevented and the Automatic Gain Control (AGC) of the devices 

(if exists and if active) must be deactivated in order to link RSSI values directly with 

the distance values a priori. It can be said that the mentioned channel characteristics 

must be known since the measurements are depending on them. Signal strength 

algorithms that are used to locate a client are very sensitive to the estimations of that 

channel characteristics (Arslan, Chen, & Di Benedetto, 2006).  

RSSI is a highly preferable metric for indoor positioning. It is used in many 

applications so far and will be used continually. The wireless communication metrics 

can be used in both hybrid and non-hybrid localization techniques. RSSI is used 

along with TDoA and ToA in the work of Laaraiedh et al. (2011) to compare the 

hybrid localization schemes (Laaraiedh, Yu, Avrillon, & Uguen, 2011). In the work 

of Xiao et al. (2011), indoor wireless positioning techniques, such as ToA, TDoA, 

AoA and RSSI, are compared and where the positioning precision of TDoA for an 

UWB system is defined as ‘a few centimeters to tens of centimeters’, it is ‘tens of 

centimeters to tens of meters’ for RSSI for a Bluetooth system (Xiao, Liu, Yang, Liu, 

& Xu, 2011). Even though it is said that TDoA based location estimations have 

advantages over RSSI based applications but Hara and Anzai (2008) compared the 

experimental results of both estimation methods and the results showed that, for a 

crowded area where LOS between clients has frequently cut RSSI has advantages 

over TDoA (Hara & Anzai, 2008).  
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2.2.2 Time Difference of Arrival 

 

TDoA is the time difference between the signals coming from different 

transmitters to one receiver.  

zxyxtdoa ttx                                                  (2.1) 

where xtdoa is the TDoA metric of the belonging client x, tyx and tzx are the time of 

arrivals of the signals sent by the other clients Y and Z respectively. 

 

In order to use this method time synchronization of the reference nodes must be 

set because TDoA schemes require at least three base stations for two dimensional 

localization (Cong & Weihua, 2002). But if all the positioning work will be proceed 

over TDoA measurements, every client in the robotic team must be synchronized on 

the same clock. In this context, Yamasaki et al. (2005) used an additional 

synchronizing component to their Access Points where they are implementing a 

TDoA localization system for IEEE 802.11b WLAN (Yamasaki et al., 2005). In 

Gustafsson and Gunnarsson’s work (2003) it can be observed that the TDoA 

measurements are used for positioning also (Gustafsson & Gunnarsson, 2003).  

 

Usually, this method is used in systems that contain both mobile and steady 

members. Steady members represent the sensors, beacons etc. and the mobile ones 

are the robots most of the time. The position of the mobile member can be estimated 

through a number of TDoA measurements with having the position information of 

the steady members. In that case, with using TDoA measurements, a location 

estimator can be developed based on the triangulation of hyperbolic asymptotes 

(Doǧançay, 2005).  

 

In Figure 2.1, an illustration of the two hyperbolas formed from the TDoA 

measurements at three fixed receivers is shown (Rappaport, Reed, & Woerner, 

1996). 
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Figure 2.1 TDoA hyperbolas and location estimation 

 

In Figure 2.1, S1, S2 and S3 represent the fixed receiver locations, R1, R2 and R3 are 

the estimated distances calculated with using TDoA measurements and the 

representations of the hyperbolas drawn by TDoA measurements are R1-R2, R1-R3, 

R2-R1 and R3-R1. Also Eq. 2.2 is used to determine the two hyperbolas (Rappaport et 

al., 1996). 

           222222

, zZyYxXzZyYxXR jjjiiiji      (2.2) 

where (Xi, Yi, Zi) and (Xj, Yj, Zj) represent the coordinates of the fixed receivers, i and 

j (Rappaport et al., 1996). 

 

2.2.3 Time of Arrival  

 

ToA is also a time based metric representing the time between the signal’s 

departure from the transmitter and the arrival to the receiver, commonly known as 

the travel time. To use ToA metrics in a localization algorithm, first the distance 

information must be extracted from the propagation delay between TX and RX 

(Güvenç & Chong, 2009). For the measurements of ToA metrics, there is also a need 

for synchronizing both the clients but if again the other measurements will be taken 

over this metric, other clients are also needed to be synchronized on the same clock 

(Arslan et al., 2006).  
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Whereby the TDoA metrics the distances are estimated with using the hyperbolas, 

for ToA metrics it is the circles (see Figure 2.2, (Kaune, 2012)). For a properly 

synchronized team of robots, the ToA metric represents time difference of a signal’s 

departure and arrival difference of one client to another.  

 

Figure 2.2 ToA and TDoA measurements, hyperbolas and circles, (Kaune, 2012) 

 

For a perfectly synchronized ToA system that contains three receivers and one 

transmitter at a time, the distance between the clients are expressed as; 

)( 033 ttcd     ,   )( 022 ttcd     and   )( 011 ttcd                    (2.3) 

where c is the speed of light and t0 is the time of signal departure. Now, for a 2D 

map, by using the calculated set of distances the transmitter’s position Tp=[xt, yt] can 

be derived as; 
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                                      (2.4) 

where (x1, y1), (x2, y2) and (x3, y3) are the positions of the receivers. From that point 

the location of the transmitter can be estimated by a selected algorithm, such as Least 

Squares (Kietlinski-Zaleski, Yamazato, & Katayama, 2010). 
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2.2.4 Two-Way Time of Arrival  

 

This metric is based on the flight time of the signal but to use this type of metric 

there is no need for time synchronization. Because the initial transmitter is the 

secondary receiver, so the first receiver basically reflects the arrived signal. The 

initial transmitter then receives the signal back and records the time between. That 

metric is called Two-Way ToA. The distance estimation algorithms of this metric are 

the same as ToA distance estimation algorithms but if the time delay on the initial 

receiver which reflects the signal. The time that is spent on the initial receiver must 

be taken into account calculated carefully in order to record a meaningful Two-Way 

ToA measurement.  

 

2.3 Distance Estimation Methods and Positioning  

 

The wireless communication metrics are all based on two main titles; signal 

strength based and time based. For all the metrics which belong to the same category, 

the same estimation model can be used (in theory). Hence, the distance estimation 

methods and the positioning techniques are all observed under these two titles. 

 

2.3.1 Received Signal Strength Based Distance Estimation and Positioning  

 

Received Signal Strength (RSS) based positioning techniques rely on a path-loss 

model and location estimations depend on the energy of the signal measured on one 

end of a client (Arslan et al., 2006).  

 

To begin with, RSSI metric is the first step of understanding the RSS based 

wireless communication metrics. With the proper settings of the channels, and the 

reliable recordings of the measurements, one can draw a map of signal strength – 

distance (SSD) relations. With the recordings of the measurements, power related 

distance estimation methods will be used to take on to the next step, positioning. 

Two of the many distance estimation methods are ITU Indoor Path-Loss Model and 
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Two-Ray Ground Reflected Propagation Model. Also with the EDR model that is 

experimentally derived in this work the estimation models becomes three. 

 International Telecommunication Union (ITU) Indoor Path Loss Model  

ITU Model is an indoor propagation path loss model (Equation 2.5) (International 

Telecommunication Union, 2015; Seybold, 2005). 

dBnLdNfPPP fRSSItL 28)()(log)(log20 1010                  (2.5) 

In Equation 2.5; 

PL is the power loss and equals to the absolute difference of transmitted signal 

strength Pt and the measured RSSI metric PRSSI, 

N represents the distance power loss coefficient, 

Lf(n) is the loss factor of the floor penetration, 

f is the frequency, which is 2.4 GHz , 

d is the distance in meters, 

n is the number of floors between the receiver and transmitter.  

 

This estimation model depends on the floors between the receiver and transmitter, 

working frequency, and ambient conditions. For different frequencies, different 

environmental materials, these factors change and the total loss differs from one 

another.  

 

For an indoor environment, the estimated distance values of the RSSI 

measurements via ITU model can be used in a positioning algorithm. Türkoral et al. 

(2016) presented the simulation results of this model for different SNR values and 

the number of iterations (Türkoral, Tamer, Yetiş, & Çetin, 2016). 

 Two-Ray Ground Reflected Path Loss Model  

The second distance estimation method is based on the Two-Ray Ground 

Reflected Path Loss Model. This model is based on a free space propagation model 

commonly known as the Friis Equation but where Friis Equation handles only one 
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LOS (line of sight) signal, Two-Ray Model utilizes the second signal which is the 

ground reflected one of the same source.  

In Equation 2.6, the free space path loss formula can be seen. It is the same for the 

losses for the combination of all the paths. In this case the number of paths is two; 

hence, the path loss is represented with Ltr.  

trtrtRSSI LGGPP      (2.6) 

Figure 2.3 Two-Ray model signal paths 

Assuming free space loss, beginning with only one path, the path loss can be 

written as the function of distance (d) between the antennas and the wavelength (λ); 

)4log(20



d

Lloss   (2.7) 

However, this loss considers only the LOS signal, we need to add the formula at 

least one distorting signal, namely the ground reflection signal, therefore, the ground 

reflected model formula yields itself (Sommer & Dressler, 2011); 

)14log(20
1

 


 i

gndtr e
d

L       (2.8) 

by using the equations presented in the following.
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As can be clearly seen, this calculation is a complex and not an easily/quickly 

solvable one (Sommer & Dressler, 2011). However the formulas are simplified 

assuming a perfect polarization and reflection (Rappaport, 1996). Hence, simplified 

Two-Ray Ground Reflected path loss formula becomes; 

)log(20
2

rt

tr
hh

d
L  (2.12) 

The resulting path loss model of this method relies on the height of the antennas 

(ht, hr) and the direct distance between them (see Equation 2.12).  

