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METAHEURISTIC OPTIMIZATION ALGORITHMS FOR SOLVING 

MULTIOBJECTIVE ECONOMIC DISPATCH PROBLEM 

 

ABSTRACT 

 

In this thesis, Artificial Cooperative Search (ACS) algorithm is incorporated with 

the Quadratic Approximation (QA) operator to solve the multiobjective Economic 

Emission Load Dispatch (EELD) problems with different generation units. ACS is a 

Swarm Intelligence (SI)-based metaheuristic algorithm, based on the interaction 

between prey and predator organisms in a habitat, is effective at global search; 

however, it does not perform so well at exploring promising regions. QA operator, 

on the other hand, is a non-derivative-based efficient local search method that finds 

the minimum of a quadratic hyperspace passing through three points in a D-

dimensional space. Solving the EELD problems with the hybridized ACS-QA 

algorithm, as being proposed in the present thesis, leads to more accurate results with 

fewer function evaluations. Also, multiobjectivity of the problem is handled by 

transforming it into a single-objective problem by using the Weighted Sum Method 

(WSM). The efficiency of the proposed ACS-QA algorithm is tested in comparison 

to the algorithms existing in literature by implementing it on six different benchmark 

optimization problems. Afterwards, the proposed ACS-QA algorithm and the ACS 

algorithm are implemented on multiobjective EELD problems with different 

generation units. The results are compared with the solutions in literature utilizing 

different metaheuristic optimization algorithms. Both studies firmly showed that the 

ACS-QA algorithm is able to find more accurate results even though it uses fewer 

function evaluation calls.  

 

Keywords: Metaheuristics, Multiobjective optimization problems, Economic 

Emission Load Dispatch problem. 
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ÇOKLU AMAÇLI EKONOMİK EMİSYON YÜK DAĞITIMI 

PROBLEMİNİN ÜSTSEZGİSEL OPTİMİZASYON ALGORİTMALARI İLE 

ÇÖZÜMÜ  

 

ÖZ 

 

 Bu tezde, Artificial Cooperative Search (ACS) algoritması ile Quadratic 

Approximation (QA) operatörü, değişik üretim ünitelerinden oluşan çoklu amaçlı 

Ekonomik Emisyon Yük Dağıtımı (EEYD) probleminin çözümü için birleştirilmiştir. 

Bir habitattaki av-avcı ilişkisine dayalı, Sürü Zekası (SZ) tabanlı üstsezgisel bir 

optimizasyon algoritması olan ACS, global arama konusunda etkilidir ama önemli 

bölgeleri aramada iyi performans gösterememektedir. Bir diğer yandan, D-boyutlu 

bir uzaydaki üç noktanın üzerinden geçen bir kuadratik süperuzayın minimumunu 

bulan ve türev tabanlı olmayan QA operatörü efektif bir yerel arama algoritmasıdır. 

Bu tezde de önerildiği gibi, çoklu amaçlı EEYD problemlerini hibritleştirilmiş ACS-

QA algoritması ile çözmek, daha kesin sonuçlara daha az fonksiyon 

değerlendirilmesi ile ulaşılmasını sağlar. Ayrıca, problemdeki çoklu amaçlılık, 

Ağırlıklı Toplam Metodu (ATM) ile problemi tek amaçlı hale dönüştürerek ele 

alınmıştır. ACS-QA algoritmasının etkinliği, ACS-QA ile literatürdeki diğer farklı 

algoritmaları, altı farklı kıyaslamalı optimizasyon problemlerine uygulanıp 

karşılaştırılarak test edilmiştir. Sonra, önerilen ACS-QA ve ACS algoritmaları 

değişik üretim ünitelerinden oluşan çoklu amaçlı EEYD problemine uygulanmıştır. 

Sonuçlar, literatürde yer alan farklı üstsezgisel optimizasyon algoritmalarının 

uygulanıp elde edilen sonuçlar ile karşılaştırılmıştir. İki çalışma da göstermiştir ki, 

ACS-QA algoritması daha kesin sonuçları daha az fonksiyon değerlendirmesi 

yapmasına rağmen bulmuştur. 

 

Anahtar kelimeler: Üstsezgisel algoritmalar, Çoklu amaçlı optimizasyon 

problemleri, Ekonomik Emisyon Yük Dağıtım problemi. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview of the Problem 

 

Since an engineer always deals with the cost of products and services, the 

efficient optimum electric generation and and planning of electrical power 

generation have occupied an important position in electric power industry. Increasing 

power generation costs, shortage of energy resources and hazardous by-products of 

energy generation necessitate optimal economic dispatch and the introduction of 

renewable energy in modern power systems. A small percentage of saving in the 

operation of the system may correspond huge amount of reduction in operating cost 

and quantities of fuel consumed. Therefore, main objective of the economic dispatch 

problems is to minimize the operating costs of generating systems. 

 

 Electrical power system operation should be defined by reliability, security and 

economy (Rajkumar, 2014). Economic load dispatch (ELD), which minimizes the 

operating cost of the generation system, is considered one of the most important 

electrical power system operational planning problems.  

 

Economic load dispatch (ELD) problem deals with meeting the load demand by 

optimizing the operation of power generation units at the minimum operating cost 

while satisfying system equality and inequality constraints (Aydin, Ozyon, Yasar & 

Liao, 2014). It is considered as the most reliable, efficient and low-cost power 

system dispatching problem (Bhattacharjee, Bhattacharya & Halder nee Dey, 2014). 

ELD problem is multimodal, highly non-linear and discontinuous. Factors such as 

valve-point effects, prohibited operating zones, ramp rate limits makes the problem 

highly non-linear although cost curve of generating units is are generally modelled as 

a smooth curve. Large steam turbine generators usually have multiple valves to 

control the active power balance. However, this opening and closing causes ripples 

in the cost function. This is known as valve-point loading effect. Considering the 

valve-point effects in ELD problems is important because ignoring them may lead to 
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inaccuracy in generation dispatch. Other than that, generation units may have to 

work in certain ranges due to its physical capabilities such as machine components, 

vibration in shaft bearings, etc. Such limits are known as Prohibited Operating Zone 

(POZ). Furthermore, operating range of the generation units is limited by their ramp 

rate limits.   

 

Recently, various governments have constituted environmental pollution acts that 

limit the emission of hazardous gases coming from power plants that burn fossil 

fuels. Thus emerged  the economic emission dispatch (EED) problem in recent 

decades due to its superiority in minimizing the emission of harmful pollutants such 

as NOx, SOx, COx. Furthermore, since consideration of only minimum generation 

cost or minimum emission level may not be a coveted measure, economic emission 

load dispatch (EELD) comes up for the aim at minimizing both energy generation 

cost and pollutant gas emission level. EELD problem is a combination of economic 

load dispatch and economic emission dispatch problems. EELD is a multi-objective 

problem in nature, and it does not have an exact solution unless weights of the 

objectives or exact preferences are known (Rajesh, Abhinav, Rudesh & Panda, 

2012). Therefore, it is needed to find compromising solutions, also known as pareto 

optimal solutions, which indicate the trade-off between two contradictory objectives 

(Shayeghi, 2014; Soumitra, 2012). 

 

1.2 Literature Review 

 

Economic dispatch (ED) problems are highly non-linear, correlated and multi-

dimensional problems since valve-point effects and other constraints are present. 

Thus, conventional derivative-based optimization algorithms are not very effective in 

obtaining global optimum solution (Roy & Bhui, 2013) though variety of 

conventional derivative-based methods such as lambda iteration, lagrangian 

relaxation (Wood, Woolenberg & Sheble, 2013), integer programming (Dillon, 

Edwin, Kochs & Taud, 1978) and quadratic programming (Papageorgiou & Fraga, 

2007) have been proposed in the literature. To this end, many researchers have 
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proposed heuristic optimization techniques to deal with the disadvantages of the 

conventional methods.  

 

Bhattacharjee et al. (2014) used Real Coded Chemical Reaction algorithm 

(RCCRO), which mimics the chemical interaction of molecules in a reaction to solve 

multi-objective EELD problem. During a chemical reaction, the molecules of initial 

reactants stay in unstable and high-energy states and exposed to a series of collusions 

with the other molecules and walls of the container. The reactants pass through 

energy barriers and eventually reach to low-energy stable states, which lead to 

become the final products. Chemical Reaction Optimization (CRO) is based on this 

occurance of driving the unstable high-energy states to low-energy stable states. 

CRO is designed to be a discrete optimization algorithm and has been proved to be a 

successful one. Recently, (Lam et al., 2012) have developed a real-coded version of 

the CRO algorithm, which is suitable for continuous optimization problems. In this 

paper, RCCRO algorithm is utilized as a non-dominated sorting algorithm. At each 

run, an optimal set of solutions is obtained and the most appropriate optimal solution 

is selected as the non-dominated set. Results show that efficiency and effectiveness 

of the algorithm is better than most of the algorithms in the literature however better 

efficiency and effectiveness measures can be achieved with different optimization 

algorithms and multiobjectivity handling methods. 

 

Jeddi and Vahidinasab (2014) used a new modified harmony search algorithm 

(MHSA) based on a new memory consideration scheme that relies on the roulette 

wheel mechanism and a new improvising method based on wavelet mutation. 

Harmony Search Algorithm (HSA) is a new metaheuristic algorithm based on 

searching for the perfect state of harmony and developed by Lee and Geem (2005). 

HSA algorithm has also applied to many different optimization problems and proved 

to be a successful algorithm. Proposed MHSA algorithm in the paper improves the 

accuracy, robustness and convergence speed of the traditional HSA algorithm. In the 

MHSA algorithm, a new selection scheme for memory consideration is proposed and 

the process of generating random variable is adopted from the idea of mutation 

operator in the GA. The proposed algorithm is applied to both ELD and 
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multiobjective EELD problems considering all practical constraints. Although 

favourable and better solutions are obtained from the other algorithms used in the 

literature, no information is given about the efficiency of the algorithm and better 

results can be achieved by utilizing different algorithms. 

 

Aydin et al. (2014) utilized a new artificial bee colony algorithm with dynamic 

population size (ABCDP) to solve EELD problem with different IEEE bus systems. 

Roy and Bhui (2013) applied a non-dominated sorting quasi-oppositional teaching 

learning based algorithm (QOTLBO) to multi-objective EELD problem. Shayeghi 

and Ghasemi (2014) applied a modified artificial bee colony algorithm (ABC) which 

uses chaotic local search (CLS) to improve the searching ability with a new method 

based on fuzzy set theory, which is applied to select the most desirable solution from 

a Pareto-set to multi-objective EELD problem with three conflicting objectives. 

Rajasomashekar and Aravindhababu (2012) developed a biogeography based 

optimization algorithm to obtain best-compromised solution of multi-objective 

EELD problem. Hota and Barisal (2010) used a fuzzy-based bacterial foraging 

algorithm to extract the most desirable solution from the trade-off curve of the EELD 

problem. Zhang, Gong and Ding (2012) applied a bare-bones multi-objective particle 

swarm optimization algorithm (BB-MOPSO), which also uses external repository of 

elite particles and crowding distance techniques to extract the best compromise 

solution from a pareto-curve. Roy and Hazra (2014) used chemical reaction 

optimization (CRO) to solve EED problem for wind-fossil-fuel-based power system. 

Jadoun, Gupta, Niazi and Swarnkar (2014) applied dynamically controlled particle 

swarm optimization to large-scale nonconvex ED problems. Rajagopalan, Sengoden 

and Govindasamy (2014) utilized self-adaptive differential harmony search 

algorithm to solve ELD problems.  

 

Also applied to ED problems are metaheuristic algorithms such as tabu search 

algorithm (Khamsawang & Jiriwibhakorn, 2009), particle swarm algoritm (Gaing, 

2003), scatter search algorithm (Silva, Klen, Mariani & Coelho, 2013), seeker 

optimization algorithm (Sivasubramani & Swarup, 2010) and charged system search 

algorithm (Ozyon, Temurtas, Durmus & Kuvat, 2012).  
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In the literature, multi-objective EELD problem has been solved either directly or 

converting it into a single objective problem. Examples are improved PSO (Abido, 

2009), NSGA (Abido, 2003a), NPGA (Abido, 2003b), SPEA (Abido, 2003c) and 

fuzzy-based bacterial foraging algorithms (MBFA) (Hota et al., 2010). 

 

1.3 Thesis Objectives and Contrubitions 

 

The objectives of this thesis are as follows: 

 To solve the multiobjective EELD problems by considering valve-point effects 

and constraints such as power balance, power loss, generator capacity limits and 

prohibited operating zones by utilizing hybridized Artificial Cooperative Search- 

Quadratic Approximation algorithm. 

 To present a hybridized ACS-QA algorithm that improves the classical ACS in 

accuracy, convergence speed and robustness. 

