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ABSTRACT 

Doctoral Thesis 

Doctor of Philosophy (PhD) 

Industry 4.0 and Sustainability Implications 

Elif ÇİRKİN 

 

Dokuz Eylül University 

Graduate School of Social Sciences 

Department of Business Administration (English) 

Business Administration Doctorate Program 

 

The potential of the production ecosystems shaped in the light of 

technological developments and innovative approaches to provide opportunities 

in creating social, economic, and environmental sustainability is a remarkable 

phenomenon in today’s competitive global world where resources are rapidly 

depleted, social concerns are experienced, and the vitality of financial stability 

are accumulating. Within the scope of this study, it is aimed to analyze the role of 

Industry 4.0 technologies, which is a holistic production paradigm, in creating a 

sustainable production ecosystem. In line with the data obtained from the sample 

consisting of decision-makers being employed in various sectors such as 

petrochemical, metal production industry, automotive, textile, and food, the main 

and sub-criteria of the sustainability dimensions are weighted with fuzzy 

DEMATEL (Decision Making Trial and Evaluation Laboratory), which is one of 

the multi-criteria decision-making methods, and with fuzzy TOPSIS (Technique 

for Order of Preference by Similarity to Ideal Solution) the ranking and selection 

of the Industry 4.0 technology that best meets these determined criteria are 

revealed. In this context, it has been concluded that although weights of 

sustainability sub-criteria dissociate on a sectoral basis, there were similarities in 

the selection of the most appropriate Industry 4.0 technology alternative. The 

results of the analysis were also enriched with the findings obtained from the in-

depth interviews and the creation of word clouds that are benefitted as a data 

visualization tool. This study differs from the theoretical studies in the literature, 
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as it deals with all three dimensions of sustainability and Industry 4.0 together. 

Furthermore, mathematically revealing the values that Industry 4.0 technologies 

and applications will create in terms of economic, social and environmental 

sustainability reflects the original value of the study. As a result, this study 

provides contributions to the organizations planning to blend the concept of 

sustainability in their production systems with managerial and practical 

implications as well as to the relevant literature. 

 

Keywords: Industry 4.0, Sustainable Production Ecosystems, Social 

sustainability, Economic Sustainability, Environmental Sustainability, 

Sustainable Development. 
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ÖZET 

Doktora Tezi 

Endüstri 4.0 ve Sürdürülebilirlik Uygulamaları 

Elif ÇİRKİN 

 

Dokuz Eylül Üniversitesi 

Sosyal Bilimler Enstitüsü 

İngilizce İşletme Anabilim Dalı 

İngilizce İşletme Yönetimi Doktora Programı 

 

Teknolojik gelişmeler ve inovatif yaklaşımlar ışığında şekillenen üretim 

ekosistemlerinin sosyal, ekonomik ve çevresel sürdürülebilirlik yaratmada 

fırsatlar sağlama potansiyeli kaynakların hızla tükendiği, sosyal kaygıların 

yaşandığı, finansal istikrarın gerekliliğinin giderek arttığı günümüz rekabetçi 

küresel dünyasında dikkat çeken bir olgudur. Bu çalışma kapsamında bütüncül 

bir üretim paradigması olan Endüstri 4.0 teknolojilerinin sürdürülebilir bir 

üretim ekosistemi yaratmadaki rolünün analiz edilmesini amaçlanmaktadır. 

Petrokimya, metal üretim endüstrisi, otomotiv, tekstil ve gıda gibi farklı 

sektörlerde çalışan karar vericilerden oluşan örneklemden elde edilen veriler 

doğrultusunda çok kriterli karar verme yöntemlerinden olan bulanık 

DEMATEL (Karar Verme Deneme ve Değerlendirme Laboratuvarı) 

sürdürülebilirlik boyutlarının alt kriterleri ağırlıklandırılmış ve bulanık TOPSIS 