 Experimentally Derived Signal Strength – Distance Relation (EDR) Path

Loss Model

This model is a unique, self-derived model that relies on the actual RSSI 

measurements (Türkoral, Tamer, Yetiş, İnanç, & Çetin, 2016). Equation 2.13 shows 

the mathematical formula of the presented SSDR model.  

RSSIPb
ead

.
. (2.13) 

EDR model is basically the fitted curve of the actual measurement-distance 

results. It is an exponential function containing two parameters besides the 

measurements and the desired values. 

With the use of these distance estimation models, recordings of the measurements, 

in other words, RSSI values can be used to estimate distance between clients. After 

the distances between the clients are all estimated, one of the positioning algorithms 
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(triangulation based algorithms are very common) that relies on the distance values 

can be used to locate the clients. Triangulation is a common positioning algorithm 

which estimates the position of a client by using three or more positions of the other 

clients. Triangulation based location estimation methods needs at least three 

reference points. From the distances of the client which the user wants to locate from 

these reference points, the positioning process can be completed (Arslan et al., 2006).  

 

2.3.2 Time Based Distance Estimation and Positioning  

 

Time based wireless communication metrics, ToA, Two-Way ToA etc., are alike 

the RSSI metric but this time distance and position estimation process is being done 

with the measurements in time, not signal strength. To do that, several techniques 

may be selected from a variant of approaches; Conventional Correlation Based 

Approaches, Two-Step ToA Estimations, Maximum Likelihood Methods, Low-

Complexity Timing Offset Estimations etc. (Arslan et al., 2006).  

 

The idea of estimating the distance over a time based metric may rely on the time 

of flight of a received signal. For ToA metric the distance is estimated by; 

fT

ToA
d                                                        (2.14) 

where ToA and Tf represent the flight time of the signal and the timer frequency 

respectively. To use this method the clients must be synchronized because the metric 

gives the difference between the departure and arrival times of the signal. If the 

clients are operating at different clocks, the metric would not contain only the time of 

flight, it also contains the difference of the clocks. Also for TDoA metric, the 

transmitters must be synchronized for considering only one measurement, if all the 

system relies on TDoA measurements, every client must be synchronized on the 

same clock. 

 

Without synchronization, the only time based metric to use is the Two-Way ToA. 

The processor records the time of departure of a signal, then the signal reaches a 
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receiver and be reflected back again to the initial transmitter. The time difference 

between the departure and arrival time represents the Two-Way ToA metric. But this 

time metric also contains the time delay between the arrival and departure time of the 

signal on the receiver. This delay time must be extracted from the metric to make the 

metric directly bounded to the distance.  

 
f

delay

T

TTWToA
d

*2


                                             (2.15) 

where the delay time and the time based metric are represented with Tdelay and 

TWToA respectively.  

 

If a time based metric is used to estimate the distance, the speed of the signal 

would be used. This speed is equal to the speed of light, c, which is 3*10
8 

m/sec. 

This means that, if one would try to measure distance over a time based metric 

directly with a Wireless & Bluetooth device (SID) without using any extra 

component or device, the main processor should be operate at 300 MHz in order to 

compensate 1 machine cycle with the speed of light for a distance resolution of 1 m. 

m
f

c
d 1

10*300

10*3
6

8

                                        (2.16) 

 At that frequency, 1 cycle difference means 1 m distance but it is not enough to 

select a CPU operating over 300 MHz.  

 

Figure 2.4 ToA or Two-Way ToA metric measurements 
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For a ToA measurement the distance is expressed as; 

)( da ttcd  (2.17) 

where td and ta represent the departure and the arrival time of the signal respectively. 

The same procedure stands for also a Two-Way ToA measurement. Only difference 

is the distance is doubled and a delay time is added to the metric which is the time 

that is spent on the 1
st
 receiver/2

nd
 transmitter. But this time the departure and the

arrival of the signal happens on the same client. The 2
nd

 client only reflects the

signal.  

)(2 delayda tttcd      (2.18) 

In Equation 2.18, ta and td are the time stamp values which represent the exact 

times of signal arrival and departure respectively. The selected processor must 

include a timer operating over at least 300 MHz in order to maintain 1 m resolution 

on distance measuring. The selected SBC of the project includes a timer operating at 

maximum 10 KHz. So, without adding an extra component or device to the system, it 

is not possible to use time based indoor positioning methods for the task. If it was 

used, the resulting distance resolution would be 30km for a ToA and 15 Km for a 

Two-Way ToA system considering the capacity of the timer because whatever the 

actual metric is, processor always senses the metric as the timer lets, 1 clock, 0.0001 

sec in an indoor environment. 

 )0001.0(*10*3 8d (2.19) 

If the time stamps were enough sufficient to be used, one can use Equation 2.18 

estimate the distances between the clients. Having the distances between the clients, 

one can also estimate the position of a client with various positioning algorithms, 

such as triangulation. 
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CHAPTER THREE  

DISTANCE ESTIMATION AND NO INITIAL INDOOR POSITIONING  

 

To accomplish a wireless communication between all the clients in a robotic team 

and locate any client in an indoor environment we present an algorithm which relies 

on RSSI measurements taken over Wi-Fi, three different signal strength based 

distance estimation methods and the positioning process based on triangulation but 

needs no initial conditions.   

 

Hence, the two main titles in this chapter are the distance estimation process and 

the no initial indoor positioning (the NOIP) process. 

 

3.1 Distance Estimation Process  

 

The first major part of the project is estimating the distances between the clients 

over RSSI measurements. In order to estimate the distance, we need to record the 

RSSI measurements. 

 

3.1.1 Measurement Process  

 

The measurement process contains the method of RSSI recordings. These metrics 

are provided by wireless communication infrastructures which are Wi-Fi and 

Bluetooth both operating at 2.4 GHz frequency. RSSI recordings are the 

measurements that to be estimated into distance. These recordings are taken in two 

different indoor environments, one office building and a school basement. For that 

two environment two different measurement methods are used.  

 

 3.1.1.1 1
st
 Measurement Method – Measuring between 1 Receiver and 1 

Transmitter (1
st
 MM)  

 

This method relies on the measurements between only one receiver and one 

transmitter. The measuring process of this method is presented in Figure 3.1. 
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Figure 3.1 RSSI recording method of 1, in the office building 

In Figure 3.1, the 1
st
 measurement method is presented. In an office building, one

client is set to origin and the other is moved by the selected measurement points. In 

Section 4.2.1.3.1 it is explained why the measurements are limited with those 

distances shown in Figure 3.1. 

The advantage of this method is that one can use the measurements for locating 

the clients which are located in an unlimited number of layout variations. But, 

besides the first two clients, a and b, which actually has the real measurements, the 

distances between the other clients are generated from the measurements taken 

between the first 2 ones. This approach contains both simulation and experimental 

RSSI data.  

3.1.1.2 2
nd

 Measurement Method – Measuring between 1 Receiver and 3

Transmitters (2
nd

 MM)

Unlike the first measurement method (1
st
 MM), the 2

nd
 measurement method (2

nd

MM) depends on the actual measurements taken between all the clients on by one for

the selected layout variations. This method contains only the experimental RSSI data 

but the layout variations of the clients on the map are limited with the selected 3 

layouts.  
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Figure 3.2 2
nd

 MM, measurements by the layouts 

The half of these measurement set is unique for the measuring point. The other 

half is basically the repetition. In example, when recording the first set of 

measurements Lab distance is recorded from client ‘a’, in the second set the same 

measurement is taken from client ‘b’, hence, the measurement between 2 clients are 

repeated. The data is still real but for a 4 client robotic team there are 6 different one-

to-one RSSI measurements. 

3.1.2 Received Signal Strength (RSS) Based Distance Estimation Models 

After the measurement procedure, now we pass into the distance estimation 

models. In this process, three different RSS based path loss models; namely, ITU 

Indoor Path Loss Model, Two-Ray Ground Reflected Path Loss Model and the 

experimentally derived EDR Model are presented. 

3.1.2.1 International Telecommunication Union (ITU) Indoor Path Loss Model 

ITU Indoor Path Loss Model is an indoor propagation path loss model as 

previously described. This model relies on some exponents and constants. These 

constants also depend on the ambient conditions.  

dBLdNxPP fRSSIt 28)0()(log)104.2(log20 10

9

10  (3.1) 

Before the estimation process with ITU Model, these constants must be set 

depending on the environment. RSSI measurements are all taken when the receiver 



22 

and the transmitter(s) are all in the same floor. Hence, the representation of the 

receiver-transmitter floor difference, n, equals to zero (see Equation 3.1). In some 

sources these exponents are explained and defined for some operating frequencies 

and ambient conditions. For the conditions of the measurements take place, the 

power loss coefficient, N, is given as 28; and the floor penetration loss factor, Lf(n), 

can be chosen between 11 and 16 because there is no definite answer for 2.4 GHz 

(International Telecommunication Union, 2015). Also by adding the transmitted 

signal power the formula of the indoor path loss propagation model becomes; 

2811)(log28)104.2(log2013 10

9

10  dxPRSSI
(3.2) 

The first operating conditions are set by replacing the constants with these values; 

therefore, the only unknown parameter left is the distance which is desired to be 

found. The final working conditions are presented in the results section of this model 

(see Section 4.2.2.1). 