 To apply different metaheuristics algorithms in the literature to some benchmark 

unconstrained optimization problems and test the efficiency of the algorithms by 

comparing the results.  

 To analyze the pareto-optimal front generated by utilizing the optimization 

algorithms based weighted sum method to the problem.  

 

In the present thesis, Artificial Cooperative Search algorithm (ACS) (Civicioglu, 

2013), based on the interaction between predator and prey organisms in a habitat, is 

incorporated with Quadratic Approximation operator (QA) (Deep & Bansal, 2009), a 

non-derivative-based local search algorithm, to solve the multi-objective EELD 

problem for different IEEE bus systems. ACS is an effective global search algorithm 

for solving highly non-linear optimization problems; however, it performs not so 

well at searching promising regions. QA, on the other hand, is a local search method 

that finds the minima of a quadratic hyperspace. The approach in this thesis is to 

hybridize ACS and QA such that the proposed algorithm (to be called ACS-QA 

hereon) makes use of the global search capabilities of the ACS and the local search 

intensification properties of QA. By doing this hybridization, we provide an effective 

(requiring fewer function evaluations) and an efficient (obtaining more accurate 
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results) algorithm for solving the EELD problems. The multi-objective nature of the 

EELD problem is handled by transforming it into single-objective problem by using 

Weighted Sum Method (WSM) (Rajasomashekar & Aravindhababu, 2012). 

 

1.4 Organization of the Thesis 

 

The thesis is organized as follows. The formulations of the ELD, EED and EELD 

problems are described in Chapter 2. The algorithms ACS and QA are discussed in 

detail in Chapter 3. Chapter 4 is devoted to construction and implementation of the 

proposed algorithm. Numerical examples and simulation results are given in Chapter 

5. Finally, Chapter 6 concludes the thesis. 
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CHAPTER TWO 

PROBLEM FORMULATION 

 

2.1 Economic Load Dispatch 

 

The ELD problem is based on allocating electricity production to generation units 

most effectively and economically to meet the electricity demand (Kaur, 2011). For 

an interconnected system, minimizing the cost is necessary. The ELD problem is 

utilized to define the production level of each generation unit to keep to cost of 

generation and transmission minimum for a prescribed schdule of load. The main 

objective of the problem is minimizing the cost of generation. 

 

Multi-objective EELD problem considered in this thesis deals with minimization 

of both fuel cost and environmental emission while satisfying equality and inequality 

constraints of the generator units. Cost and emission objectives are independent from 

each other, making the problem bi-objective.   

 

Multiple generators work to satisfy the consumer demand in a typical power 

system. Each generation unit usually has a unique cost-per-hour characteristic for its 

output operating range. For example, a station can has incremental operating costs 

for fuel and maintenance and fixed costs associated with the station is quite 

substantial for a nuclear power plant. Things can even get more complex for utilities 

if we count in transmission line losses and seasonal changes associated with 

hydroelectric plants. 

 

2.2 Load Dispatching 

 

The operation of a modern power generation system has become very 

complicated. It is necessary to maintain in the frequency and voltage limits while 

ensuring the reliability power supply. Also, matching the generation of active and 

reactive power with the load demand is another problem. For ensuring the reliability 

of a power system, it is necessary to implement some extra generation units to the 
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system in case of outage of generation equipment.  Furthermore, it is also beneficial 

to keep the electricity generation costs at minimum. The load dispatch center 

controls the interconnected network as a whole. The load dispatch center allocates 

the electricity power generation to each grid depending on the demand on that area. 

Each load dispatch centre controls load and frequency of its own by matching 

generation in different generating stations with total required electricity power 

demand plus power losses. 

 

2.3 Generation Scheduling 

 

In a power system, the power plants are all different distances away from the 

centre of loads and fuel costs are all different. Also under normal operating 

condition, generation capacity is more than the total demand plus losses. Therefore, 

there can be many different options for scheduling generation. In an interconnected 

power system, the main objective is to find the power scheduling of the each 

generation unit in such a way that operation cost is minimum.  

 

The objective function, also known as cost function, may present economic fuel 

cost system or other objectives such as emission. The transmission loss formula can 

be derived and the loss coefficient are known as B-coefficients. 

 

The ELD problem assumes that the amount of electric power to be supplied by a 

set of units is constant for a given interval of time and tries to minimize the cost of 

supplying this energy subject to constraints. Thus, it deals with the minimization of 

total cost of the system and constraints over the entire dispatch time. 

 

2.4 Generator Cost Functions 

 

The total operating cost of a generation unit includes the fuel cost, cost of labour 

and mainentance. Generally, cost of labour, supplies and maintenance are fixed 

percentages of incoming fuel costs. The power output of fossil plants increases 
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greatly if a set of valves to its steam turbine at the inlet is opened. Figure 2.1 shows 

the simple model of a fossil plant. 

 

 
Figure 2.1 Simple model of a fossil plant (Kaur, 2011) 

 

The operating cost of a plant is shown Figure 2.2. For practical purposes, the cost 

is generally approximated by one or two quadratic segments. Thus, it is practical to 

assume the cost in quadratic form. 

 

 
Figure 2.2 Operating cost of a fossil generator (Kaur, 2011) 
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Therefore, total cost of the system can be represented as follows, 
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where 
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)  is the total fuel cost in $/h, 
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i
 and 

 
c

i
 are the cost coefficients 

for the i-th generator, values of those coefficients are given in Appendix B. N is the 

number of generators and 
 
P

Gi  is the power output of the i-th generator.  

 

There may be discontinuities in the fuel cost curve. When the output power is 

expanded by utilizing additional boilers, steam condensers or other equipment those 

discontinuities occur. They may also occur if the cost represents the whole power 

station.   

 

In the real ELD systems, input-output characteristics of the system display high 

nonlinearities and discontinuities because of valve-point loading in the plant. For 

enhancing the accuracy of the cost curve, valve-point effect is also included in the 

cost model. Thus, it takes the following form, also, Figure 2.3 shows the operating 

cost curve with valve point characteristics. 
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Figure 2.3 Operating cost curve with valve-point effects (Kaur, 2011) 

 

where 
 
e

i  and 
 
f
i  are the constants modeling the valve-point effects for the i-th 

generator and 
  
P

Gi
min

 is the generator‟s minimum capacity. In electricity power 

generators, due to the choking of the partially open valves, modelling valve-point 

effects is a requirement to capture the losses aroused (Fraga, Yang & Papageorgiou, 

2012). However, in this case, the number of local optima increases because of the 

ripples caused by the valve-point effect.  

 

2.5 Emission Dispatch 

 

EED problem deals with minimization of the emission of atmospheric pollutant 

gases that comes out of the burned fossil fuels. The amount of burned fossil fuel is in 

correlation with the amount of power generated at the unit. EED problem can be 

mathematically expressed, in ton/h, as, 
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where 
 


i
,
 


i
,
 


i ,
 


i  and 
 


i  are the emission coefficients for the i-th generation 

unit, values of those coefficients are given in Appendix B, and  E GC P  is the total 

emission cost. 

 

2.6 Constraints 

 

In the solution process, we taken into account both equality and inequality 

constraints. The inequality constraint arises from power generation capacity, which 

is required for a stable operation. Each generation unit is limited to work in an 

operating zone that can be mathematically expressed as 

 

  
P

Gi
min  P

Gi
 P

Gi
max       i  1,2,..., N                   (2.4) 

 

Coming to equality constraints, one of them is due to power balance. Indeed, total 

power generation must be equal to the sum of the total demand and power losses 

occurring in transmission lines. The power balance constraint can be mathematically 

expressed as, 

 

  

P
Gi

 P
D
 P

L
i1

N

                         (2.5) 

 

where 
 
P

D  and 
 
P

L  are power demand and power losses, respectively. The other 

equality constraint, referring to power losses in transmission lines, is a function of 

the outputs of the generation units. Power losses can be written as follows: 

 

  

P
L
 P

Gi
B

ij
P

Gj
 B

0i
P

i
 B

00
i1

N


j1

N


i1

N

                  (2.6) 

 

where 
  
B

00 ,
  
B

0i  and 
 
B

ij  are transmission loss coefficients. 
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2.7 System Variables and Problem of Optimum Dispatch 

 

 System variables are needed to know to analyze a power system network 

(Sivanagaraju & Sreenivasan, 2009). They are control variable, disturbance variable 

and state variable. Control variable is the real power generation
 
PG . It is used to 

control the state of the system. Disturbance (or demand) variable is the real power 

demands
 
PD . It is beyond the system control so it is considered as uncontrolled or 

disturbance variable. State variable is bus voltage magnitude V. It is a dependent 

variable that is being controlled by the control variables. 

 

 The process of allocation of generation among different generating units is called 

scheduling. Economic scheduling is a problem that allocating the generation among 

different generating units in such a way that overall cost of generation should be 

minimum. This problem is also called optimal dispatch.  

 

 Assume the total demand on the station as 
 
PD  and total number of generating 

units as N. The optimization problem is to allocate the total load 
 
PD  among these N 

different generation units, which all have different characteristics from each other, in 

an optimal way to reduce the overall cost of generation. Assume that 
  
PG1 , 

  
PG2 , 

  
PG3 , ..., 

 
PGN  are the powers generated by each individual unit to supply a load 

demand of  
 
PD .  

 

 By optimizing total fuel cost function 
  
C

F
(P

G
)  and total emission cost function 

 E GC P  subject to given equality and inequality constraints, control variable 
 
PG  is 

determined. Total of 
 
PG  must be equal to demand variable

 
PD . With the determined 

control variable and known cost and emission coefficients, total fuel cost 
  
C

F
(P

G
)  

and emission cost  E GC P  can be calculated.  
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2.8 The Multiobjective Economic Emission Load Dispatch Problem 

 

2.8.1 Multiobjective Programming 

 

Conventional parameter optimization problems try to find a single optimized 

solution based on a weighted sum of all objectives. If all objectives get better or 

worse at the same time together, optimal solution can be found effectively. However, 

if all objectives do not get better or worse at once, in other words they conflict with 

each other, then there are more than one optimal solution. In this case, a 

multiobjective study should be done which represents the tradeoff between the 

objectives. This study is called Pareto optimization. An example of pareto 

optimization is given in Figure 2.4. 

 

 
Figure 2.4 Results of an example pareto optimization study, where the conflict between 

  
f1  and 

  
f2  is 

explored. In this example, rank 1 is a nondominated set while rank 2 and rank 3 are higher 

determined. The true pareto front is drawn with solid blue line. (Weighted sum method, n.d.) 

  

Mathematical definition of a multi-objective optimization problem is given as 

follows  (Chase, Rademacher, Goodman, Averill & Sidhu, 2009), 
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Minimize (or maximize):

f
i
( x

1
,x

2
,...,x

n
),                               i  1,2,..., p

such that:

h
j
( x

1
,x

2
,...,x

n
)  0,                       j  1,2,...,q

where:

( x
1
,x

2
,...,x

n
)      are the n design variables

f
i
( x

1
,x

2
,...,x

n
)  are the p objective functions

h
j
( x

1
,x

2
,...,x

n
)  are the q inequality consraints 

                     (2.7) 

 

There are multiple Pareto optimal solutions for multiobjective optimization 

problems. Therefore,  different researchers have proposed different ways to solve 

multiobjective optimization problems. Many methods actually convert the 

multiobjective optimization problem into a single objective optimization problem. 

This is called scalaratization problem. If scalarization is done carefully, pareto 

optimality of the solutions are almost guaranteed. (Multi-objective optimization, 

n.d.) 

 

Most of the time, a human Decision Maker (DM) has to select the most 

appropriate pareto optimal set according to his/her preferences. The DM is expected 

to be an expert in this domain. Multiobjective optimization methods can be divided 

into four categories. These are; no DM (also known as no-preference) methods, a 

priori, a posteriori and interactive methods. 

 

In a priori methods, a preference information is first asked from the DM, then a 

solution best satisfying to these preferences is found. In posteriori methods, 

candidate pareto optimal solutions are found and DM chooses one of them. In 

interactive methods, DM iteratively searches for the most preferred solution. DM is 

shown how to improve the solution for the next iteration. Therefore, a preferrable 

solution is found after few iterations. 
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2.8.1.1 Scalarizing Multiobjective Optimization Problems 

 

Scalarizing a multiobjective optimization problem means formulating a single-

objective optimization problem in a way that solution of that single-objective 

problem are pareto optimal solutions of the multi-objective optimization problem. 

With different parameters for the scalarization, different pareto optimal solutions are 

found. Mathematical formulation of the scalarization is described as follows, 

 

    1          

 

kmin g f x ,..., f x ,

s.t x X




                                    (2.8) 

 

where   is a vector parameter, the set 
 
X  X  is a set depending on the 

parameter  . 