(İdeal Çözüme Benzerlik Yoluyla Sıralama Tercihi Tekniği) yöntemiyle de 

belirlenen kriterler ağırlıkları baz alınarak bu kriterleri en iyi karşılayan 

Endüstri 4.0 teknolojisinin sıralama ve seçimi yapılmıştır. Bu bağlamda, 

sürdürülebilirlik alt kriterlerinin sektörel bazda farklılaştığı ancak en uygun 

Endüstri 4.0 teknoloji seçim alternatiflerinde benzerlikler olduğu sonuçlarına 

varılmıştır. Analiz sonuçları yapılan derinlemesine görüşmelerden elde edilen 

bulgular ile birlikte veri görselleştirme araçlarından olan kelime bulutları ile de 

zenginleştirilmiştir. Endüstri 4.0 ve sürdürülebilirliğin üç boyutunu da birlikte 

uygulamaya yönelik ele aldığı için bu çalışma literatürde yapılan kuramsal 

çalışmalardan farklılık göstermektedir. Bununla birlikte Endüstri 4.0 
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teknolojileri ve uygulamalarının ekonomik, sosyal ve çevresel sürdürülebilirlik 

açısından yaratacağı değerlerin matematiksel olarak ortaya konması çalışmanın 

özgün değerini yansıtmaktatır. Sonuç olarak bu çalışma çıktılarıyla, hem ilgili 

literatüre hem de sürdürülebilirlik kavramını üretim sistemleri ile birlikte 

harmanlamayı planlayan organizasyonlara yönetimsel ve uygulamaya yönelik 

katkılar sağlamaktadır. 

 

Anahtar Kelimeler: Endüstri 4.0, Sürdürülebilir Üretim Ekosistemleri, Sosyal 

Sürdürülebilirlik, Ekonomik Sürdürülebilirlik, Çevresel Sürdürülebilirlik, 

Sürdürülebilir Kalkınma. 
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INTRODUCTION 

 

Generating solutions with palliative and sustainable approaches to human, 

economic, and environmental requirements, demands, and needs which are in a 

continuous cycle of change and development forms the basis of the struggle for life 

that humanity has been facing since its existence. Meeting these requirements, 

demands, and needs of the continuously increasing world population as well as 

ensuring growth and liveliness in the economy have been ensured with the integration 

of technological innovations and developments that have been put forward in centuries 

into production systems. 

The periods, which deeply affected industrial productivity, hence economies 

took place in the literature as industrial revolutions. The first industrial revolution 

began to show its effects between 1760 and 1830 with the mechanization of weaving 

looms using water and steam power. With the first industrial revolution handicraft 

production has been replaced by mechanical production, hence the basics of factory 

systems as well as the first steps of productivity in production have been taken. Then, 

with the invention of electricity, the second industrial revolution came to the agenda 

at the beginning of the 20th century and manufacturing processes started to adapt to 

mass production. Thereafter, in virtue of the contributions of electronic, information, 

and communication technologies to production, the concept of the third industrial 

revolution has been formed so automation and digitalization have been involved in the 

production. However, Industry 4.0 is rather a complex and widely discussed system 

with various technologies such as artificial intelligence cyber-physical systems, smart 

factory, autonomous robots, horizontal and vertical system integration, simulation, 

internet of things, cybersecurity, cloud computing, embedded systems, additive 

generation, augmented reality, sensors, data mining, big data, and machine learning. 

The scope and application areas of the Industry 4.0 concept predominantly 

focus on a technical perspective, however, differently in this study, Industry 4.0 and 

its applications will be analyzed whether it produces solutions for issues such as 

elimination of environmental problems, the loss of non-renewable resources, climate 

change, biological diversity loss, and waste. 
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The starting point of this study relies on such threats as intense globalization, 

differentiation strategies that increase the competitiveness of companies each day, lack 

of resources and even depletion, changing demographic features, and intergenerational 

differences like different requirements of generations X, Y, and Z worldwide. That is 

to say, coping with the target group with high awareness of social and environmental 

responsibility for being a global information society forces organizations to create 

sustainable industrial value. Therefore, taking into social, environmental, and 

economic dimensions into consideration while producing and/or serving is of great 

importance for today's business environments. 