Since all the conditions are set, the desired value, distance, can be evaluated as;  

132811)104.2(log20)(log28 9

1010  xPd RSSI
(3.3) 

132811)104.2(log20)(log28 9

1010  xPd RSSI
(3.4) 

13281144.68)(log28 10  RSSIPd (3.5) 

44.38)(log28 10  RSSIPd    so   )44.38()(log28 10  RSSIPd     (3.6) 

28

)44.38(
)(log 10


 RSSIP

d (3.7) 

28

)44.38(

10





RSSIP

d (3.8) 

Equation 3.8 shows the resulting estimation formula for the first model of distance 

estimation. For every RSSI data this process is repeated and recorded to be used in 

the positioning process.  
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3.1.2.2 Two-Ray Ground Reflected Path Loss Model  

 

Depending on free space path loss, this model deals with both the LOS and the 

reflected signal path losses. The formula of the model contains the transmitted signal 

strength, received signal strength, both antenna gains and the logarithmic path loss in 

dBs. 

)log(20
2

rt

trtRSSI
hh

d
GGPP                                       (3.9) 

In the model, Gr and Gt represent the antenna gains, Pt and PRSSI represents the 

transmitted and received signal strength. Received signal strength is provided by 

RSSI measurements, transmitted signal strength depends on the wireless 

communication device output and the antenna.  

 

Since all the wireless devices are identical in this thesis, the heights and the gains 

of any antenna are also equal to one another. Hence, the formula becomes; 

)log(202
2

2

h

d
GPP tRSSI     where   rt hh     and   rt GG                 (3.10) 

Now, all the constants are known except for the distance, the desired value. To 

leave the distance, ‘d’, alone in the one side of the equality; 
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 2)log(20

2

2

                                          (3.11) 
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 2)log(40                                            (3.12) 
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                                              (3.13) 
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

                                                     (3.15) 

For every RSSI measurement, this process is repeated and the resulting distance 

estimations are recorded to be applied to the positioning algorithm. 

 

3.1.2.3 Distance Estimation with the Experimentally Derived Signal Strength – 

Distance Relation (EDR) Model  

 

The EDR Model that relies on the actual measurements and the location of that 

measurements take place is described as; 

RSSIPb
ead

.
.                                                      (3.16) 

It was said that this function is an exponential function that fitted on the actual 

measurement-distance values. For a specific result set these values are found by; 

 09878.0a    and   06658.0b                                    (3.17) 

hence, the formula becomes; 

RSSIP
ed

.06658.0
.09878.0


                                          (3.18) 

 

Figure 3.3 EDR Model derivation for a specific example 
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This formula is a specific one for a specific set of measurement set. It can vary by 

the measurements, environment, ambient conditions of the area etc. If the conditions 

are the same every time the model can be applied for any other measurement set and 

the results should be expected to be equal as well. Figure 3.3 illustrates the derivation 

the SSDR model for the specific example.  

The estimations can also be repeated for any measurement set and the resulting 

data set can be applied to the positioning process.  

3.2 No Initial Indoor Positioning (the NOIP) 

The novelty of the presented no initial indoor positioning algorithm (the NOIP) is, 

there is no need for an initial construction or an initial position information of the 

clients, sensors etc. By the measurements, the distance estimations are recorded and 

with that recordings the NOIP sets its’ own coordinate system for localization by 

using the Lab distance set estimated between the 1
st
 two clients, a and b (see Figure

3.4). 

Figure 3.4 Setting the relative coordinate plane 
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Client a is always located in the origin of the relative coordinate plane (RCP). 

Then with the distance estimations of the RSSI measurements between the clients a 

and b, the relative location set of client b is set on y plane. As can be seen from 

Figure 3.4 the RCP is set on the 1
st
 two clients.

After the RCP is set, by the measurements of Lab, Lac and Lbc, the location of the 

3
rd

 client, c, can be estimated via finding the intersections of the measurement circles

(see Figure 3.5). 

Figure 3.5 Locating client c with the intersection of the measurement circles 

As can be seen in Figure 3.5, there are 2 intersections of the measurement circles 

(MC). For all the measurements, it is assumed that the client’s position will always 

be on the right side of the map. This assumption can be supported automatically with 

additive information that provides the aspect of the client’s position which is 

estimated.  
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However, there are 3 exceptions that the MCs would not intersect. These 

exceptions are defined as; 

bcacab LLL     ,   bcabac LLL     and   acabbc LLL  (3.19) 

where Lab, Lac and Lbc represent the distance estimations between the clients. These 

conditions are illustrated in Figure 3.6.  

Figure 3.6 Conditions of non-intersecting MCs 

If one of these three conditions happens, the location of client c cannot be 

estimated for that measurement. Therefore, that non-intersecting MC result is 

excluded from the positioning process. For example, if 6 non-intersecting MCs 

appear in one measurement set containing 15 measurements, the mean value of 9 

intersecting MCs are derived to estimate the position of the belonging client. 

The same positioning process is applied to the last client, d, as it was for client c. 

This time, the measurements sets Lab, Lad and Lbd are used.  
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Figure 3.7 Locating client d 

When all the intersected measurement circles are recorded, the possible positions 

of the clients are estimated regarding to the belonging measurement. The resulting 

estimated position of a client is found via; 

NZI

xMC
EPx

#

)(int
    and   

NZI

yMC
EPy

#

)(int
 (3.20) 

where,  

EPx is the estimated x plane value of the belonging client, 

EPy is the estimated y plane value of the belonging client, 

NZI is the number of intersected MCs for, 

∑MCint(x) is the summation of x plane values of the intersected MCs, 

∑MCint(y) is the summation of y plane values of the intersected MCs. 

Figure 3.8 shows the whole process with an illustration of the estimated positions 

of the clients and the intersection points of every MCs. 
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Figure 3.8 All intersections of MCs and the position estimations of the clients 

Overall, the NOIP sets the RCP, derives all the intersections of all the related 

MCs, estimates all possible locations of the clients, then defines the final position 

estimations of all the clients from the derivation of the intersected MCs.  

Besides the illustrations of the position estimations, the NOIP also gives the 

results of numerical error analysis for the selected conditions.  
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CHAPTER FOUR 

RESULTS  

This chapter contains both the simulation and experimental results of the study. 

Here, the distance estimations and the positioning process both have results related 

with each other.  

At first, the simulation results of the positioning process will be shown, then the 

experimental results will be shared for both distance estimations and positioning 

process for different distances and layouts. 

4.1 Simulation Results 

The positioning results for different number of iterations and SNR (Signal to 

Noise Ratio) values are shown in this section. Iterations represent the simulated 

version of RSSI measurements. Namely, the actual distances between the clients are 

calculated and in addition to those values Additive White Gaussian Noise (awgn) 

function is used in MATLAB for different SNRs. These resulting values are the 

distance estimations of the two belonging clients. This procedure and the positioning 

algorithm are applied for 4 different client layouts.  

For example, for the 1
st
 client layout (CL), the distances between the clients are

shown in Figure 4.1. With awgn function, a random noise is added to the replicated 

distances by the iteration number with a user defined SNR value. A specific example 

is shown in Table 4.1 when iterations=10 and SNR=2. 

Table 4.1 Generated noisy Lab distances for iterations=10 and SNR=2 

Lab_noisy (m) 

2.7018 2.9789 3.1349 1.9022 2.0171 2.2092 3.6369 2.3153 4.086 3.2464 

These imitations of noisy measurements are derived with the following code lines 

in MATLAB; 
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iterations=10; % number of iterations 

snr=2; % signal to noise ratio 

Lab=2.5; % the distance between client a and b 

ab_noisy=ones(iterations,1)*Lab; % 10-1 matrix containing all Lab 

values 

Lab_noisy=awgn(ab_noisy,snr) % noisy Lab matrix 

When one runs these code lines in MATLAB, he/she gets the results alike in 

Table 4.1. 

Note that the simulated results can change when the algorithm is replied even if 

the conditions are the same. Because, awgn function generates the noisy 

measurement imitations randomly. Every time the run button is hit, a different noisy 

Lab distance set is generated (see Table 4.2). 

Table 4.2 Different generations of noisy Lab distances 

Lab_noisy 

(m)

run #1 run #2 run #3 run #4 run #5 run #6 run #7 run #8 run #9 run #10 

iteration #1 2.0921 0.6592 4.6828 1.2175 2.0920 3.6554 2.1036 2.9521 1.9490 2.5876 

iteration #2 2.0446 3.1690 2.1199 2.7784 3.7689 1.8301 2.0011 2.5785 2.5697 4.0049 

iteration #3 3.0429 0.8813 2.1802 3.3997 1.8978 3.3318 1.9110 2.1482 3.0897 2.0857 

iteration #4 3.7160 3.1301 3.7322 2.7924 0.7196 2.9263 1.8241 2.1026 2.7637 4.2222 

iteration #5 1.3007 1.9469 3.8333 2.7654 1.5973 2.0216 2.0693 1.7634 2.3534 2.8316 

iteration #6 3.1782 2.3775 1.5266 4.1233 1.3780 3.0614 4.0998 1.8716 1.0406 2.3174 

iteration #7 1.4901 1.8249 2.5729 2.0697 2.7245 3.7486 2.8100 0.7480 2.3899 2.2867 

iteration #8 2.5571 3.3502 2.9240 1.6337 2.4869 3.9655 1.7146 3.0165 2.6712 2.2158 

iteration #9 3.1141 1.3379 2.2050 2.4802 2.4880 1.6973 3.3600 1.8965 1.8649 2.5802 

iteration #10 1.8063 2.4292 2.0528 1.3604 3.0025 1.3978 3.1233 2.6264 1.5009 1.4062 

However, the figures and the error values are recorded at the same time, hence, 

for the same conditions the illustrations and the numerical errors presented in the 

following belong to each other.  