 

One of the well known scalarization technique is call linear scalarization, also 

known as weighted sum method. Weighted sum method converts the multiobjective 

optimization problem into a scalar problem by constructing a weighted sum of all 

objectives. Linear scalarization can be mathematically expressed as, 

 

 
1

k

i i
i

min w f x



                                               (2.9) 

 

This problem can be minimized by using a unconstrained optimization problem. 

A graphical illustration of linear scalarization is given in Figure 2.5, 
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Figure 2.5 Graphical illustration of linear scalarization (Weighted sum method, n.d.) 

 

In Figure 2.5, the objective function space a line,  Tw F x c . The minimization 

problem can be described as finding the value of  c , at where the line touches the 

boundary of  F u . Selection of weights defines the slope of the line, which leads to 

the true solution point.  

 

2.8.1.2 No-Preference Methods 

 

Multiobjective optimization methods that do not require a decision maker are 

called no-preference methods. A famous example is the method of global criterion, 

which can be mathematically expressed as, 

 

 

 

idealmin f x z

s.t. x X





                              (2.10) 

 

where 
 
.  can be any 

 
L

p  norm, with common choices including 
  
L

1
,L

2  and 
 
L
 .  
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2.8.1.3 A Priori Methods 

 

A priori methods require sufficient priori information about the problem before 

the solution process begins. Well-known examples of a priori methods are the utility 

function method, lexicographic method and goal programming. 

 

In the utility function method, it is assumed that the decision maker‟s utility 

function is available. A mapping is utility function if for all   y
1,y2 Y  it holds that 

   1 2u y u y  if the decision maker prefers   y
1  to   y

2  and    1 2u y u y  if the 

decision maker is indifferent between   y
1  and   y

2 . Once  u  is found, we should solve, 

 

    subject to max u f x x X                                 (2.11) 

 

2.8.1.4 A Posteriori Methods 

 

A posteriori methods aim to produce all Pareto solutions or a representetive subset 

of solutions. They can be grouped in two classes, mathematical programming-based 

methods, in which each run of the algorithm produces one Pareto optimal solution 

and evolutionary algorithms, in which each run of the algorithm produces a set of 

Pareto optimal solutions.  

 

Well-known examples to mathematical programming –based methods are Normal 

Boundary Intersection (NBI) and Directed Search Domain (DSD). They try to solve 

the multiobjective problem by constructing several scalarizations. The solution of 

each scalarization leads to a global or local Pareto optimal solution. 

 

Evolutionary algorithms are more popular approaches when solving a 

multiobjective optimization problem. Most of them apply Pareto-based ranking 

schemes. Some well-known examples are Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA 2). 

The main advantage of these algorithms are they produce a whole set of Pareto 
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optimal solutions each run, however, they are slower and Pareto optimality of the 

solution is not guaranteed.  

 

2.8.1.5 Interactive Methods 

 

In interactive methods, the soution process is iterative and the DM is required to 

take a decision at each iteration to obtain a Pareto optimal solution. Steps an 

interactive method is given below. 

1. Initialize the problem (calculate the approximated and ideal objective vectors and 

show them to the DM) 

2. Generate a Pareto optimal starting point (by the solution given by the DM or some 

no-preference method) 

3. Ask for preference information from the DM (number of new solutions to be 

generated or aspiration levels) 

4. Generate a new set of Pareto optimal solutions according to the preferences and 

show the information to the DM. 

5. If several solutions are generated, ask the DM which is the best one. 

6. Stop if the DM wants, otherwise, go to step 3. 

 

2.8.2 Solution of the Multiobjective EELD problem with WSM Method 

  

The EELD problem aims at finding a balance between the total fuel cost (ELD 

problem) and the emission (EED problem). Therefore, it is a multi-objective 

optimization problem and mathematically it can be formulated as follows, 

 

  
minimize C

F
(P

G
) and C

E
(P

G
)                                (2.12) 

                                     subject to               

  
P

Gi
min  P

Gi
 P

Gi
max       i  1,2,..., N                        (2.13) 

 

  

P
Gi

 P
D
 P

L
i1

N

                                                (2.14) 

    

  

P
L
 P

Gi
B

ij
P

Gj
 B

0i
P

i
 B

00
i1

N


j1

N


i1

N

                         (2.15) 



 

 20 

In this thesis, we tackle Equations (2.12), (2.13), (2.14) and (2.15) by proposing a 

new, efficient and effective heuristic optimization algorithm. The main difficulty 

with the problem is that it is necessary to find best compromising solutions which 

minimize 
 
C

F  and 
 
C

E , subject to the given constraints. For this, we use pareto-based 

approach. A group of best compromising solutions is said to be pareto-optimal if an 

improvement in one objective leads to impairment of another objective. In the 

present thesis, to extract the best-compromised solutions out of a group of pareto-

optimal solutions, the WSM method (Rajasomashekar & Aravindhababu, 2012) is 

used to express the problem as a single-objective optimization problem. 

Mathematical expression of the WSM reads as: 

 

      
1

minimize 1
N

F Gi E Gi
i

wC P w hC P



                    (2.16) 

 

where  h  is the price penalty factor, which combines the fuel cost with the 

emission cost to obtain the total cost of the system. And w  is the weight parameter of 

the pareto-curve in the range of [0, 1]. When  w  equals 1, the problem turns into a 

single-objective ELD problem pertaining only to minimization of the fuel cost. 

Between the values of 0 and 1,  w  blends both EED and ELD problems to form an 

optimum solution. By increasing the value of w from 0 to 1, the significance of 

emission in the problem increases while the significance of the fuel cost decreases. 

When  w  equals zero, the problem turns into a single objective EED problem, which 

deals with the minimization of just the emission. 

 

The constrained optimization problem in Eq. (2.12), along with the constraints 

Eq. (2.13), Eq. (2.14) and Eq. (2.15) can be solved for different values of  w  and a 

pareto curve with non-dominated solutions is obtained. However, this approach may 

not yield the best compromising solution, which is presented as the equal percentage 

weights of the optimal solutions of the ELD and EED problems. So  w  can be set to 

0.5 to obtain a desirable best compromising solution, if the chosen  h  parameter 

value makes both fuel cost and emission to the same level in the objective function. 

The price penalty factor h is the ratio between maximum fuel cost and maximum 
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emission of the corresponding generator. In the literature, methods to calculate 

approximate values of the h parameter are introduced (Venkatesh, Gnanadass & 

Padhy, 2003). They, however, do not always lead to good results. Therefore, one 

possibility is to eliminate the h parameter from the cost function as we will prefer to 

do. Accordingly, we adopt the method of Rajasomashekar and Aravindhababu 

(2012) whose approach involves normalizing both fuel cost and emission 

components by ascribing equal significances to both objectives as, 

 

  

minimize w

C
Fi

(P
Gi

) C
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N
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            (2.17) 

 

where 
  
C

F
min ,

  
C

F
max ,

  
C

E
max  and 

  
C

E
min  are maximum and minimum weighted values 

of fuel cost and emission cost in the multi-objective optimization problem, obtained 

by solving Eq. (2.12) for both single-objective ELD and EED problems. Obviously, 

Eq. (2.17) avoids use of the  h  parameter.  
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CHAPTER THREE 

OPTIMIZATION ALGORITHMS 

 

3.1 Optimization 

 

Most optimization problems can be mathematically expressed as follows (Yang, 

2010): 

 

      minimize         ( 1 2 ),
n

i
x

f x , i , ,...,M


                        (3.1)    

   s.t. 0          1j x , j ,...,J ,                          (3.2) 

   0              1k x , k ,...,K ,                          (3.3) 

 

 

where 
 
f
i
( x ) , 

 


j
( x )  and 

 


k
( x )  are functions of the design vector 

 

 1 2
T

nx x ,x ,...,x .                                                 (3.4) 

 

where the components 
 
x

i  of  x  are called decision or design variables, and they 

can be continuous, discrete or the mix of these two. The function 
 
f
i
( x )  where 

  i 1,2,...,M  are called objective functions. In the case of   M 1, it is a single 

objective function, if   M 1 , then it is called multiobjective function. It is sometimes 

called cost or energy function in the literature. The space spanned by the decision 

variables is symbolized with  
n  and it is called the search or solution space. Finally, 

the equalities for 
 


j
 and inequalities for 

 


k  are called constraints.  

 

In the case of there are not any objective functions, but only constraints, it is 

called feasibility problem because any feasible solution is an optimal solution. 

 

Sometimes, it is not possible to write the objective function in the explicit form. 

Such as, if we want to design a car engine, we may want to design the engine with 

highest fuel efficiency and lowest carbon dioxide emission. However, these 
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objectives depend on various factors, such as, the type of fuel, ignition system and 

geometry of the engine. Therefore, we may want to use different tools to investigate 

further this relationship, for example computational fluid dynamics (CFD) softwares, 

however, the relationship between the efficiency and the factors may still be 

complex, thus no explicit form is possible. In this case, we are dealing with the 

black-box type optimization problem and they are difficult to solve.  

 

 In some other cases, the objective function may not be measurable, but we want 

to still maximize it. Such as, when we go on holiday, we may want to maximize our 

enjoyment but minimize the costs. This is a difficult problem and it is not easy to 

express this problem with mathematical terms because level of enjoyment may differ 

from people to people. Mathematically, we can only minimize or maximize 

something if it can be expressed in mathematical terms. 

 

Also, the functions 
 
f
i ,

 


j
 and 

 


k  may include integrals that make things 

complex. In this case, most of the time we have to use calculus of variations. For 

example, if we want determine the shape of a hanging rope anchored with two points 

A and B, we have to calculate a shape  y x  which makes the total energy 
 
E

p
 

minimal. 

 

 

2minimize     1

B

p
y x

A

E g y y dx                             (3.5) 

 

where  g  is the gravitational acceleration and   is the mass per unit of the rope. 

Furthermore, length of the rope is fixed which creates the following constraint, 

 

21

B

A

y dx L                               (3.6) 

 

These optimization problems requires to solution of the Euler-Lagrange equation. 

Also, if the objective function include integrals and constraints are expressed in 
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terms of differential equations, these problems are called optimal control problem, 

which is a common control technique. 

 

3.2 Optimization Algorithms 

 

A classification of optimization algorithms is given in Figure 3.1. 

 

 
Figure 3.1 Classification of optimization algorithms (Yang, 2010) 

 

We often use different kind of optimization algorithms for different kind of 

problems. We can think the optimal solution search process as trying to hunt for a 

hidden treasure in a hilly landscape within a time limit. Furthermore, we can also 

suppose that we are blind-folded, therefore this search process is random. If we are 

told that the treasure is at the peak of a known region, then we will climb up to the 

cliff to reach that peak and this scenario corresponds to the classical hill-climbing 

techniques.  

 

When we are not blind-folded and we do not know where to look. Looking at 

every centimeter square of an extremely hilly large region is an absurd idea. 

Therefore, we search an area randomly looking for a plausible place, collect some 

hints from that region and then search another area with random walks and so on. 

Such random search is the basis of today‟s modern search methods. Also, we can 
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either do the treasure-hunting alone, which is named as trajectory-based search (i.e. 

Simulated Annealing algorithm), or with a group while each agent both hunting and 

share the information they gathered with each other. The latter scenario is called 

swarm intelligence and if the area is extremely large, then these kind of algorithms 

are preferable.  

 

Also, we can change our search strategy a little. Most of the time, some hunters 

are better than others. So, keeping the better hunters and recruiting the new ones is a 

good strategy. This strategy is used in many modern metaheuristic algorithms. 

 

Generally, optimization algorithms can be divided into two categories: stochastic 

algorithms and deterministic algorithms. Deterministic algorithms follow a rigorous 

procedure and repeatable. For instance, if we run the hill-climbing algorithm, which 

is a deterministic algorithm, it will follow the same path whether we run the program 

today or tomorrow. On the other hand, stochastic algorithms have some randomness. 

Genetic algorithms are a good example of stochastic algorithms. Each run of the 

program, although the solution may not be very different, the strings or solutions in 

the population will be different. Also, there is a third type of algorithm, which is the 

mixture of deterministic and stochastic algorithms. Hill-climbing problem with a 

random starting point is a good example. These algorithms are not repeatable and 

offer a solution to stuck in a local optima problem. 

 

Most classic algorithms are deterministic. For instance, the Simplex method is 

deterministic. Deterministic methods can be divided into two groups: gradient-based 

and non-gradient-based algorithms. For instance, the Newton-Raphson method is a 

gradient-based algorithm, which uses the function values and their derivatives to 

solve the optimum point. It works with smooth unimodal problems, however, if there 

is a discontinuity in the problem, it does not work well. Non-gradient-based methods 

do not use derivative information but only function values and they are preferable 

when there is a discontinuity in the function. Nelder-Mead downhill simplex and 

Hookes-Jeeves pattern search are examples of the non-gradient-based algorithms. 
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Stochastic algorithms can be divided into two groups: heuristic algorithms and 

metaheuristic algorithms. Heuristic means „to discover by trial and error‟ or „to find‟. 