Within the scope of achieving sustainable development goals and providing 

opportunities for sustainability with the integration of Industry 4.0 technologies and 

applications such as augmented reality, cyber-physical systems, real-time monitoring 

and data collection, additive generation, new business models, on-demand 

production/consumption, big data and analytics, blockchain technology, rapid 

prototyping into organizations processes with organizations’ strategic goals open a 

new window in the literature. Thus, in this study, Industry 4.0 and its technologies will 

be evaluated under the framework of sustainability pillars including social, 

environmental, and economic. The principal research question of this study is that “Do 

Industry 4.0 technologies and applications play a role in creating a sustainable working 

environment?”. To answer this research question, first of all, with the help of a 

systematic literature review Industry 4.0 technologies and their convergence with the 

sustainability dimensions along with the effects of Industry 4.0 technologies on 

sustainable dimensions will be highlighted. Next, with an application, which 

technology of Industry 4.0 is the most suitable for meeting the sustainability 

dimensions will be attempted to reveal. To do so, there will be brainstorming regarding 

the concepts of Industry 4.0 technologies, sustainability dimensions as well as the 

convergence of Industry 4.0 with sustainability dimensions. This brainstorming will 

be among personnel from various sectors. After creating a mind map based on this 

brainstorming, environmental, social, and economic sustainability criteria and 

alternatives of Industry 4.0 technologies of the selected organizations operating in the 

textile, metal production, petrochemical, automotive, and food industries will be 

determined through a focus group study and feedbacks from some academics with 
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various backgrounds. For the analysis, multi-criteria decision-making methods will be 

used because analyzing and solving problems having both qualitative and quantitative 

data sets would not be feasible with two and/or three-dimensional matrices, thereby 

mathematical models treated beneath multi-criteria decision-making methods are 

preferred. Thus, in this thesis, for the selection problem of Industry 4.0 technology 

alternatives based on social, economic, and environmental sustainability criteria multi-

criteria decision-making methods will be benefitted. Firstly, the determined criteria 

will be sorted using Fuzzy-DEMATEL (Decision-Making Trial and Evaluation 

Laboratory) method. Then, the Industry 4.0 technology that matches the criteria the 

best will be ranked and selected using the Fuzzy-TOPSIS (Technique for Order of 

Preference by Similarity to Ideal Solution) method. By doing this it will be found if 

there is a specific technology providing sustainability dimensions. In this way, 

Industry 4.0 technologies will be analyzed through real organizations’ data to see 

which of these technologies are presumed to have effects on creating a sustainable 

manufacturing ecosystem.  

The study is designated in such an order, in the first chapter, the background 

information regarding the previous industrial revolutions and then emergence, 

structure, dimensions, potential opportunities, and challenges of the fourth industrial 

revolution will be given. Then the fundamental technology trends and extensions of 

Industry 4.0 including additive manufacturing, augmented reality, autonomous, big 

data and analytics, cloud systems, cyber-physical systems, internet of things, system 

integration and simulation, and smart factory will be explained. In the second chapter, 

the scope and discussions of sustainability and its dimensions including social, 

environmental, and economic will be given in a detailed manner. Furthermore, a 

systematic literature review regarding the convergence of Industry 4.0 technologies 

with sustainability dimensions will be demonstrated with the help of various views of 

the researchers. In the last chapter, a case study within various industries with the help 

of multi-criteria decision-making methods will be depicted.  

The first two chapters constitute the roof of this study with the support of a 

literature review whilst the last chapter is an application stage of this study and include 

the aim and objective of the study, conceptual background, methodology, 

questionnaire design, sample and data collection, data analysis and measurement as 
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well as the empirical findings. Finally, in the conclusion part discussions regarding the 

study, the limitations of this study, and further research suggestions will be given.  



5 

 

CHAPTER ONE 

AN OVERVIEW OF HISTORICAL INDUSTRIAL REVOLUTIONS 

 

This chapter embodies the theoretical framework of the study and explains pre-

industrial revolutions as well as the latest industrial revolution and its technologies. 