The simulated results are recorded for 3 different iterations – SNR combinations 

(ISC) and the illustrations are shown for that belonging ISC. Also an extended 

positioning error analysis is presented in Section 4.1.5 for a variety of ISCs for the 4 

CLs. 

       sdvsbv
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4.1.1 Simulated Results of the 1
st
 Client Layout  

 

CL1 is illustrated in Figure 4.1.  

 

Figure 4.1 1
st
 client layout, coordinates and distances 

 

For the 1
st
 layout, the coordinates and the distances between the clients are 

presented in Figure 4.1. For this case, the distances can be estimated by applying 

actual distances between, iterations and SNR. 

 

For three different combinations of SNR and iterations, the positioning results are 

presented in the following figures. In all the figures (Figures 4.2, 4.3, 4.4, 4.7, 4.8, 

4.9, 4.12, 4.13, 4.14, 4.17, 4.18 and 4.19) containing the positioning results, black 

blank circles, blue blank circles and green blank circles are the representation of the 

position estimations of client b, client c and client d respectively mean of the 

estimations are shown with respectively yellow filled, cyan filled and magenta filled 

circles for the corresponding clients. Actual positions of the clients are also 

illustrated with the same colors but they also have a black wall on them (see Figure 

4.3). 
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Figure 4.2 Position estimations of CL1 when iterations=10 and SNR=2 

 

 

Figure 4.3 Position estimations of CL1 when iterations=50 and SNR=5 
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Figure 4.4 Position estimations of CL1 when iterations=100 and SNR=10 

 

Figures 4.2, 4.3 and 4.4 illustrate the simulated positioning results of CL1 for 

different iterations and SNR values. Figure 4.5 below shows the results of these three 

combinations in one plot.  

 

Figure 4.5 Actual and the estimated positions of the clients for the 3 ISCs for CL1 
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Also the numerical error analysis is illustrated with Table 4.3.  

 

Table 4.3 Numerical error analysis of the 3 ISCs for the 1
st
 CL 

Positioning Error Analysis of Client Layout 1 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 2 0.0110 2.5141 0.4539 0.9930 

50 5 0.0435 1.1731 0.4651 0.5606 

100 10 0.0449 0.4212 0.1127 0.1929 

 

Positioning error is defined by the difference of the client’s actual position and the 

mean of the estimated positions (see Equation 4.1).  The mathematical expression of 

the positioning error is; 

22 )()( yyxxerr aPmPaPmPP                                 (4.1) 

where, Perr, mPx, mPy, aPx and aPy are the positioning error, x-axis value of the mean 

estimated position, y-axis value of the mean estimated position, x-axis value of the 

actual position and y-axis value of the actual position respectively.  

 

4.1.2 Simulated Results of the 2
nd

 Client Layout  

 

CL2 is illustrated in Figure 4.6.  

 

Figure 4.6 2
nd

 client layout, coordinates and distances 
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For the same 3 ISCs, the positioning results are illustrated in the following. 

 

Figure 4.7 Position estimations of CL2 when iterations=10 and SNR=2 

 

 

Figure 4.8 Position estimations of CL2 when iterations=50 and SNR=5 
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Figure 4.9 Position estimations of CL2 when iterations=100 and SNR=10 

 

The actual positions and the three estimated positions of the clients are illustrated 

in one plot in Figure 4.10.  

 

Figure 4.10 Actual and the estimated positions of the clients for the 3 ISCs for CL2 
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Table 4.4 shows the numerical error analysis of CL2 estimations.  

 

Table 4.4 Numerical error analysis of the 3 ISCs for the 2
nd

 CL 

Positioning Error Analysis of Client Layout 2 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 2 0.0805 0.2893 1.9688 0.7795 

50 5 0.0781 0.2875 0.3970 0.2542 

100 10 0.0016 0.0600 0.1317 0.0644 

 

4.1.3 Simulated Results of the 3
rd

 Client  

 

CL3 is illustrated in Figure 4.11.  

 

Figure 4.11 3
rd

 client layout, coordinates and distances 

 

The position estimations of CL3 are presented with the following figures 

containing the results for the same 3 ISCs. 



39 

 

 

Figure 4.12 Position estimations of CL3 when iterations=10 and SNR=2 

 

 

Figure 4.13 Position estimations of CL3 when iterations=50 and SNR=5 
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Figure 4.14 Position estimations of CL3 when iterations=100 and SNR=10 

 

The three mean position estimations and the actual positions of the clients are 

illustrated in Figure 4.15 for the 3
rd

 CL.  

 

Figure 4.15 Actual and the estimated positions of the clients for the 3 ISCs for CL3 
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The positioning errors of the 3
rd

 CL are shown in Table 4.5. 

 

Table 4.5 Numerical error analysis of the 3 ISCs for the 3
rd

 CL 

Positioning Error Analysis of Client Layout 3 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 2 0.3375 0.3089 0.7037 0.4500 

50 5 0.0853 0.0517 0.1034 0.0801 

100 10 0.0726 0.0506 0.1180 0.0804 

 

4.1.4 Simulated Results of the 4
th

 Client Layout  

 

CL4 is illustrated in Figure 4.16.  

 

Figure 4.16 4
th

 client layout, coordinates and distances 

 

Positioning results for this layout are presented in the following figures for 3 

ISCs.  
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Figure 4.17 Position estimations of CL4 when iterations=10 and SNR=2 

 

 

Figure 4.18 Position estimations of CL4 when iterations=50 and SNR=5 
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Figure 4.19 Position estimations of CL4 when iterations=100 and SNR=10 

 

The resulting mean position estimations and the actual position of the last CL is 

presented in Figure 4.20 below. 

 

Figure 4.20 Actual and the mean of the estimated positions of the clients for the 3 ISCs for CL4 

 

The positioning errors of this layout are presented in Table 4.6.  
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Table 4.6 Numerical error analysis of the 3 ISCs for the 4
th

 CL 

Positioning Error Analysis of Client Layout 4 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 2 0.5251 0.4231 0.7058 0.5513 

50 5 0.0838 0.2457 0.3255 0.2183 

100 10 0.0944 0.1548 0.1544 0.1345 

 

4.1.5 Extensive Numerical Error Analysis of Simulation Procedure  

 

In this section, the extensive error analysis of the 4 CLs are presented. Both the 

numerical position error values and the graphical examinations of them are illustrated 

in the following.  

 

Table 4.7 Positioning error values of CL1 for 25 ISCs 

Error Analysis of CL1 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 1 0.2481 1.7178 0.8575 0.9411 

10 2 0.0110 2.5141 0.4539 0.9930 

10 5 0.0133 0.5270 0.2638 0.2680 

10 10 0.0147 0.3348 0.1320 0.1605 

10 20 0.0230 0.1203 0.1147 0.0860 

20 1 0.1802 1.7868 1.3153 1.0941 

20 2 0.1074 1.8105 0.5109 0.8096 

20 5 0.2655 1.0734 0.2944 0.5444 

20 10 0.1383 1.0690 0.6614 0.6229 

20 20 0.0267 0.1202 0.0541 0.0670 

30 1 0.2028 2.8819 0.4959 1.1935 

30 2 0.0446 2.0153 1.1548 1.0716 

30 5 0.0874 1.1247 0.4942 0.5688 

30 10 0.0124 0.6260 0.1702 0.2695 

30 20 0.0145 0.0620 0.0529 0.0431 

50 1 0.0614 2.4751 0.6542 1.0636 

50 2 0.0980 2.1320 0.4154 0.8818 

50 5 0.0435 1.1731 0.4651 0.5606 

50 10 0.0019 0.8984 0.3344 0.4116 

50 20 0.0073 0.0591 0.0372 0.0345 

100 1 0.0637 1.7127 0.6937 0.8234 

100 2 0.0056 1.8667 0.7985 0.8903 

100 5 0.0686 1.2161 0.2637 0.5161 

100 10 0.0449 0.4212 0.1127 0.1929 

100 20 0.0023 0.0361 0.0297 0.0227 
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Table 4.7 shows the individual position errors of the clients and the mean position 

errors of all for CL1 and for 5 different number of iterations and 5 different SNR 

values, hence, 25 different ISCs. 

Table 4.8 Positioning error values of CL2 for 25 ISCs 

Error Analysis of CL2 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 1 0.4972 0.7094 1.6630 0.9565 

10 2 0.0805 0.2893 1.9688 0.7795 

10 5 0.0917 0.4877 0.9073 0.4956 

10 10 0.0817 0.1273 0.3544 0.1878 

10 20 0.0188 0.0832 0.0779 0.0600 

20 1 0.0954 1.2752 1.5797 0.9834 

20 2 0.0745 0.5023 0.9803 0.5190 

20 5 0.0278 0.3587 0.6767 0.3544 

20 10 0.0285 0.1659 0.3137 0.1694 

20 20 0.0129 0.0112 0.0637 0.0293 

30 1 0.2570 1.5219 0.7518 0.8436 

30 2 0.2463 0.2062 0.6078 0.3534 

30 5 0.1313 0.5924 0.5153 0.4130 

30 10 0.0393 0.1657 0.4299 0.2116 

30 20 0.0097 0.0109 0.0273 0.0160 

50 1 0.0308 0.5451 0.9389 0.5049 

50 2 0.0024 0.7506 0.6968 0.4833 

50 5 0.0781 0.2875 0.3970 0.2542 

50 10 0.0310 0.2337 0.2195 0.1614 

50 20 0.0215 0.0372 0.0469 0.0352 

100 1 0.0367 1.1085 0.5888 0.5780 

100 2 0.0320 0.3860 1.0406 0.4862 

100 5 0.0159 0.4377 0.3986 0.2841 

100 10 0.0016 0.0600 0.1317 0.0644 

100 20 0.0081 0.0125 0.0832 0.0346 
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Table 4.9 Positioning error values of CL3 for 25 ISCs 