These algorithms are expected to work most of the time, but not all the time. 

Heuristic algorithms are preferred when we do not necessarily wish the best solution 

but rather a good solution. 

 

Metaheuristic algorithms extend the heuristic algorithms and most of the times 

perform better. Meta- means „higher level‟ or „beyond‟. Furthermore, all 

metaheuristic use certain local search and tradeoff of randomization. Randomization 

is a good option when performing a global search. Therefore, metaheuristic 

algorithms are suitable for global optimization.  

 

3.3 Metaheuristics 

 

Most metaheuristic algorithms are inspired from nature. Nature has found perfect 

solutions to almost all problems she came across for over millions of years. 

Therefore, we can inspire from the nature and apply her problem solving techniques 

to the optimization problems. Some nature-inspired algorithms are based on 

Darwin‟s evolutionary theory. Therefore, we can say that they are biology-inspired. 

 

Two most important aspects of the metaheuristic algorithms are randomization 

and selection of the best solutions. Randomization ensures that the algorithm does 

not stuck into local optima while selection of the best solution ensures that the 

solutions will converge optimally.    

 

One way to classify metaheuristic algorithms are trajectory-based algorithms and 

population-based algorithms. Genetic algorithms use a set of strings so we can say 

that they are population-based so is the particle swarm optimization, which uses 

particles.  

 

Simulated Annealing algorithm, which uses a single agent, is an example for 

trajectory-based algorithms. In the Simulated Annealing algorithm, the agent 
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searches the design space in a piecewise style. The moves follow a trajectory in the 

design space, with a non-zero probability of finding the optimal solution. 

 

3.3.1 History of Metaheuristic Algorithms 

 

Heuristics is a trial-and-error solution strategy to find acceptable solutions to an 

optimization problem in a reasonably short time.  The complexity of the problem 

makes it impossible to search for every possible solution or combination, with the 

heuristic optimization algorithms, feasible solution can be acquired in a reasonably 

practical time. There is no guarantee that the algorithm will find the best solution or 

even the algorithm will work. The idea is based on producing good quality solutions 

with a practical and efficient algorithm. 

 

Alan Turing was maybe the first to use the heuristic algorithms during the Second 

World War when he was breaking the German Enigma codes. He designed an 

electromechanical machine, the Bombe, to help the code breaking work. The Bombe 

used an heuristic algorithm, with Turing‟s words, searched for  1022  possible 

combinations to find the correct message in an Enigma code. Turing called his 

search tecnique heuristic search, although he was not sure if the technique will work 

or not, it became a huge success. In 1945, Turing was recruited to the National 

Physical Laboratory (UK), where he published most of his innovative in machine 

intelligence and neural networks, also an early form of genetic algorithms. 

 

The next step in the development of evolutionary algorithms was John Holland 

and his collaborators in University of Michigan developed the Genetic Algorithms 

(GA) in 1960s and 1970s. GAs is a natural abstraction of Darwin‟s works in 

evolution and natural selection of biological systems. Ever since the development, 

GAs have become a huge success. Even Fortune 500 companies are still using them 

in their routine optimization tasks such as planning, data-fitting and scheduling.   

 

In 1992, Marco Dorigo finished his PhD thesis on optimization and natural 

algorithms, in which he described an innovative study on Ant Colony Optimization 
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(ACO). It was inspired by the social intelligence of ants using a chemical as a 

chemical messenger. 

 

In the 21
st
 century, things became even more exciting. First, Zong Woo Geem et 

al. in 2001 developed the Harmony Search algorithm, which has been widely 

accepted in the literature as solving optimization problems such as water distribution, 

transport modelling and scheduling. Then, in 2005, D. Pham et. al. published their 

work on Bee Colony algorithm and D. Karaboga published the Artificial Bee Colony 

(ABC) algorithm. 

  

As can be seen more and more metaheuristic algorithms are still developed. This 

thesis deals with a hybrid Artificial Cooperative Search – Quadratic Approximation 

algorithm. As an example, Particle swarm optimization will be discussed in the 

following section. 

 

3.3.2 Particle Swarm Optimization 

 

Researchers have been observing collective behavior of natural systems for years. 

Intelligence does not reside in an individual but rather distributed among a group of 

individuals in such systems. These behaviors can be seen in swarm of animals when 

they seek food, avoid predators or travel more quickly. 

 

Animal groups more often avoid predators when they are in a group. For instance, 

when a zebra is alone, it may be easy for a lion to notice the zebra due to its‟ contrast 

with the surrounding landscape, however, a group of zebras can blend together and it 

may be hard to notice the individuals. Also, a group can more effectively feed in an 

area when they form a group. For instance, when they are drinking from a stream, 

random effects dictate that there will be always a few animals, who are watching 

around for predators.  
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Particle swarm optimization (PSO) is based on these observations that when a 

group of individuals work together they improve not just their collective 

performance, but also each individual performance 

 

 Suppose that we have a minimization problem, which is defined over a 

continuous domain of  d  dimensions. We have also a population of  N  candidate 

solutions, shown as    1ix ,i ,N . Also, assume that each particle, or individual, 
 
x

i
 

moves in the search space with some velocity 
 
v

i
. This movement in the search space 

is the strength of the PSO algorithm. Other Evolutionary Algorithms (EAs) are more 

static than PSO because they model the evolution from one generation to the next, 

while PSO models the dynamic behavior of the particles in a search space. 

 

As a PSO individuals moves through the space, it has some inertia to maintain its‟ 

velocity. However, its‟ velocity may change due to a couple reasons: 

 

 First, if it remembers its‟ best position in the past and decides to move back to 

that position. It changes its‟ velocity.  

 Second, an individual knows the best position of the neighboring particles at the 

current generation. This requires the definition of a neighborhood size, and it 

requires the communication of all particles between each other. 

 

The basic PSO algorithm can be summarized as in Figure 3.2, 
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Figure 3.2 A basic particle swarm optimization algorithm. (Simon, 2013) 

 

Some tips while tuning the parameters of the PSO algorithm are: 

 Like the other EAs, we have to initialize the population and corresponding 

velocity vectors. 

 We have to define the neighborhood size   of the algorithm. The term 

“neighborhood size” is ambiguous. Sometimes it means each particle in the swarm 

has   close neighbors, while sometimes each particle has  1   close neighbors. 

 We have to choose the parameters 
 


1  and 
 


2 . The parameter 
 


1  is called the 

cognition learning rate, and 
 


2  is called the social learning rate. Most of the time 

  


1,max
 and 

  


2,max
 are often chosen as 2.05. 

 We have to define a maximum velocity 
 
v

max  for each individual. Which is 

understandable, if the 
 
v

max  is greater than the search space, than a particle can easily 

leave the search space in a single generation. 

 Velocity can be updated with the following formula, 

 

               1 2i i i i i iv v b x h x                               (3.7) 
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where 
 


1
 and 

 


2
 are scalars with ranges 

  


1
: U 0,

1,max






 and             

  


2
: U 0,

2,max






. This option is called linear PSO and each element of the velocity 

vector 
 
v

i
 is updated with the same values of 

 


1
 and 

 


2
. 

 Like the other EAs, elitism improves the performance of PSO. 

 The update equation 
 
x

i
 x

i
 v

i
 may result in 

 
x

i
 moving outside the search 

domain. We generally use limit 
 
x

i
 to keep it in the search domain. For example, we 

can use the following formulas, 

 

 
 

 

i i max

i i min

x min x ,x

x max x ,x




                                 (3.8) 

 

where 
 

x
min

,x
max

   defines the limits of the search domain. 
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3.4 Types of Optimization Problems 

 

A classification list of optimization problems is given in Figure 3.3. 

 

 
Figure 3.3 Classification of optimization problems (Yang, 2010) 

 

If we decide to classify optimization problems by their number of objectives, we 

can find two kinds: single objective (  M 1) and multiobjective (  M 1). 

Multiobjective optimization problems are also known as multicriteria or multi-

attributes optimization problems. In the real world, most optimization problems are 

multiobjective. For instance, if we want to design a car engine, we may want to 

minimize carbon-dioxide emission, maximize fuel efficiency and lower its noise 

level. There are three objectives in this problem and we need some compromise 

between the objectives since the objectives are often conflicting with each other. A 
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good example of multiobjective optimization problems can be the following problem 

(Simon, 2013); 

 

    and 
x

min f x g x ,      
 

   

4 3 2

2

where   5 4 4 1

and      2 1

f x x x x x

g x x .

    

 
          (3.9) 

 

In this problem, we want to minimize  f x  and  g x  at the same time, which 

makes the problem multiobjective. Graphical representation of the algorithm is given 

in Figure 3.4. 

 

 
Figure 3.4 A simple multiobjective optimization problem where two objective conflict. (Simon,2013) 

 

As can be seen in Figure 3.4,   x  2.96  minimizes  f x ,   x  1 minimizes 

 g x . However, we do not know the  x  value which minimizes  f x  and  g x  at 

the same time. One way to solve this simple multiobjective optimization problem is 
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to plot  g x  as a function of  f x . Plot of  g x  as the function of  f x  can be 

seen in Figure 3.5. 

 

 

Figure 3.5 The plot of  g x  as the function of  f x  as  x  varies from   3.4  to   0.8 . The solid line is 

the Pareto front. (Simon, 2013) 

 

As we can see in Figure 3.5, between -2.96 and -1,  f x  increases while  g x  

decreases. So, Pareto front must be at this interval. It is up to the person to select a 

point on the Pareto front. Every point on the Pareto front symbolizes a tradeoff 

between the objectives. We can also classify the optimization problems in terms of 

number of constraints  J  K . If   J  0  and   K  0 , this means there are no 

constraints at all in the problem. These kinds of optimization problems are called 

unconstrained optimization problems. If   J  0  and   K 1, these problems are called 

inequality-constrained problem. If   K  0  and   J 1, they are called equality-
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constrained problem. An example to unconstrained problems can be the following 

problem, 

 

    4 3 2 where 5 4 4 1
x

min f x , f x x x x x                        (3.10) 

 

 Also, plot of the function is given in Figure 3.6. 

 

 

Figure 3.6 A simple unconstrained minimization problem (Simon, 2013) 

 

The function is quadratic polynomial; therefore, we can say that it has at most 

three stationary points. We can find these points by calculating  x  at   0f ' x  . 

These points are   x  2.96 ,   x  1.10  and   x  0.31. Furthermore, we can calculate 

the value of these points at  f '' x  and conclude that   x  2.96  is the global 

minimum. 

 

An example to constrained optimization problems can be the following problem, 
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    4 3 2   where   5 4 4 1

                   and     1 5

x
min f x f x x x x x

x .

    

 

                    (3.11) 

 

 Plot of this problem can be shown as in Figure 3.7. 

 

 

Figure 3.7 A simple constrained optimization problem. (Simon, 2013) 

 

By looking at the last example‟s stationary points, we can see that only   x  0.31 

satisfies the constrained. Thus, we can say that this points is the global minimum. 

 

We can also classify the optimization problems as linear and nonlinear 

optimization problems. If the constraints 
 


j
 and 

 


k  are all linear, then we can say 

that it is a linearly constrained problem. If the constraints and objective functions are 

all linear, then it is a linear programming problem. If the constraints and objective 

functions are all nonlinear, then it is a nonlinear optimization problem. 
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From a different point of view, we can use the optimization problems in terms of 

the landscape of the objective functions. For a single objective function, if there is 

only one unique global optimum, then it is a unimodal problem. If there are more 

than one optimum points, then it is a unimodal problem. For example, 

  2 2f x, y x y   is unimodal problem, while      f x, y sin x sin y  is a 

multimodal problem. 

 

Also, if the design variables are only discrete, we call this as discrete 

programming problem. If the design variables are integers, then we call this as 

integer programming problem. If the design variables are all continuous real values, 

then we call this as continuous optimization problem. If some design variables are 

integers and some of them are real values, then we call this as mixed type 

optimization problem. 

 

Finally, we can classify the optimization problems as discrete and stochastic 

optimization problems. Practically, almost all optimization problems are 

deterministic. The design variables, constraint functions and objective functions are 

all determined exactly. However, in the real world, there may be some uncertainty in 

our knowledge of some parameters. For instance, when measuring the material 

properties of a product, Young‟s modulus can be measured with certain accuracy 

with some uncertainty due to inhomogenities in the product. If there are uncertainties 

in the problem, we call this stochastic optimization problem. If all properties of the 

problem are determined exactly, then we call this as deterministic optimization 

problem.  

 

3.5 Constraint Handling and Penalty Method 

 

For a simple function with constraints, as the problem described in the thesis, 

several methods can be used to handle them. One of the most common, also used in 

this thesis, is the penalty method. It can be mathematically described as follows. For 

the optimization problem,  

 



 

 38 

   

   

   

1 2minimize  

s.t. 0  1

     0  1

T
N

i

j

f x , x x ,x ,...,x ,

x , i ,...,M ,

x , j ,...,N .