 

1.1.PRE-INDUSTRIAL REVOLUTIONS ON THE WAY TO INDUSTRY 4.0  

 

Throughout history, technological leaps and breakthrough innovations have led 

to paradigm shifts and deeply affected economic and social structures, hence 

revolutions. The term industrial revolution can be broadly described as a rapid, 

widespread, secular, and abrupt change in the business manners’ of individuals and/or 

organizations. Although there are various aspects towards the dawn of the industrial 

revolution, the first industrial revolution has been emerged out of the mechanization 

of weaving looms using water and steam power between the years of 1750–1776 in 

Great Britain that lasted between 1820 and 1840. The reason why Great Britain was 

leading the first industrial revolution is that the country was holding a huge amount of 

coal and iron reserves and was also stable both economically and politically. Having 

considered as one of the significant technological advances, the steam engine was 

commenced by Thomas Newcomen in 1712. Subsequently, Scottish mechanical 

engineer James Watt, enlarged the steam engine in 1776, which triggered large 

amounts of coal-powered energy in an efficient and economical way (Usher, 1920; 

Jacob, 1997; Allen, 2009).  With these developments, an early modern industrial era 

worldwide has been originated and handicraft production has been replaced by 

mechanical production hence, the basics of factory systems and the first steps in 

productivity have been taken. 

In 1776, Adam Smith proposed the division of labor that is narrowing down a 

job and each of them executed by a separate worker, hence specialization of the 

workers at those tasks. Afterwards, in 1790, Eli Whitney introduced the 

interchangeable parts creating a pathway to manufacture firearms, clocks, watches, 

sewing machines, and other goods to evolve customized, on an individual basis 
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production into volume production of standardized parts (Russel and Taylor III, 

2003).  

This turning point in production systems has led to a diverse range of social 

and economic consequences including the integration of contemporary science and 

empirical knowledge together with manufacturing processes, an invention of new 

types of machinery, tools, and technologies, increased economic activities owing to 

manufacturing for national and international markets rather than parochially individual 

and/or family use, improved efficiency in the textile industry,  mines,  steam-powered 

railroads, steam-powered ocean freighters, iron and steel production, chemical 

industry, and other areas of economic activities, enlargement of production capabilities 

and capacities, developments in agricultural productivity, and the emanation of new 

social and job-related classes (Deane and Deane, 1979: 1; Daunton, 1995).  

Although it is evident that the first industrial revolution has been generated 

positive contributions related to socio-economic environments, it has been led to some 

unfavorable results consisting of an increase of unskilled workers, labor exploitation, 

a huge gap between social classes, the rise of the number of women and child labor in 

an unhygienic and risky situation, and the emergence of environment pollution (Galbi, 

1994; Griffin, 2010).  

The second industrial revolution was, in many ways, the continuation of the 

first industrial revolution and dated back to the years between 1870-1914, mainly in 

the United Kingdom and the United States, and spread throughout Western Europe 

and Japan. A large number of such new technologies and inventions as the widespread 

use of the iron and steel, internal combustion engine, chemical industries, use of 

petroleum, the beginning of electrification together with electrical communication 

technologies created potentials for perpetual innovation in processes therein an 

existing plant to work up overall production efficiency and volumes in production, 

however manufacturing plants needed to be redesigned to adopt these new 

developments and innovations (Jevons, 1931; Mokyr, 1998; Atkeson and Kehoe, 

2001). 

Frederick W. Taylor put forward an approach on management of work-oriented 

as a science and determined the best suitable method while performing the job based 

on various observations, measurements, and analysis, namely scientific management 

https://en.wikipedia.org/wiki/Electrification


7 

 

in the early 1900s. After that, all workers’ procedures were standardized, and financial 

incentives were put in place to encourage workers to pursue the standards. Henry Ford 

applied scientific management to the production of the T model in 1913 and developed 

an assembly-line approach driving down the time required to assemble a car from over 

728 hours to 1 ½ hour. Therefore, laying the foundations of mass production and 

benefitting from managerial and technical expertise, manufacturers in the United 

States have dominated the production ecosystems worldwide. However, lower costs, 

higher quality with such quality revolutions as Just-In-Time (JIT), Total Quality 

Management (TQM), and mindset of lean production generated by Japanese culture 

challenged the superiority of manufacturers in the United States (Russel and Taylor 

III, 2003).  