Error Analysis of CL3 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 1 0.1790 0.5339 0.4359 0.3829 

10 2 0.3375 0.3089 0.7037 0.4500 

10 5 0.2569 0.2618 0.1488 0.2225 

10 10 0.0049 0.1657 0.1687 0.1131 

10 20 0.0285 0.0459 0.0253 0.0332 

20 1 0.1592 0.4924 0.8291 0.4936 

20 2 0.3126 0.2202 0.3860 0.3063 

20 5 0.0573 0.1578 0.3824 0.1992 

20 10 0.0325 0.1860 0.1571 0.1252 

20 20 0.0041 0.0908 0.0489 0.0479 

30 1 0.1781 0.2151 0.1864 0.1932 

30 2 0.0154 0.0998 0.5836 0.2329 

30 5 0.0362 0.0947 0.1613 0.0974 

30 10 0.0450 0.0583 0.0920 0.0651 

30 20 0.0064 0.0086 0.0253 0.0134 

50 1 0.0163 0.1483 0.4414 0.2020 

50 2 0.0023 0.2511 0.3215 0.1916 

50 5 0.0853 0.0517 0.1034 0.0801 

50 10 0.0593 0.1871 0.0409 0.0958 

50 20 0.0007 0.0187 0.0367 0.0187 

100 1 0.0485 0.1716 0.2265 0.1489 

100 2 0.0776 0.0870 0.3882 0.1843 

100 5 0.0322 0.0557 0.1266 0.0715 

100 10 0.0726 0.0506 0.1180 0.0804 

100 20 0.0002 0.0105 0.0120 0.0076 
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Table 4.10 Positioning error values of CL4 for 25 ISCs 

Error Analysis of CL4 

iterations SNR pos. error b (m) pos. error c (m) pos. error d (m) mean pos. error (m) 

10 1 0.3489 0.4024 0.2608 0.3374 

10 2 0.5251 0.4231 0.7058 0.5513 

10 5 0.0026 0.1735 0.2612 0.1458 

10 10 0.0344 0.0936 0.2427 0.1236 

10 20 0.0024 0.1030 0.0641 0.0565 

20 1 0.1493 0.7615 0.7393 0.5500 

20 2 0.0537 0.4624 0.1336 0.2166 

20 5 0.0305 0.0826 0.6235 0.2455 

20 10 0.0704 0.0478 0.0333 0.0505 

20 20 0.0159 0.0361 0.0439 0.0320 

30 1 0.0351 0.6131 0.3258 0.3247 

30 2 0.1110 0.2164 0.4491 0.2588 

30 5 0.1637 0.1464 0.4306 0.2469 

30 10 0.0098 0.0435 0.3094 0.1209 

30 20 0.0044 0.0215 0.0330 0.0196 

50 1 0.1284 0.3100 0.5867 0.3417 

50 2 0.1107 0.5642 0.5112 0.3954 

50 5 0.0838 0.2457 0.3255 0.2183 

50 10 0.0558 0.0667 0.0307 0.0511 

50 20 0.0167 0.0454 0.0327 0.0316 

100 1 0.0581 0.5460 0.4855 0.3632 

100 2 0.0206 0.3345 0.4246 0.2599 

100 5 0.0150 0.1248 0.2503 0.1300 

100 10 0.0944 0.1548 0.1544 0.1345 

100 20 0.0119 0.0391 0.0406 0.0305 

 

In Table 4.10, the numerical positioning error analysis of the 4 CLs for 25 

different ISCs are presented. In Figures 4.21 and 4.22, the graphical illustrations of 

these error values are shown. There are 2 graphs containing 4 inner graphs each 

representing the illustrations of mean error performances of the 4 CLs with respect to 

SNR and iterations. 
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Figure 4.21 Error performance – iterations correlations of the 4 CLs with respect to SNR values 
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Figure 4.22 Error performance – SNR correlations of the 4 CLs with respect to iterations 
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As can be seen from Figure 4.21, the error performance increases with the number 

of iterations even if SNR is held constant for all the 4 CLs if we do not take the 

exceptions caused by the randomly added noises into account. Up to a number of 

iterations, the error performance of the system seems to be unreliable, however, after 

30 repetitions, it was seen that there is a correlation between the error performance 

and the number of repetitions. The positioning error decreases with the number of 

iterations. But these are only the simulation results. It can be expected that, for a 

small number of iterations, even if it was random, the noise may cause the system to 

be more than anticipated. But after 30 repetitions, one can say that the random error 

is uniformly distributed. By the increase of iterations, it is normal to observe a 

reduced positioning error. 

 

Figure 4.22 illustrates the error performance of the 4 CLs depending on SNR 

values. Since SNR is the indicator of the level of the noise added to the system, it is 

normal to see a decreasing error curve by the increase of SNR. However, SNR is 

seen to be related with the number of repetitions even if it was not expected. For a 

small number of iterations, error curves for different number of SNRs show that, it is 

not very reliable to make an assumption like ‘the greater the SNR the better the error 

performance is’ but after about a number of 30 iterations error curves are seen to be 

in line, as expected. The two error performance curves (Figures 4.21 and 4.22) both 

show that for a reliable outcome, a reliable measurement set, the number of the 

repetitions, in another words the number of the RSSI measurements should be greater 

than 30 in order to maintain a trustworthy system.  

 

4.2 Experimental Results  

 

In the previous section, the simulation results of the 4 CLs are presented and the 

importance of the number of the measurements is defined. Now in this section we 

present the experimental results of the distance estimations and the NOIP.  

 

To present the distance estimations we first need to share the RSSI measurements 

and the specific ways of measurements, the correlations of them with the distances 
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they were taken. Then the distance estimations of the RSSI recordings are presented 

for all 3 SSDR models. Finally the positioning results by the estimated distances are 

exhibited with using the NOIP.  

 

4.2.1 Measurement Process and the Results  

 

Communication of the clients is provided by the built of Wi-Fi and Bluetooth 

wireless communication infrastructures by using a self-implemented device (SID) 

but after the examinations of the results it seemed that Bluetooth results are not very 

reliable. The variation of the signal strength can reach up to 20 dBm even if the 

distance is not changed. Hence, we are focused on Wi-Fi results which are 

considerably more consistent.  

 

4.2.1.1 Hardware Process of the Measurement Process  

 

The preferred wireless communication metric, RSSI, is being recorded for several 

distances between the clients. The hardware of each client consists of Raspberry Pi 

SBC (“Raspberry Pi,” n.d.) and Realtek RTL8723BU (FN-LINK, n.d.) Wi-Fi & 

Bluetooth IC.  

 

Figure 4.23 Raspberry Pi 
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To use the Wi-fi & Bluetooth module, two versions of the circuits are designed 

and implemented which is given in the product datasheet (FN-LINK, n.d.). The 

schematic diagram of the first design is given below (Figures 4.24 and 4.25). 

 

Figure 4.24 Schematic diagram of the first SID design 

 

 

Figure 4.25 Schematic design of the second SID 
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The only difference between the two designs is a few components; a capacitor and 

the voltage regulator IC. But the difference would be seen more clearly in the layout 

designs (see Figure 4.26). 

Figure 4.26 The 1
st
 (a) and the 2

nd
 (b) layout designs of the SID 

Besides the datasheet circuit of the SID, a regulator component is added to the 

resulting device in order to supply the device directly from a USB port of Raspberry 

Pi (RPi) as can be seen in the previous figures. This component is basically a 3.3V 

regulator. In the first design and second design two different components are used; 

L33CV and LM117 as the supply regulating component. 

The first version of the SID is presented in Figure 4.27. 

Figure 4.27 First implementation of the SID 
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The second and the final version of the device are given in Figure 4.28. 

 

Figure 4.28 Second and the final version of the SID 

 

With the connection of the SID and RPi through a USB-USB cable unveils a 

‘client’ (Figures 4.29 and 4.30).  

 

Figure 4.29 The connection of RPi and the SID, a ‘client’, 1
st
 version 

 

 

Figure 4.30 The 2
nd

 and the final version of a ‘client’ 
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After the implementation of the 4 SIDs, we pass into the software process in order 

to use the devices with RPi.  

 

4.2.1.2 Software Process of the Measurement Process  

 

All 4 SIDs are set to behave as an Access Point (AP). The device is programmed 

to record RSSI metrics 15 times a row (1 measurement in 1 second, 15 measurements 

= 15 seconds) which is visible to the SID in the environment. This is done for 

eliminating the instant errors that will cause faulty measurements. The mean value of 

the 15 measurements at a point is the RSSI value of that point for the first recordings. 

These recordings are only used for the experimental process of the 1
st
 CL and the 

method is called the 1
st
 MM as previously described in Section 3.1.1.1. For the 

experimental procedure of the other 3 CLs, the 2
nd

 MM is used. The number of an 

individual recording is 20 for the 2
nd

 MM.  

 

During the measurements it was observed that even if the distance is increased 

between the clients, the signal strength increases instead of decreasing. To overcome 

this problem, the driver of the SID is observed and the Automatic Gain Control 

(AGC) of the device is disabled in order to relate signal strength only with the 

distance. For the software implementations Debian based operating system Raspbian 

is used. 

 

4.2.1.3 Measurement Results of the Received Signal Strength Indicator (RSSI) 

Metrics  

 

After at least two clients are ready to be used, a measurement process can be 

started. As described previously, two different measurement method is used, 1
st
 MM 

and 2
nd

 MM.  