 

 

                   (3.12) 

 

the idea is to define a function that transforms the constrained problem into a 

unconstrained problem. Now we define, 

 

       2 2

1 1

M N

i j i i j j
i i

x, , f x x x     
 

                          (3.13) 

 

where i >>1 and 
  


j
 0  should be large enough depending on the needed 

solution quality.  

 

3.6 Artificial Cooperative Search Algorithm 

 

The proposed algorithm hybridizes the ACS and QA to form an efficient 

algorithm to solve EELD problem. Therefore, we start discussing the algorithm by 

first introducing the ACS and QA algorithms  

 

Artificial Cooperative Search (ACS), first introduced by Civicioglu (2013), is a 

swarm intelligence-based metaheuristic algorithm for solving numerical optimization 

problems. In nature, living species interact with each other through different kinds of 

relationships, such as predator-prey or parasite-host relationships. Cooperation and 

mutualism between two superorganisms living in the same habitat has inspired ACS 

algorithm. In ACS algorithm, two artificial superorganisms (namely predator and 

prey) migrate and interact with each other in a habitat to converge the global 

minimum of the optimization problem. 

 

In nature, the amount of food in a specific habitat depends on seasonal climate 

changes. Thus, superorganisms develop seasonal migration behaviors to move more 

productive habitats from the habitats experiencing reduction in resources. Prior to 
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migration, members of a species get together and form a superorganism. It is not 

known how members of a superorganism collectively decide on the direction and 

time of the migration. Generally, researchers explain the movement of a 

superorganism by using random-motion movement models (Civicioglu & Besdok, 

2013). Also, prior to migration, superorganisms divide into sub-groups (sub-

superorganisms) in such a way that decision of a superorganism is made by the 

coordination of sub-superorganisms. Superorganisms use explorers to discover new 

possible migration areas that contain relatively more resources. Explorer shares the 

data about the discovered areas with the superorganism. If superorganism decides 

that one of the possible migration areas is suitable for feeding and nesting, it moves 

to that area. Meanwhile, it continues finding more productive areas and migrates 

again. 

 

In ACS algorithm, a superorganism is represented by an artificial superorganism 

which migrates to more productive areas as the search progresses. ACS algorithm 

contains two superorganisms, namely   and , which consist of artificial sub-

superorganisms equaling in number to the dimension of the population (N). The 

numbers of individuals within the sub-superorganisms are equal to the dimension of 

the problem (D). The two superorganisms,   and , are used to determine predator 

and prey sub-superorganisms. In ACS algorithm, the predator sub-superorganism can 

trace prey sub-superorganism for a timeframe while they migrate to the global 

minimum of the problem. In the iterative part of the ACS algorithm, namely the 

coevolution process, two superorganisms look for the global minimum of the 

problem and establish a cooperative interaction with each other. Initial values of the 

individuals of the i-th sub-superorganism of  (i.e., 
  


i, j
) and  (i.e., 

  


i, j
) can be 

defined as follows, 

 

  


i, j:g

 r.(u
j
 l

j
)  l

j


i, j:g

 r.(u
j
 l

j
)  l

j

                               (3.14) 
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where i = 1, 2, 3,…, N,  j = 1, 2, 3,…, D and g = 1, 2, 3,…, maxcycle. Here, g 

labels the generation number indicating the coevolution level of the related 

superorganism, and maxcycle stands for the maximum number of generations. r 

represents a random number taken from a uniform distribution within [0,1]. 

The
 
u

j
and 

 
l

j
 represent respectively the upper and lower limits of the search space 

for the j-th dimension of the problem. The fitness values f (i.e., productivity values) 

for the corresponding sub-superorganism are calculated as,  

 

  

y
i;  f (

i
)

y
i;  f (

i
)

                                  (3.15) 

 

The biological interaction location x between the prey and predator organisms can 

be modeled as, 

 

  
x  P

red
+R.(P

rey
-P

red
)                                (3.16) 

 

where  R  is the scale factor that controls the speed of the biological interaction 

and 
 
P

red  and 
 
P

rey
 represent the predator and prey sub-superorganisms, respectively. 

In ACS algorithm, if the source of prey and predator sub-superorganisms selected 

randomly are the same as each other in the present generation then this means a self-

interaction process for the predator. Also, due to the stochastic nature of the ACS 

algorithm, predator and prey roles of the sub-superorganisms can change in any 

generation. Thus, ACS algorithm provides a cooperative/coevolution process for 

both of the superorganisms.  Pseudo code of the algorithm is given in Figure 3.8. 
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Figure 3.8 Pseudo code of the ACS algorithm. (Civicioglu, 2013) 

 

Some of the differences between the ACS algorithm and swarm intelligence 

algorithms as pointed by Civicioglu (2013) are given below: 
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 Differently from the algorithms such as Artificial Bee Colony (ABC), Particle 

Swarm Optimization (PSO) and Differential Search Algorithm (DSA), only two 

populations are used in the ACS algorithm. 

 The trial pattern generation strategy of the ACS algorithm is different from other 

algorithms such as ABC, DSA and PSO. 

 Only one pattern different from the target pattern is enough to generate the trial 

pattern in the ACS algorithm, while, in the Differential Evolution (DE) algorithm at 

least 3 patterns different from the target pattern are needed. 

 The mutation crossover strategy of the ACS algorithm is different from other 

algorithms, such as DE. 

 The boundary control mechanism of the ACS is different from the boundary 

control mechanism of the other algorithms. 

 

3.7 Quadratic Approximation Operator 

 

QA is an operator that finds the minima of a quadratic hyperspace, which is 

passing through three points in a D-dimensional space (Deep & Bansal, 2009). QA is 

a local search method. Mohan and Shanker (1994) showed that Random Search 

Technique (RST) that uses QA operator gives faster convergence rates. However, 

once it is trapped into local minima, it cannot get out of it easily. To implement the 

algorithm, first, the particle 
  
R

1  is chosen with the best objective function value. 

Then the particles 
  
R

2  and 
  
R

3  are randomly chosen from the remaining population. 

In the algorithm, 
  
R

1  is named as the leader individual, and the particle with the 

worst value is named as the active individual. Out of these three particles, at least 

two of them must be distinct. As a rule, the new point is accepted if it is better than 

the active individual and it is replaced with the active individual. Finally, the new 

minima point   R
*  of the quadratic surface passing through

  
R

1 , 
  
R

2  and 
  
R

3  can be 

calculated with the following formula, 
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R*  0.5
(R

2
2  R

3
2) f (R

1
)  (R

3
2  R

1
2) f (R

2
)  (R

1
2  R

2
2) f (R

3
)

(R
2
 R

3
) f (R

1
)  (R

3
 R

1
) f (R

2
)  (R

1
 R

2
) f (R

3
)













         (3.17)  

           

where 
  
f (R

1
) ,

  
f (R

2
)  and 

  
f (R

3
)  are the objection values at 

  
R

1
,
  
R

2
 and 

  
R

3
. In 

this thesis, QA operator is used along with ACS algorithm to solve the multi-

objective EELD problem. 
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CHAPTER FOUR 

THE PROPOSED ACS-QA ALGORITHM 

 

In this chapter, we construct ACS-QA algorithm and implement it to solve the 

multi-objective EELD optimization problem. It contains valve-point effects, which 

make the problem non-linear, non-convex and non-continuous. Also, minimizing 

two objective functions at the same time makes the problem more involved and 

requires excess computational power. 

 

ACS algorithm is well-tuned for solving a wide class of optimization problems 

thanks to its ability to explore large solution spaces and search in a family of 

candidate solution areas rather than just a single point. However, ACS algorithm is 

less adapted to fine-tuning solutions. Therefore, hybridizing the ACS algorithm with 

a local search algorithm is an appropriate approach to enhancing accuracy. In the 

present thesis, QA operator is coupled with the ACS algorithm to overcome the fine-

tuning deficiency of the ACS algorithm. QA operator improves the solution because 

the algorithm satisfies the constraints with higher precision and searches all 

candidate solution areas to find the constrained optimum. Also, considering that the 

QA operator does not require extra functional evolution, it relieves the computational 

burden associated with hybrid evolutionary algorithms (EA), and hence, increases 

the rate of convergence (Wanner, Guimaraes, Takashi & Fleming, 2007).  

 

In the proposed algorithm, first, ACS algorithm is executed. Then, during the 

execution of the algorithm, after finding the promising areas, the most promising 

area is selected as the best solution. Finally, QA operator comes in and the best 

solution of the ACS algorithm is used for the best particle with fitness value (
  
R

1 ) in 

the QA operator. Result of the QA operator (  R
* ) is the ultimate solution that the 

proposed algorithm finds in an iteration. By doing this, QA operator enables us to 

explore more deeply to the candidate solution areas. Following steps constitute the 

proposed algorithm ACS-QA. Also, Flowchart of the proposed algorithm is given in 

Figure 4.1. 
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Step 1: Set upper and lower bounds, define cost coefficients, transmission loss 

coefficients and valve point coefficients for each generation. Determine population 

size, maximum number of generations and termination criterion. Set the penalty 

coefficient for the problem. 

 

Step 2: Set the iteration counter to 1. Initialize   and   superorganisms and 

calculate the fitness values of the   and   superorganisms by taking into account 

the valve point effects, transmission losses and constraints depending on the 

objective function as given in the algorithmic form below: 

 

  

for i=1 to N

    for j=1 to D

        
i, j:0

 r
1
.(u

j
 l

j
)  l

j
,  

i, j:0
 r

1
.(u

j
 l

j
)  l

j

    end

    y
i;  f (

i
), y

i;  f (
i
)

end

 

 

Step 3: Determine the predator individuals and their respective fitness values as 

given in the algorithmic form below where 
  
r
1  and 

  
r
2  are random numbers selected 

from a gaussian distrubition between [0,1]. 

 

  

if  r
1
 r

2

     P
red

 =  ,   y
P

red

= y
a
,    key = 1

else

     P
red

 =  ,   y
P

red

= y

,    key = 2

end  

 

Step 4: Determine the prey individuals and their respective fitness values as given 

in the algorithmic form below where permute() function randomly changes the 

places of row elements of prey individuals. 

 



 

 46 

  

if  r
1
 r

2
  P

rey
 =    else   P

rey
 =    end

P
rey

 = permute (P
rey

)  

 

Step 5: Calculate scale factor ( R ) that controls speed of biological interaction as 

given in the algorithmic form below where  (a,b)  is the gamma distribution with a 

shape parameter of 
  
4 . r

1
 and a scale parameter of 1.0. 

 

 

 

1 2

1 1 2

1

4

4 1

if r r   then

    R .r . r r

else

    R .r ,

end



 

 

 

 

Step 6: Determine the passive individuals by applying binary valued integer map 

( M ) as given in the algorithmic form below where rndint() function generates 

random integers between selected interval by using gauss distribution and p 

represents probability of biological interaction. 

 

 

 

 

1 2

1 2

1 2

1

0

1 0

rndint(N) , rndint(D)

i, j i , j

M

for all elements in M

       if   r p.r    then  M      end

end

if  r  < p.r   then

    for all elements in M

             if  r  < p.r  then  M    else   M    end

        end



 

 

1

0
D

i i,rndint(D)
j

 

    end

end     

for i=1 to N

     if  M D   then   M    end

end



 
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Step 7: Compute the biological interaction locations ( x ) by using Eq. (3.16). 

 

Step 8: From the solution matrix (y), select the row vector with the minimum 

fitness value (
 
G

best ). Determine the minima point   R
*  in Eq. (3.17) by selecting 

 
G

best
 as 

  
R

1
 and two randomly chosen solution vectors from the remaning 

population as 
  
R

2
 and 

  
R

3
. If new solution vector is better than inferior solutions, 

update the perturbed solution vector and increment the generation counter by one.  

 

Step 9:  Update the biological interaction locations as given in the algorithmic 

form below: 

 

  

for  i=1 to N

     for j=1 to D

         if  M
i, j

 0 then  x
i, j

 P
red

i , j
end

     end

end

 

  

Step 10: Determine next generation of superorganisms as given in the algorithmic 

form below with the utilization of key parameter decided in Step 3. 

 

 

if  key=1 then

      = P
red

, y  y
P

red

else 

      = P
red

, y  y
P

red

end  

 

Step 11: Obtain the best fitness value of predator sub-superorganism. Register the 

fitness value and candidate solutions for the next generations. 

 

Step 12: Repeat Step 3 to 11 until maximum generation number is met. 
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The proposed algorithm solves the optimization problem by applying the steps 

described above. After each run of the algorithm, following steps are considered to 

form the pareto-curve and solve the EELD problem: 

 

Step 1: To solve the EELD problem, first, ELD and EED problems must be 

solved independently to calculate
  
C

F
max , 

  
C

F
min , 

  
C

E
max  and 

  
C

E
min  in Eq. (2.17) by 

setting  w  to 1 and 0 respectively. 