The growth of the steel industry and oil refining industry in the second 

industrial revolution era both in cost advantage and quality affected many industries 

including the construction of sophisticated machinery, ships, railroad tracks, and 

buildings. Moreover, improvements in transportation systems and a decline in 

transportation costs have led organizations to distribute their products to long distances 

of regional and/or national markets, thus the development of global import and export 

markets (Chandler, 1993).  

The use of chemicals like nitrates, potassium, and phosphates as fertilizers in 

the agriculture sector that was the crop of the combination of scientific knowledge with 

production techniques have amplified the soil productivity as well as supply of food 

and raw materials. Especially, in Germany, government-initiated institutions 

subsidized agricultural research and the outcomes eventually bred to drastically 

increased yields (Mokyr, 1998). 

Working conditions in the second industrial revolution era resembled the first 

industrial revolution era. Long working hours, low wages, dangerous and risky 

working environments have been remained a problem, thus ensuing labor unions, labor 

strikes so as to publicize these problems and improve their working conditions (Kim, 

2007).  

Existing manufacturing methods of the first industrial revolution era were 

widely improved with the transition to mass production enabling faster and cheaper 

production in high volumes, so mass consumer culture emerged. Additionally, 
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inventions including elevators, electric machinery, harvesting machine, sewing 

machine, and other various consumer appliances have provided comfort into daily 

lives of individuals; such modes of transportation as a motorcar, truck, and airplane 

have made transport facilities easier and more comfortable; constructing of highways 

and supermarkets has made everyday lives smooth and quality, thereby improving 

social, and economic welfare as well as living standards (Gordon, 2012).  

Despite embodying many positive contributions, the second industrial 

revolution also created such global challenges as air pollution, water pollution, global 

warming, climate change, and habitat destruction. Furthermore, the wage gap between 

man and woman, and th issu of working under unfavorable conditions have yet 

remained a deadlock (Mohajan, 2013).  

The third industrial revolution that is also known as automation and digitization 

of production has been started around the 1940s and lasted until 2010. The period 

between 1914 and 1918 witnessed the First World War and later years between 1939 

and 1945 Second World War took place and the pace in terms of economical, 

industrial, and social developments have been slowed down compared to previous 

periods. Nonetheless, unlike the previous industrial revolutions, the third industrial 

revolution has caused radical changes in not only the way businesses operate but also 

the mindsets and every facet of life (Finkelstein and Newman, 1984; Fitzsimmons, 

1994).  

It is evident that the diverse use of fossil fuels in manufacturing and logistics 

frameworks profoundly changed the technological, social, and economical conditions, 

however, the impact of fossil fuels on the ecology has become deteriorating and issues 

on climate change, global warming, and environmental pollution have pervaded. Such 

adverse impacts of fossil fuels on the environment in addition to the scarcity of oil, 

hence surging prices forced politicians and academics to focus on innovations on 

renewable energies and eco-efficient technologies. Therefore, the term third industrial 

revolution was also labeled as a “green industrial revolution”, “efficiency revolution”, 

and “green capitalism” (Rifkin, 2011; Rifkin 2012, Schmidheiny and Timberlake, 

1992; Fisher, 2015). 

In 1947, the production of the first transistor as well as the introduction of 

semiconductors and integrated circuits have formed the basic structure of 
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contemporary computers and digital solutions. Later in 1952, Computer Numerical 

Controller (CNC) machines have been revealed and product variety and efficiency 

have increased. The introduction of the Advanced Research Projects Agency Network, 

which was the first network to implement the Transmission Control Protocol/Internet 

Protocol (TCP/IP) in 1969 triggered the use of computers, computer-aided design and 

computer-aided manufacturing (CAD/CAM), development of the internet, and 

information age (Özdoğan, 2017). Moreover, manufacturing shifted from mass to lean 

manufacturing techniques as the manufacturers located in the United States and 

Europe began to adopt Japanese production approaches (Eden, 2018). 