 

4.2.1.3.1 Results of the 1st Measurement Method. This measurement is 

implemented with only two clients. These clients are set in an office building and for 

a various distances between them the RSSI metrics are recorded.  
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After a few recordings it was observed that, the minimum and the maximum 

visible signal strengths are -70 dBm and -47 dBm respectively. Up to nearly 30 m the 

SID works perfectly however the RSSI metrics change only between 2 m and 12 m. 

When the distance between the clients are under 2 m the RSSI metric is always -47 

dBm and after 12 m it is always -70 dBm. These are the signal strength limits of the 

SID.  

 

These ranges can vary device to device, components etc. But, neglecting the 

maximum and minimum limits of the RSSI metrics, the SSDR curve is expected to 

be similar to a decreasing exponential curve for any device that can provide RSSI 

outputs (see Figure 4.31).  

 

Figure 4.31 A hypothetical RSSI-Distance curve 

 

To record meaningful measurements, we seek to reach a curve alike in Figure 

4.31. The measurements take place in an office building illustrated in Figure 4.32 

and recordings are taken for 16 different distance values between 2-12 m.  
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Figure 4.32 Measurement environment for the 1
st
 MM 

 

 

Figure 4.33 First MM and the distances between the clients 

 

There are many recordings that were taken but the best measurement results for 

this method is illustrated in Figure 4.34.  
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Figure 4.34 The RSSI recordings of the 1
st
 MM 

 

In Figure 4.34 mean, max and min represent the mean, maximum and minimum 

values of the RSSI measurements. As can be seen in Figure 4.34, there is no change 

until the distance reaches 2 m between the clients. These results are estimated into 

distance via the 3 distance estimation methods and those results are used for the 

positioning process of the 1
st
 CL. 

 

The actual measurements showed that our curve is different. First of all, the slope 

of the curve is not exponential, but linear. This situation may be caused by the 

structure of the device but it is an unknown fact for us to make a comment. However, 

it is considered that these curve variations can be caused by the structure of the 

device.   

 

4.2.1.3.2 Results of the 2nd Measurement Method. The 2
nd

 MM is implemented 

with all four clients. These clients are set in the basement of a school building and for 

the remaining 3 CLs the RSSI metrics are recorded 20 times for each measurement. 

The remaining CLs, 2
nd

 CL, 3
rd

 CL and the 4
th

 CL, are illustrated previously in the 

simulation results but in Figure 4.35 they are presented again in a single illustration. 
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Figure 4.35 Remaining 3 CLs, 2
nd

 CL, 3
rd

 CL and the 4
th

 CL 

 

The RSSI metrics are recorded at first from client a, then b, c and d. By doing 

that, the distance combinations between any of the clients have been recorded twice. 

For example, when recording the metrics from client a, the distance Lab is saved, then 

again when recording the metrics from client b, the distance Lab is saved again. 

Hence, the number of the RSSI recordings taken for each distance becomes 40 

instead of 20. And this number of repetitions is enough for a reliable measurement as 

previously described in Section 4.1.5. The order of recordings is illustrated in Figure 

4.36 below. 

 

Figure 4.36 The illustration of the 2
nd

 MM 
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This method contains only the experimental RSSI data. For 4 clients and 3 

different layouts, 240 RSSI measurements are taken (for 3 layout variations, 4 clients 

and 20 repetitions, there are 240 RSSI measurements).  

 

Figure 4.37 Example of the signal strengths seen by the 1st SID 

 

In Figure 4.37, Pi_2, Pi_3 and Pi_4 represent the signal strength of the 2
nd

, 3
rd

 and 

the 4
th

 clients (2, 3 and 4). In Figure 4.38 the 4 clients can be seen.  

 

Figure 4.38 The 4 clients 
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The 4 clients presented in Figure 4.38, are placed by the layouts and the RSSI 

metrics are recorded. The environment of recordings belonging to the 2
nd

 MM is 

illustrated in the following (Figures 4.39 and 4.40). 

 

Figure 4.39 The environment where the recordings take place by the 2
nd

 MM 

 

In Figure 4.39 the clients are highlighted in red circles. In Figure 4.40 the clients 

can be seen closely.  

 

Figure 4.40 A closer look to the clients during the recordings 
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4.2.2 Results of the Distance Estimation Process  

 

After all the RSSI recordings are saved for all the 4 CLs and the 2 MMs, we can 

estimate the distances between the clients via the 3 RSS based indoor path loss 

models.  

 

4.2.2.1 Distance Estimation Results of ITU Indoor Path Loss Model  

 

ITU is a path loss model based on its’ exponents, N and Lf. Being consistent with 

the belonging document of International Telecommunication Union, we derived 

these exponents by calculating the distance errors for various combinations of them. 

From 10 to 40, every N and Lf combination is calculated and the resulting distance 

error graph is presented in Figure 4.41. The distance error is defined by the 

difference of the estimation of ITU model with the actual distance that the RSSI 

metric was recorded. The distance error is;  

realITUerr DDD                                                 (4.2) 

where, Derr, DITU and Dreal represent the distance error, ITU estimation and the actual 

distance respectively. 

 

Figure 4.41 ITU exponents vs. the distance error 
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The resulting error graph yields that the minimum distance error occurs when 

N=28 and Lf=11, which is consistent with the literature (International 

Telecommunication Union, 2015; Seybold, 2005). Hence, the resulting ITU Model 

formula is given by; 

28

)44.38(

10





RSSIP

d                                                (4.3) 

where the only unknown is the distance, d, being the RSSI recordings.  

 

After the exponents are set, the distance estimation process was started by using 

ITU model for all the distances that the RSSI recordings are taken. There are 16 and 

13 different distances that the RSSI metrics are recorded via the 1
st
 MM and the 2

nd
 

MM respectively (Table 4.11). In Table 4.11, the results of the 2
nd

 MM are the 

combined measurement set for the 2
nd

, 3
rd

 and the 4
th

 CLs.   

 

Table 4.11 The Mean values of the RSSI recordings taken in the 1
st
 and 2

nd
 environments 

1st MM 2nd MM 

Distance (m) RSSI (dBm) Distance (m) RSSI (dBm) 

2.00 -47.00 3.00 -46.68 

2.50 -47.47 4.47 -51.23 

3.00 -49.20 5.00 -55.91 

3.50 -53.80 6.32 -61.63 

4.00 -55.10 6.40 -54.75 

4.50 -55.07 7.00 -57.13 

5.00 -59.06 7.28 -59.58 

5.50 -61.07 7.62 -58.30 

6.00 -63.07 8.06 -60.60 

6.50 -63.87 9.05 -61.95 

7.00 -66.13 9.22 -62.00 

7.50 -63.80 9.90 -60.58 

8.00 -68.00 10.77 -60.05 

9.00 -65.80     

10.00 -69.80     

12.00 -70.00     

 

The recordings are separated in 2 parts because the measurements were taken in 2 

different environments. The first measurement set is for the 1
st
 CL, and the second 

set is for the remaining CLs. The ITU results of the 2 MMs showed a large amount 
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of error. So, we decided to recalculate the environmental conditions by changing the 

exponents of the model. The distance errors are recalculated and the least error 

occurred when N=25 and Lf=10 for the 2
nd

 environment. Hence, the ITU formula is 

redefined for the 2
nd

 MM (see Equation 4.4). 

25

)44.37(

2 10





RSSIP

d                                                (4.4) 

Now that the exponents are set for the 2 environments, the distance estimation 

process can be applied for both the results taken via the 1
st
 MM and the 2

nd
 MM in 

the 2 environments. In Figure 4.42 and Figure 4.43 the distance estimation results 

and the mean distance error of ITU Path Loss Model is presented for the RSSI 

recordings of both environments.  

 

Figure 4.42 ITU estimations and the actual distances for the 1
st
 environment 

 

The resulting mean distance error for the 1
st
 environment is found approximately 

66 cm.  
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Figure 4.43 ITU estimations and the actual distances for the 2
nd

 environment 

 

The mean distance error for the 2
nd

 environment is found 108 cm approximately. 

However, as can be seen from Figure 4.43, this error is highly caused by the results 

of the 4
th

 measurement point. During the measurements in the 2
nd

 environment, we 

paid attention not to intersect the LOSs of the signals with the columns. The large 

distance estimation error at measurement point 4 belongs to the specific 

measurement set taken between the 2
nd

 and the 3
rd

 points. 

 

Hereby, the results of the first path loss model that is used to estimate the distance 

values are presented in this section. These results will be used to estimate the 

positions of the clients by their layouts in the positioning algorithm, the NOIP, as 

inputs. 

 

4.2.2.2 Distance Estimation Results of Two-Ray Ground Reflected Path Loss 

Model  

 

The second method of RSS based distance estimation is Two-Ray Ground 

Reflected Path Loss Model. The mathematical expression of this model is; 
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40

2

10.
RSSIt PGP

hd



                                                    (4.5) 

as defined previously in Section 3.1.2.2. 

 

The distance estimations of the mean values of the RSSI measurements for the 

belonging distances are illustrated for the two environments in the following. 

 

Figure 4.44 Two-Ray Model distance estimations for the 1
st
 MM 

 

When the distances are estimated by the resulting RSSI recordings of the 1
st
 MM 

via Two-Ray Model (see Figure 4.44), it was seen that, there is almost a parallel 

difference between the estimated distance curve (red line) and the actual distance 

curve (black line). When the mean distance error is calculated, an unacceptable mean 

error is found, 2.81 m. To overcome this problem, relying on the approximately 

parallel difference of the distance curves, we defined an extra power loss factor. That 

power loss (Pl) is added to the distance estimation model and the resulting equation 

is; 

40

2

10.
lRSSIt PPGP

hd



                                            (4.6) 
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Then we calculated this power loss factor as 7 dBm for the test environment. 