 

Step 2: Initialize  w  as 0. 

 

Step 3: Solve Eq. (2.17) with the calculated minimum and maximum values in 

Step 1 and retain the solution.  

 

Step 4: Repeat Step 3 by incrementing  w  by 0.05 each time until the value of  w  

hits 1. 

 

Step 5: Plot the pareto-curve and select the corresponding solution with the value 

of   w  0.5  as the best compromising solution. 
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Figure 4.1 Flowchart of the proposed algorithm 
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CHAPTER FIVE 

NUMERICAL ANALYSIS AND SIMULATION RESULTS 

 

To test the effectiveness of the proposed algorithm, the proposed algorithm is 

applied to various unconstrained benchmark functions. Then, we analyze four 

different multi-objective EELD problems with 6, 10, 11 and 40 generating units. The 

proposed algorithm ACS-QA is implemented in Java language and executed on a 2.8 

GHz Intel Dual Core personal computer with 4 GB RAM. Population size and 

iteration number are chosen as 10 and 9000 respectively. Since QA operator provides 

faster convergence rates, iteration number can be chosen at a lower value than usual. 

 

5.1 Case Study 1 

 

In this study, the proposed algorithm is compared with the known algorithms 

ACS (Civicioglu, 2013), QPSO (Jiang et al., 2014; Sun et al., 2004; Sun et al., 2005), 

Quantum behaved Particle Swarm Optimization algorithm, which is motivated by 

consepts from quantum mechanics and particle swarm optimization, ITHS (Kumar, 

Panda & Chang, 2012), Intelligent Tuned Harmony Search algorithm, an 

improvation of the Harmony Search (HS) algorithm which is based on a musician 

trying to find the perfect-tune, BBBC (Erol & Eksin, 2006), Big Bang Big Crunch 

algorithm which is inspired from the Big Bang and Big Crunch phenomenas happens 

in space, DS (Civicioglu, 2012), Differential Search algorithm which is inspired by 

migration of superorganisms utilizing the concept of stable-motion, BAT (Yang, 

2010), Bat algorithm which is based on migration of a swarm of bats. All algorithms 

are implemented on six different unconstrained benchmark functions (namely; 

Sphere, Ackley, Griewank, Step, Schwefel and Alpine) to determine their solution 

accuracies and convergence speeds. Mathematical represantations and plots of these 

functions are given in Appendix A. Table 1 shows the results of all algorithms, 

comparatively (Here, 40 results are taken from each function solution and gaussian 

distributions are formed for each of those 40 results. Mean deviations and standard 

deviations are indicated in Table 5.1). It is clear that the proposed algorithm ACS-

QA outperforms all the others. We emphasize that the hybrid ACS-QA performs 
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better than the ACS itself. All this means that, the proposed algorithm is able to find 

correct solutions in the vicinity of the optimal value. Having shown effectiveness of 

ACS-QA in finding the solution, we now illustrate the convergence lines for 

different problems to reveal relative efficiency of ACS-QA in terms of number of 

function evaluations. For this, we solve Griewank, Ackley and Sphere functions by 

using ACS and ACS-QA and depict their convergence lines in Figure 5.1, Figure 5.2 

and Figure 5.3, respectively. It is clearly seen that QA operator enhances the 

convergence rate of the ACS algorithm. 

 

 

Table 5.1 Statistical properties of the solutions of unconstrained benchmark optimization problems 

 

 

 

 

 

 
 
 

 
Mean dev. + Std. dev. Mean dev. + Std. dev. Mean dev. + Std. dev. 

 Sphere Ackley Griewank 

QPSO  3.51E+01±1.28E+01 1.39E+01±1.46E+00 1.01E-00±5.01E-02 

ITHS  5.26E-01±4.77E-01 1.59E+00±1.04E+00 5.83E-02±7.12E-02 

BBBC  1.82E+01±1.05E+01 1.06E+01±2.75E+00 6.93E-01±2.43E-01 

DS  3.63E+01±9.01E+00 1.33E+01±7.35E-01 1.02E+00±1.24E-02 

BAT  2.52E-05±4.55E-06 5.90E+00±4.76E+00 8.87E-03±6.33E-03 

ACS  2.05E-04±1.13E-04 4.25E-02±8.97E-03 5.94E-05±4.12E-05 

ACS-QA 1.17E-09±2.13E-09 1.17E-04±6.17E-05 5.12E-09±7.01E-09 

    

 Schwefel 2.22 Alpine Step 

QPSO  6.26E+01±1.59E+01 1.43E+01±3.37E+00 4.57E+01±1.22E+01 

ITHS  6.79E+00±3.45E+00 1.25E+00±1.27E+00 5.33E+00±6.10E+00 

BB-BC  6.17E+04±9.51E+05 2.42E+01±6.57E+00 1.93E+01±9.59E+00 

DS  6.63E+01±6.83E+00 3.64E+01±3.01E+00 3.59E+01±6.32E+00 

BAT  3.85E+04±1.12E+05 2.51E+01±1.19E+01 4.90E-05±7.94E-06 

ACS  8.08E-02±1.80E-02 8.55E-01±4.02E-01 1.99E-04±9.03E-05 

ACS-QA 2.14E-04±3.38E-04 1.10E-03±1.31E-03 2.49E-10±6.63E-10 
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Figure 5.1 Convergence rates of the original ACS and  the proposed ACS-QA algorithms for the 

Griewank function 

 

 
Figure 5.2 Convergence rates of the original ACS and  the proposed ACS-QA algorithms for the 

Ackley function 
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Figure 5.3 Convergence rates of the original ACS and  the proposed ACS-QA algorithms for the 

Sphere function 

 

5.2 Case Study 2 

 

In this study, the proposed algorithm is implemented on a well-known network 

IEEE 30 bus including six thermal generating units to test the effectiveness of the 

algorithm. The system consists of six thermal units, 26 buses and 46 transmission 

lines (Farag, Al-Baiyat & Cheng, 1995). The load of the system was set to 2.834 p.u. 

on a 100 MVA base and both transmission losses, valve point effects and equality 

and inequality constraints are taken into account while solving the multi-objective 

EELD problem. Example diagram of the system is given in Figure 5.4. Pareto curves 

of the ACS and the proposed algorithm ACS-QA are given in Figure 5.5. It is seen 

that pareto curve of the proposed algorithm stays closer to the axes, which means 

that the proposed algorithm gives better results and outperforms the original ACS 

algorithm. The best compromised solutions and the corresponding power generations 

for each unit for the solution of the EELD problem by the proposed algorithm ACS-

QA are given in Table 5.2 together with ACS, NPGA (Abido, 2003b), Niched Pareto 

Genetic Algorithm which is a variant of Genetic Algorithm for multiobjective 

optimization problems, PSO (Hemamalini & Simon, 2008), BBO (Roy & Hazra, 

2014), MODE (Wu, Wang, Yuan & Zhou, 2010), Multiobjective Differential 

Evolution Algorithm which is a variation of Differential Algorithm designed for 

multiobjective optimization problems, IHBMO (Ghasemi, 2013), Interactive Honey 
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Bee Mating Optimization (IHBMO) algorithm, an improvement of the Honey Bee 

Mating algorithm which is based on mating of honey bees in a swarm, CIABC 

(Shayeghi & Ghasemi, 2014), Chaotic Improved Artificial Bee Colony algorithm 

which is an improvement of ABC algorithm based on chaotic search for candidate 

food position. It is seen in Table 5.2 that, the proposed algorithm finds better 

solutions than all except CIABC, in terms of the fuel cost. However, it is also seen 

that, in terms of the emission level, the proposed algorithm outperforms CIABC. In 

Table 5.3, we show the results in terms of power generation in units, fuel costs and 

emission levels for both ELD and EED problems by comparatively tabulating the 

proposed algorithm ACS-QA, ACS and HS (Sivasubramani & Swarup, 2011). It is 

seen that the proposed algorithm finds better results than the other algorithms in the 

ELD and EED problems.  
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Figure 5.4 Single Line Diagram of IEEE-30 bus 6 generators system (El Sawy, Hendawy, El-

Shorbagy,2013)
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Table 5.2 Best Compromised Solutions of 6-unit system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Units ACS-QA ACS NPGA PSO BBO MODE IHBMO 
CIABC 

[4] 

P1 0.2467 0.2381 0.2227 0.1761 0.2625 0.2120 0.1874 0.2573 

P2 0.3670 0.3615 0.3787 0.2819 0.3770 0.3065 0.2825 0.2832 

P3 0.5622 0.5623 0.5560 0.5408 0.5760 0.6887 0.6876 0.6881 

P4 0.6938 0.7005 0.7147 0.7696 0.6735 0.6793 0.6367 0.6325 

P5 0.5453 0.5631 0.5500 0.6502 0.5377 0.5821 0.6813 0.6011 

P6 0.4264 0.4339 0.4424 0.4457 0.4270 0.3869 0.3605 0.3617 

Fuel Cost  611.000 614.571 615.097 612.35 615.221 614.170 611.888 610.223 

Emission 0.2012 0.2015 0.2020 0.2074 0.2002 0.2043 0.2057 0.2043 
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Table 5.3 Solutions of single-objective 6-units Economic Dispatch and Emission Dispatch problems 

 

 

 

Units   Economic Dispatch  Emission Dispatch 

   ACS-QA ACS HS  ACS-QA ACS HS 

P1   0.1209 0.1221 0.0679  0.4107 0.4191 0.4397 

P2   0.2862 0.2834 0.3515  0.4636 0.4633 0.3908 

P3   0.5833 0.5891 0.5174  0.5444 0.5408 0.5506 

P4   0.9927 0.9902 0.8839  0.3902 0.3886 0.3774 

P5   0.5238 0.5204 0.5991  0.5448 0.5479 0.5420 

P6   0.3518 0.3538 0.4317  0.5154 0.5098 0.5021 

Fuel Cost   605.866 606.002 606.2858  646.205 646.759 647.434 

Emission   0.2207 0.2205 0.2148  0.1941 0.1941 0.1951 
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Figure 5.5 Pareto curves of the original ACS and proposed ACS-QA algorithms for the 6 generation 

units system 

 

5.3 Case Study 3 

 

A 10 generators system with valve point effects both on fuel cost and emission 

objective functions is considered. Transmission losses, equality and inequality are 

also taken into consideration for this study. Total load demand is 2000 MW. Pareto 

curves obtained by solving the multi objective EELD problem with the proposed 

algorithm ACS-QA and ACS algorithms are given in Figure 5.6. It can be seen that 

pareto curve of ACS-QA is closer to the axes. Therefore, it can be concluded that 

ACS algorithm gives better results when hybridized with QA operator. Best 

compromising solutions and corresponding electric generation in units obtained 

when the EELD problem is solved with the proposed algorithm, ACS, MODE (Basu, 

2011), GSA (Guvenc, Sonmez, Duman & Yorukeren, 2012), Gravitational Search 

Algorithm which is based on law of gravity and mass interactions, RCCRO 

(Bhattacharjee et al., 2014), Real Coded Chemical Reaction Algorithm which takes 

inspiration from energy states of the molecules during a chemical reaction, PDE 

(Basu, 2011), Pareto based Differential Evoution algorithm which is an improved 

version of Differential Evolution algorithm for multiobjective optimization 

problems, NSGA-II (Basu, 2011), Non-dominated Sorting Genetic Algorithm which 

is an improvement of Genetic Algorithms with non-dominated sorting approach for 
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multiobjective optimization problems, MHSA (Jeddi & Vahidinasab, 2014), 

Mosquito host-seeking algorithm which is inspired from host-seeking behavior of 

mosquitos, are given in Table 5.4. Once again, it is seen that the proposed algorithm 

ACS-QA gives better results in terms of the fuel cost yet worse results in terms of 

the emission level. Also, individual solutions of single-objective ELD and EED 

problems with the proposed algorithm ACS-QA, ACS and RCCRO (Bhattacharjee et 

al., 2014) are given in Table 5.5. The proposed algorithm performs better than the 

other algorithms for both ELD and EED problems. 
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Table 5.4 Best compromised solutions of 10-unit system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Units ACS-QA ACS MODE GSA RCCRO PDE NSGA-II MHSA 