Furthermore, information technologies and software systems like Material 

Requirement Planning (MRP) and Enterprise Resource Planning (ERP) together with 

supporting hardware systems that have appeared in the third industrial era enabled 

automation and digitalization in production, which in turn led to positive contributions 

in management and control of resources, processes, financial analyses, production 

rates, efficiency, flexible manufacturing systems, and costs related to managerial 

activities and manufacturing processes. With the third industrial era, such innovations 

as microchips, microelectronics, fibre optics, lasers, nanotechnology, biotechnology, 

high-speed railway systems, mobile telecommunications, new materials, renewable 

raw materials, cleaner technology, intelligent systems, robotics, and three-dimensional 

(3D) printing have introduced and offered significant changes in the manufacturing 

processes, the management and control of systems, logistics, new product design and 

development processes, and life-cycle use of materials and also affected various 

sectors including medical, defense, agriculture, construction, government services, 

knowledge, education, advanced manufacturing, financial, and administrative (Cooper 

and Kaplinsky, 2005: 19; Karvonen, 2001: 10). 

The globalization process, supported by the collapse of the Eastern Block and 

the end of the Cold War together with the convenience of communication and 

transportation using the internet has transformed the world into a single market and 

created a functional basis for a competitive environment within the scope of global 

markets (Jänicke and Jacob, 2009). Moreover, some large companies have shifted their 

production centers to China, where the labor force was abundant and cheap. This 

situation made China a serious competitor in global markets and negatively affected 
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the manufacturing industries in many countries. This is the primary cause for the 

transition to a new industrial revolution process led by a series of technologies, 

enabling cheap, efficient, and fast manufacturing systems. The term sustainability was 

first coined in this era and renewable energy technologies including wind generation, 

solar generation systems, biomass, and geothermal together with green business 

practices and strategies were introduced in an effort to combat global warming, climate 

change, and environmental pollution (Clark II and Cooke, 2014). In the table below, a 

summary of the industrial revolutions is represented. 

 

Table 1: Summary of Industrial Revolutions with key points 

 

Industrial Revolutions Summary 

First Industrial Revolution 

(Industry 1.0) 

The first industrial revolution happened at the end of the 18th century, from 

1760 and 1840. Machines were introduced into the manufacturing process 

to reduce human effort. This first revolution leads to some improvements, 

particularly in the textile and agriculture industries. 

Second Industrial Revolution 

(Industry 2.0) 

 

This industrial revolution, which lasted from 1870 to 1914, was the first time the 

industry used a mass-production system. Although it boosted production speed, it 

limited design and manufacturing flexibility.  

Third Industrial 

Revolution 

(Industry 3.0) 

 

After 1950, the third industrial revolution began. Through the employment of 

robots and programmed flexible automation, this revolution brought quality, 

speed, and manufacturing flexibility. It introduced digital technology into 

production systems, as well as machines such as 3D printers, CNC machines, 

and robots that can be monitored via a computer. It resulted in substantial 

advancements in the fields of computer, communication, and information 

technology (IT). The transition from analogue to digital mechanical systems 

was ushered in by this revolution. With the application of various production 

methods, this revolution in automation offered a new degree of flexibility and 

customization in manufacturing. It improved the computer-integrated design 

and production system, which greatly helped product development and design. 

Fourth Industrial 

Revolution 

(Industry 4.0) 

 

This latest revolution offers disruptive technologies like machine learning, 

artificial intelligence, and robotics. Its goal is to inject major creativity into the 

manufacturing, design, development, research, business model, and supply chain 

industries. This new manufacturing approach will maximize the utilization of 

cutting-edge manufacturing technology. 

Source: Bahrin et al., 2016; Morrar et al., 2017; Zhong et al., 2017; Wichmann et al., 2019; 

Kusmin, 2018. 
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Within the scope of this section, background information regarding previous 

industrial revolutions on the way to the latest industrial revolution so-called Industry 

4.0, reasons for their emergence, development processes, technologies and innovations 

brought with them, and their impacts on production systems, economies, and societies 

have been handled thoroughly. 

In the following section, structure, dimensions, revolving technologies around 

the fourth industrial revolution as well as potential opportunities, and challenges of the 

fourth industrial revolution shall be discussed. 