After the extra power loss is added to the system, the estimated distance curve (blue 

line in Figure 4.44) and the actual distance curve (black line in Figure 4.44) are 

nearly overlaid one another. The resulting mean distance error is then recalculated as 

approximately 56 cm which is nearly the 1/5 of the previous error value.  

 

Figure 4.45 Two-Ray Model distance estimations for the 2
nd

 MM 

 

The distance estimation results of the 2
nd

 MM via Two-Ray Model are seen to be 

similar to the 1
st
 method (with respect to distance errors) even if there is no external 

power loss is defined for this estimation. The mean distance error is found by 

approximately 86 cm. However, Figure 4.45 shows that, at the 4
th

 and the last two 

measuring points, the individual distance errors increase. The error on the 4
th

 

measurement point could be caused by a column which intersects the LOS of the 

signal when the measurement was recorded. The last two are different because this 

time there is no power loss, it is power rise that could be caused by the reflections. 

 

Both distance estimation results are recorded to be used in the NOIP as inputs.  
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4.2.2.3 Distance Estimation Results of Experimentally Derived Signal Strength-

Distance Relation (EDR) Model  

The 3
rd

 and the last model of distance estimation is the EDR Model. EDR Model

is based on the specific measurements and the distance values that the measurements 

were recorded. We first defined a model for a specific measurement set, the results of 

the 1
st
 MM, however, the environmental conditions affected the results of the

measurements more than anticipated. Consequently, we defined two separate EDR 

formulas to estimate the measurements recorded in the 1
st
 and the 2

nd
 environment.

As previously presented, the first one is defined by; 

RSSIP
ed

.06658.0
.09878.0


 (4.7) 

and the second formula is; 

RSSIP
ed

.06364.0
.1777.0


 (4.8) 

The estimation results of both EDR Models are demonstrated in the following 

with the individual illustrations.  

Figure 4.46 Derivation of the 1
st
 EDR Model 
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Figure 4.47 Derivation of the 2
nd

 EDR Model 

 

 

Figure 4.48 Distance Estimations of the 1
st
 EDR Model for the 1

st
 MM 
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Figure 4.49 Distance Estimations of the 2
nd

 EDR Model for the 2
nd

 MM 

 

Eventually all the distance estimations are recorded to be used in the positioning 

algorithm, the NOIP.  

 

4.2.2.4 Performance Comparison of the Distance Estimation Methods  

 

Before starting the positioning process, it is decided to examine the error 

performances of the distance estimation methods. In Table 4.12, the numerical error 

analysis of all the distance estimation methods for the recordings taken in 2 different 

environments is presented.  

 

Table 4.12 Mean distance error values of all the estimation methods 

Error Performance Table 
Mean Distance Error (m) 

1st MM 2nd MM 

ITU Model 0.6588 1.0829 

Two-Ray Model 0.5676 0.8660 

EDR Model 0.5302 0.8449 

 

According to Table 4.12, one can say that the distance estimations of the 1
st
 MM 

is expected to be result in a more accurate position estimation. Also the best distance 

estimation method is seemed to be the EDR Model considering the mean error 
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values. However, these are the mean distance error values. The positioning results 

can change due to the distances between the clients. For example, we stated that the 

4
th

 measurement point of the 2
nd

 MM is faulty. If a distance between clients is close 

to the distance which the measurement #4 is taken, the resulting positions of the 

clients may be expected to be faulty either. On the other hand, if the distance values 

between the clients are all coincide to the accurate measurements, even if the mean 

distance error is high, the positions of the clients can be estimated correctly. This 

statement will be emphasized after the positioning process again. 

 

4.2.3 Results of the Positioning Process  

 

The main goal in this thesis is to estimate the positions of the clients in a robotic 

team in an indoor environment without any initial information. The data set that is 

used to estimate the positions of the clients contains distance information of any 

combination between the clients. The data set is derived with 3 different RSS based 

path loss models by estimating the distance values by using the RSSI measurements 

recorded. Eventually, the positions of the clients can be estimated by using the 

distance information. If we consider the measurement, distance estimation and 

positioning process as one whole process, the only input of the system would be the 

RSSI metric measurements where the output is the position information of the 

clients.  

 

The positioning results are presented in the following with respect to both CLs 

and the distance estimation methods and at least the combined performance 

comparison is illustrated with figures and numerical error analysis. 

 

4.2.3.1 Positioning Results of the 1
st
 Client Layout  

 

The results of the NOIP for the 1
st
 CL for the distance estimations of ITU Model, 

Two-Ray Model and EDR Model are respectively presented in the following. Then, 

the mean estimations of all distance estimation methods are illustrated in order to 

compare the performances of the distance estimation methods. In the end, the 
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numerical positioning errors of the 3 distance estimation methods are presented in 

Table 4.13. 

 

Figure 4.50 Positioning results of CL1 for the distance estimations of ITU Model 

 

 

Figure 4.51 Positioning results of CL1 for the distance estimations of Two-Ray Model 
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Figure 4.52 Positioning results of CL1 for the distance estimations of EDR Model 

 

 

Figure 4.53 Mean positioning results of CL1 for all the distance estimation methods 
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Table 4.13 Positioning errors of CL1 

CL1 client b (m) client c (m) client d (m) mean  (m) 

ITU 0.4914 1.4390 1.7747 1.2350 

Two-Ray 0.1427 1.5036 1.1533 0.9332 

EDR 0.1745 1.0804 1.3617 0.8722 

The illustrations of the position estimations and the numerical error analysis of the 

1
st
 CL are presented in the above. According to Table 4.13, it seems that the best

position estimations are provided by the distance estimations of EDR Model. Note 

that the RSSI recordings of this CL are obtained with the 1
st
 MM. This is the only CL

that is being estimated with the recordings of the 1
st
 MM. For the other CLs, the

measurement technique is always the 2
nd

 MM.

4.2.3.2 Positioning Results of the 2
nd

 Client Layout

The results of the NOIP for the 2
nd

 CL are presented in the following.

Figure 4.54 Positioning results of CL2 for the distance estimations of ITU Model 
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Figure 4.55 Positioning results of CL2 for the distance estimations of Two-Ray Model 

 

 

Figure 4.56 Positioning results of CL2 for the distance estimations of EDR Model 
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Figure 4.57 Mean positioning results of CL2 for all the distance estimation methods 

 

Table 4.14 Positioning errors of CL2 

CL2 client b (m) client c (m) client d (m) mean  (m) 

ITU 0.6444 2.7821 1.1947 1.5404 

Two-Ray 0.7784 1.6832 0.9895 1.1504 

EDR 0.4689 1.5763 0.9496 0.9983 

 

The positioning error table yields that, again the performance of EDR Model is 

better than the other two distance estimation models. Note that, even if the 

positioning method is the same, the positioning error values of the client c are much 

higher than it is for client d. This is originated by both the faulty measurements and 

the distance estimation errors for the position of client c. The estimated distance 

curves of all the distance estimation methods (see Distance Estimation Results, 

Section 4.2.2) are alternating over the actual distance curve. For some points, the 

estimated distance and the actual one are really close but for some it is highly 

remote. During the RSSI metric measurements, if the distance between the clients is 

coincide with the remote point of the distance curve, the distance estimation, hence, 

the position estimation of that client will be faulty, as it is for client c. 
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4.2.3.3 Positioning Results of the 3
rd

 Client Layout  

 

The position estimations of the 3
rd

 CL are presented in the following illustrations. 

After the graphs, the numerical error comparison of the 3 distance estimation 

methods can be seen. 

 

Figure 4.58 Positioning results of CL3 for the distance estimations of ITU Model 

 

 

Figure 4.59 Positioning results of CL3 for the distance estimations of Two-Ray Model 
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Figure 4.60 Positioning results of CL3 for the distance estimations of EDR Model 

 

 

Figure 4.61 Mean positioning results of CL3 for all the distance estimation methods 
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Table 4.15 Positioning errors of CL3 

CL3 client b (m) client c (m) client d (m) mean  (m) 

ITU 0.7355 1.1522 3.6760 1.8546 

Two-Ray 0.0619 0.6507 5.1596 1.9574 

EDR 0.2037 0.7148 4.8852 1.9346 

 

Table 4.15 contains the positioning error values for all 3 distance estimation 

methods and the mean positioning errors. The mean positioning error values are very 

close to each other and the best condition seems to be the ITU Model where it was 

EDR Model for the 1
st
 and 2

nd
 CL. Also it was previously stated that the positioning 

error of client c is very high in the 2
nd

 CL, and it was caused by the faulty metric 

measurements. This time for the 3
rd

 CL, the unexpectedly high positioning error 

belongs to client d where client c is accurately located considering client d.  

 

4.2.3.4 Positioning Results of the 4
th

 Client Layout  

 

The results of the NOIP for the 4h and the last CL are presented in this section. 

Also the numerical positioning error table is given in the end of the section.  

 

Figure 4.62 Positioning results of CL4 for the distance estimations of ITU Model 
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Figure 4.63 Positioning results of CL4 for the distance estimations of Two-Ray Model 

 

 

Figure 4.64 Positioning results of CL4 for the distance estimations of EDR Model 
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Figure 4.65 Mean positioning results of CL4 for all the distance estimation methods 

 

Table 4.16 Positioning errors of CL4 

CL4 client b (m) client c (m) client d (m) mean  (m) 

ITU 0.5578 4.5251 5.5205 3.5345 

Two-Ray 1.4492 4.2063 5.2416 3.6324 

EDR 1.2667 4.2827 5.2196 3.5897 

 

For the last CL, Table 4.16 yields the positioning error values for all the distance 

estimation methods. However, the layout sequence of this CL seems to be improper. 