P1 54.9998 54.7798 54.9487 54.9992 55.0000 54.9853 51.9515 54.4132 

P2 79.9998 79.7031 74.5821 79.9586 80.0000 79.3803 67.2584 70.6736 

P3 86.5405 90.7377 79.4294 79.4341 85.6453 83.9842 73.6879 97.0719 

P4 84.8731 84.1959 80.6875 85.0000 84.1259 86.5942 91.3554 86.4019 

P5 127.1193 123.0420 136.8551 142.1063 136.5034 144.4386 134.0522 138.0141 

P6 144.1107 168.1831 172.6393 166.5670 155.5801 165.7756 174.9504 162.4903 

P7 299.9942 292.0955 283.8233 292.8749 300.0000 283.2122 289.4350 283.6421 

P8 320.7936 315.6864 316.3407 313.2387 316.6746 312.7709 314.0556 311.5283 

P9 441.8326 436.3438 448.5923 441.1775 434.1252 440.1135 455.6978 439.0945 

P10 444.5285 439.4543 436.4287 428.6306 436.5724 432.6783 431.8054 440.7168 

Fuel Cost 112,690.54 113,113.53 113,480.00 113,490.00 113,355.74 113,510.00 113,540.00 113,290.00 

Emission 4203.8881 4158.7420 4124.9000 4111.4000 4121.0684 4111.4000 4130.2000 4153.3000 
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Table 5.5 Solutions of single-objective 10-units Economic Dispatch and Emission Dispatch problems 

Units   Economic Dispatch  Emission Dispatch 

   ACS-QA ACS RCCRO  ACS-QA ACS RCCRO 

P1   54.9999 54.9786 55.0000  54.9999 54.9723 55.0000 

P2   79.9999 79.9809 79.9999  79.9999 79.6051 80.0000 

P3   106.9399 106.8501 106.9220  81.1341 81.0165 81.1342 

P4   100.5762 99.9306 100.5426  81.3637 81.7512 81.3637 

P5   81.5017 82.7102 81.5216  159.9999 159.9788 160.0000 

P6   83.0208 82.8818 83.0528  239.9999 239.9592 240.0000 

P7   299.9999 299.9293 299.9999  294.4851 293.5266 294.4851 

P8   339.9999 339.9363 339.9999  297.2701 298.5785 297.2701 

P9   469.9999 469.9088 469.9999  396.7658 396.3209 396.7657 

P10   469.9999 469.9252 469.9999  395.5761 395.8805 395.5763 

Fuel Cost   111,497.630 111,499.510 111,497.6319  116,412.444 116,408.346 116,412.4441 

Emission   4572.195 4567.810 4571.9552  3932.243 3932.485 3932.2433 
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Figure 5.6 Pareto curves of the original ACS and proposed ACS-QA algorithms for the 10 generation 

units system 

 

5.4 Case Study 4 

 

In this study, a power system with 11-generation units is considered. Valve point 

effects are taken into account for both fuel cost and emission objective functions. 

Transmission losses are neglected in this case. Total load demand is 2500 MW. 

Pareto curves obtained by solving the multi objective problem with both the 

proposed ACS-QA and the original ACS algorithms are presented in Figure 5.7. It is 

seen that the proposed algorithm‟s pareto curve is closer to axes, thus outperforms 

the ACS algorithm. Also, in Table 5.6, best compromised results and corresponding 

power generations for each generator obtained by solving the multi-objective 

problem with the proposed algorithm ACS-QA, ACS and GABSC (Guvenc, 2010), 

Genetic Algorithm method Based on Similarity Crossover in which new generation 

is created by genetic similarity measurement between farther and mother, are 

presented. The proposed algorithm gives better results than the other algorithms in 

terms of fuel costs but is outperformed by GABSC algorithm in terms of the 

emission level.  
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Table 5.6 Best compromised solutions of 11-units system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 Pareto curves of the original ACS and proposed ACS-QA algorithms for the 11 generation 

units system 

 

5.5 Case Study 5 

 

This time, a 40-unit power system with valve point effects on both fuel cost and 

emission objective functions is considered. Transmission losses have been neglected 

and equality and inequality constraints are taken into account. Total load demand is 

10,500 MW. Pareto curves by solving the multi-objective problem with the proposed 

ACS-QA and ACS algorithms are presented in Figure 5.8. It is seen that the 

proposed algorithm outperforms the ACS algorithm. Best compromised solutions 

Units ACS-QA ACS GABSC 

P1 122.8613 122.6303 138.8618 

P2 103.2495 95.5445 112.1312 

P3 143.0472 156.3786 146.7169 

P4 212.7189 219.9551 222.1041 

P5 170.0694 165.3001 137.1962 

P6 209.0082 229.6278 217.3208 

P7 168.2317 151.3600 140.4711 

P8 369.3839 382.1478 348.9008 

P9 319.3833 324.0510 326.5188 

P10 357.4635 354.8310 363.5275 

P11 324.5825 298.1739 346.2508 

Fuel Cost 12,389.604 12,394.501 12,423.770 

Emission(ton) 2030.286 2038.393 2003.030 
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and the corresponding power generations in units obtained by solving the multi-

objective problem with the proposed algorithm ACS-QA, ACS, RCCRO 

(Bhattacharjee et al., 2014), QOTLBO (Roy & Bhui, 2013), which is an 

improvement of the Teaching Learning Based Optimization algorithm with quasi-

Oppositional Based Learning concepts, GSA (Roy & Bhui, 2013) are tabulated in 

Table 5.7. The proposed algorithm finds worse results than RCCRO and QOTLBO 

algorithms in terms of fuel cost, however, outperforms them in terms of the emission 

level. Individual solutions of the ELD and EED problems with the proposed ACS-

QA, ACS and RCCRO (Bhattacharjee et al., 2014) algorithms are presented in Table 

5.8.  It is seen that the proposed algorithm ACS-QA gives better results than the 

other algorithms for both ELD and EED problems. Also, solutions of single-

objective EED and ELD problems with the proposed ACS-QA, ACS, DE (Sharma, 

Samantaray, Mohanty & Rout, 2011), Differential Evolution algorithm which is 

based on maintaining a population of candidate solutions and combining them with 

the new solutions according to some rules, MBFA (Hota et al., 2010), Modified 

Bacterial Foraging Algorithm, which is an improvement of Bacterial Foraging 

algorithm by adding a dynamic chemotactic step, MODE (Sharma et al., 2011), 

NSGA-II (Sharma et al., 2011), IABC (Aydin et al., 2011), IABC-LS (Aydin et al., 

2011), ABCDP (Aydin et al., 2011) and ABCDP-LS (Aydin et al., 2011) algorithms 

are given in Table 5.9. The proposed algorithm ACS-QA is seen to give better results 

than the other algorithms.  
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Table 5.7 Best compromised solutions of 40-units system 

Units ACS-QA ACS RCCRO QOTLBO GSA 

P1 113.9890 111.3116 111.0511 114.0000 113.9989 

P2 113.9831 112.1779 111.1804 114.0000 113.9896 

P3 119.9962 102.5186 97.4009 120.0000 119.9995 

P4 179.7336 179.4192 179.7329 179.7593 179.7857 

P5 96.9947 93.5415 96.9995 97.0000 97.0000 

P6 139.8771 135.5289 139.9999 140.0000 139.0128 

P7 299.9934 283.8897 259.6001 300.0000 299.9885 

P8 285.9143 284.7419 284.5999 298.9093 300.0000 

P9 295.2811 285.0565 284.5997 300.0000 296.2025 

P10 130.0212 181.1877 130.0003 130.0996 130.3850 

P11 318.3612 245.0746 243.6001 243.7055 245.4775 

P12 318.3540 305.0227 243.5997 318.4741 318.2101 

P13 394.2933 394.0219 394.2794 394.4004 394.6257 

P14 394.2950 395.7532 394.2797 394.3418 395.2016 

P15 394.2796 393.2459 394.2793 394.2703 306.0014 

P16 394.2875 396.0321 394.2797 394.4013 395.1005 

P17 489.1414 474.2753 489.2794 489.3143 489.2569 

P18 489.2636 479.3932 489.2792 489.3548 488.7598 

P19 421.5591 484.8716 511.2789 511.1648 499.2320 

P20 470.4998 489.6450 511.2794 421.8134 455.2821 

P21 433.5977 434.0667 433.5193 434.5654 433.4520 

P22 433.5595 437.2441 433.5199 434.5536 433.8125 

P23 433.7296 442.8724 433.5210 433.9734 445.5136 

P24 433.5698 437.5403 433.5199 433.7659 452.0547 

P25 433.5478 436.0871 433.5205 434.9881 492.8864 

P26 433.5697 434.9823 533.5205 434.1780 433.3695 

P27 10.1593 10.6135 10.0000 10.0574 10.0026 

P28 10.1786 15.1337 10.0000 10.3295 10.0246 

P29 10.1308 12.8350 10.0001 10.0147 10.0125 

P30 96.9962 95.9513 96.9999 97.0000 96.9125 

P31 189.9500 187.1076 189.9999 190.0000 189.9689 

P32 189.6785 173.1965 189.9999 190.0000 175.0000 

P33 189.7372 170.2031 189.9999 190.0000 189.0181 

P34 199.9978 199.0226 199.9999 200.0000 200.0000 

P35 199.9968 199.7197 199.9998 200.0000 200.0000 

P36 199.9972 199.4629 199.9999 200.0000 199.9978 

P37 109.9861 101.0463 109.9999 110.0000 109.9969 

P38 109.9289 98.8350 109.9998 110.0000 109.0126 

P39 109.9922 107.4239 109.9999 110.0000 109.4560 

P40 421.5737 479.9567 511.2793 421.5651 421.9987 

Fuel Cost 125,585.004 126,662.509 124,420.951 125,161.000 125,782.000 

Emission 197,025.541 200,829.089 229,395.900 206,490.400 210,932.900 
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Table 5.8 Solutions of single-objective 40-units Economic Dispatch and Emission Dispatch problems 

Units Economic Dispatch Emission Dispatch 

 ACS-QA ACS RCCRO ACS-QA ACS RCCRO 

P1 110.8687 112.4920 110.7998 113.9999 113.9999 114.0000 

P2 111.0013 112.9250 110.7998 113.9999 113.9999 114.0000 

P3 97.3999 97.3999 97.3999 119.9999 113.9999 120.0000 

P4 179.7331 179.7331 179.7331 169.3679 169.4326 169.3680 

P5 92.4706 88.9759 87.7999 96.9999 96.9999 97.0000 

P6 139.9999 139.9999 140.0000 124.2574 124.2018 124.2574 

P7 259.5996 259.5996 259.5997 299.7114 299.5729 299.7114 

P8 284.5996 284.5996 284.5997 297.9148 297.8595 297.9149 

P9 284.5996 284.5996 284.5997 297.2601 297.2153 297.2601 

P10 130.0000 130.0000 130.0000 130.0000 130.0095 130.0000 

P11 168.7998 168.7998 94.0000 298.4101 298.4385 298.4101 

P12 168.7998 168.8000 94.0000 298.0259 297.9915 298.0260 

P13 214.7597 214.7597 214.7598 433.5576 433.4732 433.5576 

P14 394.2793 304.5195 394.2794 421.7284 421.7731 421.7284 

P15 394.2793 394.2606 394.2794 422.7796 422.7951 422.7796 

P16 304.5195 394.2793 394.2794 422.7796 423.0747 422.7796 

P17 489.2793 489.2793 489.2794 439.4128 439.4660 439.4129 

P18 489.2793 489.2793 489.2794 439.4028 439.1308 439.4029 

P19 511.2793 511.2793 511.2794 439.4128 439.4964 439.4128 

P20 511.2793 511.2793 511.2794 439.4128 439.4674 439.4129 

P21 523.2793 523.2793 523.2794 439.4463 439.4694 439.4464 

P22 523.2793 523.2793 523.2794 439.4463 439.3803 439.4464 

P23 523.2793 523.2793 523.2794 439.7720 439.8533 439.7721 

P24 523.2793 523.2793 523.2794 439.7720 439.8838 439.7721 

P25 523.2793 523.2793 523.2794 440.1117 440.0880 440.1118 

P26 523.2793 523.2793 523.2794 440.1117 440.0495 440.1118 

P27 10.0000 10.0000 10.0000 28.9937 29.0103 28.9937 

P28 10.0000 10.0000 10.0000 28.9937 29.0380 28.9937 

P29 10.0000 10.0000 10.0000 28.9937 29.1187 28.9937 

P30 87.8169 92.0588 87.7999 96.9999 96.9999 97.0000 

P31 189.9999 189.9999 190.0000 172.3319 172.1331 172.3319 

P32 189.9999 189.9999 190.0000 172.3318 172.4129 172.3319 

P33 189.9999 189.9999 190.0000 172.3319 172.3404 172.3319 

P34 164.7998 164.7998 164.7998 199.9999 199.9999 200.0000 

P35 164.7998 164.7998 194.3978 199.9999 199.9999 200.0000 

P36 164.7998 164.7998 200.0000 199.9999 199.9999 200.0000 

P37 109.9999 109.9999 110.0000 100.8383 100.7965 100.8384 

P38 109.9999 105.7222 110.0000 100.8383 100.8868 100.8384 

P39 109.9999 109.9999 110.0000 100.8383 100.7583 100.8384 

P40 511.2793 511.2793 511.2794 439.4128 439.3774 439.4129 

FuelCost 121,371.560 121,411.816 121,412.535 129,954.643 129,961.797 129,995.2

69 Emission 356,430.784 355,812.992 359,901.381 176,672.264 176,682.697 176,682.2

54 
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Table 5.9 Solutions of single-objective 40-units Economic Dispatch and Emission Dispatch problems 

 

 

 
Figure 5.8 Pareto curves of the original ACS and proposed ACS-QA algorithms for the 40 generation 

units system 

 

 

 

 

 

 

 

 

Units  Economic Dispatch  Emission Dispatch 

  Cost Emission  Cost  Emission 

ACS-QA  121,371.560 356,430.784  129,954.643 176,672.264 

ACS  121,411.816 355,812.992  129,961.797 176,682.697 

DE  121,840.000 374,790.000  129,960.000 176,680.000 

MBFA  121,415.650 356,424.490  129,995.000 176,682.260 

MODE  121,836.980 374,790.560  129,956.090 176,683.270 

NSGA-II  124,963.500 262,489.270  129,965.890 176,691.960 

IABC  121,414.800 356,421.700  129,995.470 176,682.250 

IABC-LS  121,412.720 359,900.830  129,995.200 176,682.250 

ABCDP  121,412.820 359,900.700  129,995.410 176,682.250 

ABCDP-LS  121,412.740 359,901.170  129,995.490 176,682.250 
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CHAPTER SIX 

CONCLUSION 

 

Metaheuristic optimization algorithms are powerful tools to deal with the 

optimization problems. Most of them are inspired from the nature and relies on 

stochastic processes such as randomization. They do not guarantee to find the 

globally optimum solutions all the time, however, with efficient metaheuristic 

algorithms like ACS, there is a greater chance to find the global solution. This thesis 

showed that ACS is an efficient optimization algorithm for solving global 

optimization problems.  