 

1.2.THE FOURTH INDUSTRIAL REVOLUTION: THE EMERGENCE, 

STRUCTURE, DIMENSIONS, POTENTIAL OPPORTUNITIES, AND 

CHALLENGES OF INDUSTRY 4.0 

 

A convergence of information technologies and operational technologies 

throughout the industrial revolutions’ history originated with the first industrial 

revolution leading to the basics of factory systems, and handicraft production has been 

replaced by mechanical production, then with the invention of electricity, the second 

industrial revolution fostered the mass production, and later with the contributions of 

electronic, information and communication technologies to production, the concept of 

the third industrial revolution eventuated automation and digitalization in the 

production. However, the concept, structure, dimensions, potential opportunities, and 

challenges of  "Industry 4.0", which has been pioneered as a differentiation strategy in 

2011 in Hannover Fair in Germany to handle such issues as the increasing global 

competition, threat of cheap labor force, and unstoppable rising of Chinese’s economy, 

are much more than all these revolutions (Almada-Lobo, 2015).  

Industry 4.0 is a rapidly emerging concept that is known by various names such 

as “Smart Manufacturing” and “Intelligent Manufacturing”, “Made in China 2025”, 

and “Future of Manufacturing” in such different countries as the USA, China, and the 

United Kingdom respectively (Kagermann et al., 2013). In Turkey, TÜSİAD (Turkish 

Industry and Business Association) published a report, namely “Industry 4.0 in Turkey 

as An Imperative for Global Competitiveness-an Emerging Market Perspective” in 

2016 (TÜSİAD, 2016). No matter how the concept is entitled in different cultures and 
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countries, it is evident that this concept is used for better decision-making, improved 

productivity, flexible, automated, and customized manufacturing systems. 

Enabling smart machines, smart devices, smart systems, smart factories, 

shortly “smart” phenomenon renders virtual and physical manufacturing systems to 

flexibly collaborate in a global environment. Nevertheless, the fourth industrial 

revolution is not merely concerning smart and connected machines and systems, it 

spreads over various fields such as gene sequencing, nanotechnologies, renewable 

energies, quantum data processing. Therefore, the factor that makes the fourth 

industrial revolution fundamentally discriminating from previous industrial 

revolutions is the intertwining of these technologies and their interaction in physical, 

digital, and biological fields (Schwab, 2016: 17). Other factors that differentiate 

Industry 4.0 from previous industrial revolutions are: sensors transforming physical 

and chemical signals into data fit for data selection and sorting, information that 

artificial intelligence filters and contemplates, and lastly the data processing that 

decision-makers use for an instant, better, and reliable decision-making processes 

(Strandhagen et al., 2017; Nagasawa et al., 2017). Furthermore, Industry 4.0 creates 

faster, more flexible, and more efficient production processes. Therefore, Industry 4.0 

is expected to influence the workflows radically by altering the structure of business 

models, to increase competitiveness, to enhance the quality of operations, to meet 

individual customer requirements, to optimize decision making, to supply effective 

and efficient use of resources, and to create value opportunities through new products 

and services (Agostini and Filippini, 2019; Gümüşoğlu, 2018). 

Within the scope of all these technological advances and developments, 

innovations in production systems and processes, it is an organization that needs to 

pursue the transformation processes and be able to adapt to the ever-changing demands 

and needs in a globally competitive environment. As a matter of fact, while Industry 

4.0 applications overcome the challenges such as global competition, decreasing 

product life cycles, high-quality customized products also provide opportunities such 

as low-cost industrial value creation, productivity, revenue growth, and 

competitiveness (Ardito et al., 2019; Burritt and Christ, 2016). Despite the growing 

interest in Industry 4.0 and the technologies it brings, there is no definite consensus on 

the application areas and results of this new manufacturing paradigm. Moreover, most 
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companies are not yet aware of the challenges they might face when they adopt 

Industry 4.0. Unlike previous industrial revolutions, the rate of technological 

development in Industry 4.0 is exponential, and therefore, it poses numerous 

challenges, as well as numerous benefits and opportunities. As it is expected, Industry 

4.0 will significantly change the operations carried out from the design phase to the 

production processes and from the procurement of products and services to the 

operations that are carried out until and after reaching the end customer (Yu et al., 