For all the position estimations (except for one, ITU b), the error is over 1 m where 

the mean positioning errors of all 3 DEMs also over 3 m. This is highly non 

preferential for an indoor localization system considering the positions of the clients. 

On the other hand, this resulting error values are caused by the faulty measurements. 

The reason that the error values of client c and d is over 4 and 5 m respectively, is 

that the distances between the clients d to a (Lad), d to b (Lbd), c to a (Lac) and c to b 

(Lbc) are all coincide with the faulty measurement points. The actual distances and 

the estimations of those points are presented in Table 4.17. 
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Table 4.17 Actual and estimated distance comparison for the 4
th

 CL 

CL4 Lab (m) Lac (m) Lad (m) Lbc (m) Lbd (m) Lcd (m) 

Actual 

Distances 

5.00 9.22 7.28 6.32 9.90 9.05 

ITU 

Estimations 

5.56 9.69 8.34 9.34 8.47 9.66 

Two-Ray 

Estimations 

6.45 9.14 8.18 8.94 8.41 9.12 

EDR 

Estimations 

6.27 9.21 8.18 8.98 8.40 9.19 

 

The differences between the actual distances and the estimated ones show the 

basis of the unexpectedly high positioning errors. The distances are estimated faulty 

because of the faulty measurements caused by the intersections of the signals LOSs, 

hence, it is considered to be normal to estimate a faulty client location.  

 

4.2.3.5 Performance Comparison of the Positioning Results  

 

In this section, the positioning errors of all the CLs are presented together and 

compared. In Table 4.18 all the error value are shared.  

 

Table 4.18 Error comparison of all CLs for all the distance estimation methods 

Positioning Errors client b (m) client c (m) client d (m) mean  (m) 

CL1 

ITU 0.4914 1.4390 1.7747 1.2350 

Two-Ray 0.1427 1.5036 1.1533 0.9332 

EDR 0.1745 1.0804 1.3617 0.8722 

Mean of CL1 0.2695 1.3410 1.4299 1.0135 

CL2 

ITU 0.6444 2.7821 1.1947 1.5404 

Two-Ray 0.7784 1.6832 0.9895 1.1504 

EDR 0.4689 1.5763 0.9496 0.9983 

Mean of CL2 0.6306 2.0139 1.0446 1.2297 

CL3 

ITU 0.7355 1.1522 3.6760 1.8546 

Two-Ray 0.0619 0.6507 5.1596 1.9574 

EDR 0.2037 0.7148 4.8852 1.9346 

Mean of CL3 0.3337 0.8392 4.5736 1.9155 

CL4 

ITU 0.5578 4.5251 5.5205 3.5345 

Two-Ray 1.4492 4.2063 5.2416 3.6324 

EDR 1.2667 4.2827 5.2196 3.5897 

Mean of CL4 1.0913 4.3380 5.3272 3.5855 

 

Table 4.18 shows that the best error performance is obtained from the 1
st
 CL, then 

comes the 2
nd

, 3
rd

 and the 4
th

 respectively. The layouts are user defined and it is a 
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coincidence that the error performance is parallel with the order of layouts. However, 

it was observed that, even if the mean error performance results show otherwise, the 

individual positioning errors of the clients yield different performance placements. 

For client b, the best error performance is for the 1
st
 CL, followed by the 3

rd
, the 2

nd
 

and the 4
th

 CLs where it is the 3
rd

, the 1
st
, the 2

nd
, the 4

th
 and the 2

nd
, the 1

st
, the 3

rd
 

and the 4
th

 for clients c and d respectively (see Table 4.19). 

 

Table 4.19 Individual and mean error performance comparison of the CLs 

  1st 2nd 3rd 4th 

client b CL1 CL3 CL2 CL4 

client c CL3 CL1 CL2 CL4 

client d CL2 CL1 CL3 CL4 

mean CL1 CL2 CL3 CL4 

 

 The purpose of Table 4.19 is to show that it does not necessarily mean that the 

average performance placements do not change for individual performances. Even if 

the mean performance result of the 1
st
 CL is the best that it does not mean all the 

clients are located at best. Those individual error performances depend on how 

accurately the distances are estimated.   
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CHAPTER FIVE 

CONCLUSION  

 

To solve the indoor localization problem, for a robotic team number of 4, 3 RSS 

based distance estimation methods and a novel positioning algorithm that needs no 

initial conditions has been presented. The 3 distance estimation methods, ITU Indoor 

Path Loss Model, Two-Ray Ground Reflected Path Loss Model and EDR Model are 

the distance estimation methods based on RSSI measurements which are provided by 

the SID working with Wi-Fi. For one CL the simulation results and for 4 different 

CLs the experiment results have been illustrated. Also the error performance of every 

individual distance estimation method and CL is examined.  

 

The positioning algorithm that needs no initial conditions, the NOIP, is a 

triangulation based locator. The relative coordinate plane is set on the first two 

clients, a and b, then the positions of the other clients, c and d, are estimated on that 

RCP. This algorithm is based on only the RSSI measurements and therefore the 

positions of the last two clients have been estimated with an assumption that the x-

axis value of their estimated position would always be positive. This study is a part 

of a larger project that also includes the AoA information of the clients. In the 

project, the information of ‘which side is the client on x-axis’ is provided by AoA. 

Also more additive information is provided by an Inertial Measurement Unit (IMU) 

and by the fusion of all the obtained information, a weighted positioning system is 

constructed.   

 

 The numerical error analyzes of both the distance estimations and the position 

estimations yields that, the performance of the system is highly depended on the 

environmental conditions for an RSS based implementation. Additionally, the 

performance of the system is also influenced by the operating frequency and the 

supported metric limits of the chosen Wi-Fi IC. The chosen IC can operate smoothly 

up to 30 m but provides the metrics of RSSI only within 2-12 m. Besides those 

limits, the RSSI metrics do not change; one can only see the maximum signal 

strength up to 2 m and the minimum signal strength after 12 m. These limitations are 
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strictly restricts the resolution of estimations and definitely increase the positioning 

error. It is observed that environmental and the operating conditions are very 

important for an RSS based indoor positioning system.  

 

Nevertheless, the NOIP, unlike the other triangulation related algorithms needs no 

initial conditions, or, likewise, the presented indoor positioning system needs no 

initial information, implementation etc. Hence, even if the methodology is similar, 

locating a client with only the information of a set of measurements becomes more 

effective. The presented system provides the knowledge how the distance estimation 

methods would be used and also presents a user defined solution for specific 

utilizations. One can use the self-defined method of distance estimation, EDR, and 

modify the equation for a specific environment. The reliability of EDR is proven by 

the results which is considerably consistent with the results of one of the distance 

estimation methods, Two-Ray Model. Two-Ray Model is also an indoor path loss 

model. The fact that the results of these two models are similar makes EDR a method 

of distance estimation, a path loss model such as the predecessors for indoor 

environments.  

 

The relative coordinate plane that the clients are located on, can be moved to any 

other known map by using Rotation, Transformation or even Denavit-Hartenberg 

Matrices although they are used for mainly kinematics. This solution enables to 

expand the usage of the presented positioning system to a 3D localization system. 

One can define a map, locate the clients, and then relocate them again without 

dealing with extra positioning work to any other known map. When the only input 

was RSSI of the system, the origin displacement and the rotations of each axis would 

be added as the new inputs. Also by the enlargement of the diversity of the 

environments where the RSSI metrics are recorded, it is thought to be derive more 

distance estimation models and in the end, a novel distance estimation model that 

depends on its’ own constants. By recording more measurements in various indoor 

environments, it is aimed to define those constants that belong to the novel distance 

estimation model. All improvements that are presented in this paragraph are 

considered to be our future work.  
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Last of all, this thesis provides a solution to a problem which has been studied 

increasingly frequent in the recent years, the indoor localization problem. The 

wireless communication metrics, indoor distance estimation methods and a novel 

positioning algorithm are studied, interpreted and the results of all are presented. 

Both the simulation and experiment procedures are completed, and correlations 

between them are defined. By the defined correlations and self-impressions new 

results are provided to improve the conception of this thesis. Consequently, an indoor 

positioning system based on RSS measurements that needs no initial conditions is 

presented.  
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APPENDICES 

ABBREVIATIONS 

AGC – Automatic Gain Control 

AoA – Angle of Arrival 

AP – Access Point 

AWGN – Additive White Gaussian Noise 

CL – Client Layout 

CPU – Central Processing Unit 

EDR – Experimentally Derived Signal Strength – Distance Relation 

IC – Integrated Circuit 

ISC – Iterations – SNR Combinations 

IMU – Inertial Measurement Unit 

ITU – International Telecommunication Union 

LOS – Line of Sight 

MC – Measurement Circle 

MM – Measurement Method 

NOIP – No Initial Indoor Positioning 

NRT – Non-Radio Technologies 

RCP – Relative Coordinate Plane 

RPi – Raspberry Pi 

RSS – Received Signal Strength 

RSSI – Received Signal Strength Indicator 

RX – Serial Data Receive 

SBC – Single Board Computer 

SID – Self-Implemented Device 

SNR – Signal to Noise Ratio 

SSDR – Signal Strength – Distance Relation 

TDoA – Time Difference of Arrival 

ToA – Time of Arrival 

Two-Way ToA – Two-Way Time of Arrival 

TX – Serial Data Transmit 
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WLAN – Wireless Local Area Network 

WT – Wireless Technologies 