 

In this thesis, ACS algorithm is hybridized with QA operator to construct an 

efficient and effective algorithm. By hybridizing two or more algorithms, increases 

the accuracy and efficiency of the algorithm. Which means the quality of solution 

increaes while the function evaluation count, which is needed to find the solution 

decreases. Hybridized ACS-QA algorithm used in this thesis once again proved that 

hybridization is an effective method for increasing the effectivity of the 

metaheuristic algorithms. We have shown that the algorithm, ACS-QA, outperforms 

the original ACS and several other optimization techniques in application to the 

multi-objective EELD problem with practical constraints like valve-point effects, 

prohibited operating zones and transmission losses, which are typical of the real-

world power systems. We have revealed this by a variety of numerical examples in 

Chapter 5. The ACS is a known global search algorithm for solving optimization 

problems, however, it may not be effective for solving multi objective problems like 

EELD, as we have shown here. It is with hybridization of ACS with QA, the 

algorithm ACS-QA, that we obtain an efficient algorithm, which is successfully, 

implemented in four standard power systems and some benchmark optimization 

functions. The results show that ACS-QA is a powerful algorithm for solving multi 

objective optimization problems.  

 

Also, WSM method, which is a tool for handling the multiobjectivity in the 

optimization problems, is introduced. In the WSM method, each objective function is 
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evaluated with a weight and tradeoff between the objectives are defined with that 

weights. According to the WSM, sum of the all weights must be one. And the best 

comprimising solution is often where all weights are equal to each other. This thesis 

proved that WSM is a very efficient tool for handling multiobjectivity of the 

optimization problems.  

 

As a future work, different hybrid optimization algorithms or the way of handling 

the multiobjectivity can be changed to find more desirable solutions for the 

multiobjective EELD problem. Also, some components may be included to the 

EELD system such as wind farms or fuel cells, which will change the cost function 

of the problem.  
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APPENDICES 

 

APPENDIX A. Mathematical Representations and Plots of Benchmark 

Functions 

 

- Sphere Function: 

 

                   

 

Search space: 
  
x

i
 5.12,5.12   for   i 1,2,3,...,d  in d-dimensional space 
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-Ackley Function: 

 

 

 

Search space: 
  
x

i
 32.768,32.768   for   i 1,2,3,...,d  in d-dimensional space 
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-Griewank Function: 

 

 

 

Search space: 
  
x

i
 600,600   for   i 1,2,3,...,d  in d-dimensional space 
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-Schwefel Function: 

 

 

Global optimum:   0 for 0 for 1 2 3i if x x i , , ,...,d    

Search space: 
  
x

i
 100,100   for   i 1,2,3,...,d  in d-dimensional space 
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-Alpine Function: 

 

 

Global optimum:   0 for 0 for 1 2 3i if x x i , , ,...,d     

Search space: 
  
x

i
 10,10   for   i 1,2,3,...,d  in d-dimensional space 
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-Step Function: 

 

 

Global optimum:   0 for 0 5 for 1 2 3i if x x . i , , ,...,d     

Search space: 
  
x

i
 100,100   for   i 1,2,3,...,d  in d-dimensional space 
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APPENDIX B. Cost and Emission Coefficients for the Generation Units  

 

-6 Units System: 

 

a=[10.0,10.0,20.0,10.0,20.0,10.0] 

 

b=[200.0,150.0,180.0,100.0,180.0,150.0] 

 

c=[100.0,120.0,40.0,60.0,40.0,100.0] 

 

α=[4.091e-2,2.543e-2,4.258e-2,5.326e-2,4.258e-2,6.131e-2] 

 

β=[-5.554e-2,-6.047e-2,-5.094e-2,-3.550e-2,-5.094e-2,-5.555e-2] 

 

γ=[6.49e-2,5.638e-2,4.586e-2,3.380e-2,4.586e-2,5.151e-2] 

 

η=[2.0e-4,5.0e-4,1.0e-6,2.0e-3,1.0e-6,1.0e-5] 

 

δ=[2.857,3.333,8.000,2.000,8.000,6.667] 

 

-10 Units System: 

 

a=[1000.403,950.606,900.705,800.705,756.799,451.325,1243.531,1049.998,1658.56

9,1356.659] 

 

b=[40.5407,39.5804,36.5104,39.5104,38.5390,46.1592,38.3055,40.3965,36.3278,38.

2704] 

 

c=[0.12951,0.10908,0.12511,0.12111,0.15247,0.10587,0.03546,0.02803,0.02111,0.0

1799] 

 

d=[33.0,25.0,32.0,30.0,30.0,20.0,20.0,30.0,60.0,40.0] 
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e=[0.0174,0.0178,0.0162,0.0168,0.0148,0.0163,0.0152,0.0128,0.0136,0.0141] 

 

α=[360.0012,350.0056,330.0056,330.0056,13.8593,13.8593,40.2669,40.2669,42.895

5,42.8955] 

 

β=[-3.9864,-3.9524,-3.9023,-3.9023,0.3277,0.3277,-0.5455,-0.5455,-0.5112,-0.5112] 

 

γ=[0.04702,0.04652,0.04652,0.04652,0.00420,0.00420,0.00680,0.00680,0.00460,0.0

0460] 

 

η=[0.25475,0.25475,0.25163,0.25163,0.24970,0.24970,0.24800,0.24990,0.25470,0.2

5470] 

 

δ=[0.01234,0.01234,0.01215,0.01215,0.01200,0.01200,0.01290,0.01203,0.01234,0.0

1234] 

 

-11 Units System: 

 

a=[387.85,441.62,422.57,552.50,557.75,562.18,568.39,682.93,741.22,617.83 

,674.61] 

 

b=[1.92699,2.11969,2.19196,2.01983,2.22181,1.91528,2.10681,1.99138,1.99802,2.1

2352,2.10487] 

 

c=[0.00762,0.00838,0.00523,0.00140,0.00154,0.00177,0.00195,0.00106,0.00117,0.0

0089,0.00098] 

 

α=[33.93,24.62,33.93,27.14,24.15,27.14,24.15,30.45,25.59,30.45,25.59] 

β=[-0.67767,-0.69044,-0.67767,-0.54551,-0.40060,-0.54551,-0.40006,-0.51116,-

0.56228,-0.41116,-0.56228] 
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γ=[0.00419,0.00461,0.00419,0.00683,0.00751,0.00683,0.00751,0.00355,0.00417,0.0

0355,0.00417] 

 

-40 Units System: 

 

a=[94.705,94.705,309.54,369.03,148.89,222.33,287.71,391.98,455.76,722.82,635.20

,654.69,913.40,1760.4,1760.4,1760.4,647.85,649.69,647.83,647.81,785.96,785.96,7

94.53,794.53,801.32,801.32,1055.1,1055.1,1055.1,148.89,222.92,222.92,222.92,107

.87,116.58,116.58,307.45,307.45,307.45,647.83] 

 

b=[6.73,6.73,7.07,8.18,5.35,8.05,8.03,6.99,6.60,12.9,12.9,12.8,12.5,8.84,8.84,8.84,7.

97,7.95,7.97,7.97,6.63,6.63,6.66,6.66,7.10,7.10,3.33,3.33,3.33,5.35,6.43,6.43,6.43,8.

95,8.62,8.62,5.88,5.88,5.88,7.97]    

 

c=[0.00690,0.00690,0.02028,0.00942,0.0114,0.01142,0.00357,0.00492,0.00573,0.00

605,0.00515,0.00569,0.00421,0.00752,0.00752,0.00752,0.00313,0.00313,0.00313,0.

00313,0.00298,0.00298,0.00284,0.00284,0.00277,0.00277,0.52124,0.52124,0.52124

,0.01140,0.0016,0.0016,0.0016,0.0001,0.0001,0.0001,0.0161,0.0161,0.0161,0.00313

] 

  

d=[100.0,100.0,100.0,150.0,120.0,100.0,200.0,200.0,200.0,200.0,200.0,200.0,300.0,

300.0,300.0,300.0,300.0,300.0,300.0,300.0,300.0,300.0,300.0,300.0,300.0,300.0,120

.0,120.0,120.0,120.0,150.0,150.0,150.0,200.0,200.0,200.0,80.0,80.0,80.0,300.0] 

 

e=[0.084,0.084,0.084,0.063,0.077,0.084,0.042,0.042,0.042,0.042,0.042,0.042,0.035,

0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.035,0.0

77,0.077,0.077,0.077,0.063,0.063,0.063,0.042,0.042,0.042,0.098,0.098,0.098,0.035]  

α=[60.0,60.0,100.0,120.0,50.0,80.0,100.0,130.0,150.0,280.0,220.0,225.0,300.0,520.0

,510.0,510.0,220.0,222.0,220.0,220.0,290.0,285.0,295.0,295.0,310.0,310.0,360.0,36

0.0,360.0,50.0,80.0,80.0,80.0,65.0,70.0,70.0,100.0,100.0,100.0,220.0] 
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β=[-2.22,-2.22,-2.36,-3.14,-1.89,-3.08,-3.06,-2.32,-2.11,-4.34,-4.34,-4.28,-4.18,    -

3.34,-3.55,-3.55,-2.68,-2.66,-2.68,-2.68,-2.22,-2.22,-2.26,-2.26,-2.42,-2.42,-1.11,                 

-1.11,-1.11,-1.89,-2.08,-2.08,-2.08,-3.48,-3.24,-3.24,-1.98,-1.98,-1.98,-2.68] 

 

γ=[0.0480,0.0480,0.0762,0.0540,0.0850,0.0854,0.0242,0.0310,0.0335,0.4250,0.0322

,0.0338,0.0296,0.0512,0.0496,0.0496,0.0151,0.0151,0.0151,0.0151,0.0145,0.0145,0.

0138,0.0138,0.0132,0.0132,1.8420,1.8420,1.8420,0.0850,0.0121,0.0121,0.0121, 

0.0012, 0.0012,0.0012 ,0.0950,0.0950,0.0950,0.0151] 

 

η=[1.3100,1.3100,1.3100,0.9142,0.9936,1.3100,0.6550,0.6550,0.6550,0.6550,0.6550  

,0.6550,0.5035,0.5035,0.5035,0.5035,0.5035,0.5035,0.5035,0.5035,0.5035,0.5035,0.

5035,0.5035,0.5035,0.5035,0.9936,0.9936,0.9936,0.9936,0.9142,0.9142,0.9142,0.65

50,0.6550,0.6550,1.4200,1.4200,1.4200,0.5035] 

 

δ=[0.05690,0.05690,0.05690,0.04540,0.04060,0.05690,0.02846,0.02846,0.02846,0.0

2846,0.028460,0.02846,0.02075,0.02075,0.02075,0.02075,0.02075,0.02075,0.02075

,0.02075,0.02075,0.02075,0.02075,0.02075,0.02075,0.02075,0.04060,0.04060,0.040

60,0.04060,0.04540,0.04540,0.04540,0.02846,0.02846,0.02846,0.06770,0.06770,0.0

6770,0.02075]  
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