2015; Lee et al., 2015). Moreover, Industry 4.0 technologies bring out such 

opportunities as creating changing and developing business and market models that 

affect the product life cycle, providing a new way in production systems and 

workflows, improving processes and increasing the organizations’ competitiveness 

whilst it requires high-cost investments, encounters problems with the size of data and 

their processing and analysis as well as the difficulty of cybersecurity and data 

management (Li et al., 2017; Zhang et al., 2017). Furthermore, In the 1770s, the 

philosophy of Luddism erupted against the advent of machinery and mechanization 

that arose as a consequence of the first industrial revolution. Luddism was indeed 

triggered by the employees that are unwilling to change and faced the threat of 

unemployment, hence these employees showed resistance to change and protested by 

breaking machines (Dinwiddy, 1979). As various authors claimed, with the spread of 

Industry 4.0 technologies in a manufacturing environment, a huge loss of employment 

is anticipated, so the resistance to change is inevitable and this transition from muscle 

power to brain power poses some ethical and social threats and challenges. However, 

new job opportunities including robot engineering, industrial computer engineering, 

network development engineering, 3D printer engineering, big data expertise, data 

security analyst, data analyst and e-commerce and social media expertise, artificial 

intelligence, and machine learning experts are emerging (Prause, 2015; Cohen et al., 

2019) and numerous benefits of Industry 4.0 technologies should not be ignored as 

monotonous, dangerous, mentally, and physically straining task are replaced by these 

technologies. Therefore, adaptation processes should be meticulously managed and 

maintained and employees should be prepared for this change in their working 

environments accordingly (Holmström et al., 2016).  
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Many of the nine technological advancements that build the foundation for 

Industry 4.0 have been already used in manufacturing, however with Industry 4.0, they 

are expected to alter production into more isolated, fully integrated, and automated 

systems and this will result in the optimized production flow, greater efficiencies and 

change traditional manufacturing paradigms among producers, suppliers, and 

customers as well as human and machine (Rüßmann et al., 2015). 

Intelligent factories that enable horizontal and vertical integration with 

artificial intelligence-based self-optimizing, self-configuring, constantly interactive 

industrial robots and machines, real-time data flow, advanced automation and 

digitalization in the supply chain and production line, cyber-physical systems, internet 

of things, additive manufacturing, augmented reality, simulation, and cloud systems 

constituting the key factors of the Industry 4.0 concept, provide grounds for more 

productive, flexible, high quality, superior cost-effectiveness, versatile, safer and 

collaborative ecosystems (Martín et al., 2017).  

Furthermore, under Industry 4.0 technologies, products can be designed to 

include a product-specific electronic identification card (ID) for tracking life cycles; 

with the data collected in this way, businesses can distinguish themselves from their 

competitors in understanding their consumption patterns, improving their products, 

new product developments, managing and controlling their operations such as 

maintenance and repair services. In addition, through links between machines, devices, 

and supply chain layers, and real-time shared information, opportunities such as 

flexibly changing order priorities, monitoring and controlling production performance 

and production lines, and improving logistics routes through production and 

purchasing arising from customer needs and maintenance requirements can also be 

created (de Man and Strandhagen, 2017). 

Therefore, in general, it is evident that various benefits and challenges are 

expecting the business environment with the introduction of Industry 4.0. In the next 

stage, the fundamental technology trends and extensions of Industry 4.0 in a detailed 

manner. 
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1.2.1.   Fundamental Technology Trends and Extensions of Industry 4.0 

under the Umbrella of Sustainability Pillars 

 

This part encapsulates the fundamental technology trends and extensions of 

Industry 4.0 including additive manufacturing, augmented reality, autonomous robots, 

big data and analytics, cloud systems, cyber-physical systems, internet of things, 

system integration, simulation, and smart factory. 

 

1.2.1.1. Additive Manufacturing 

 

A wide variety of such factors as cost, quality, flexibility, and production rate 

are considered in the selection of a manufacturing approach for a given product and/or 

service. An increase in both direct and indirect costs of manufacturing operations is a 

paramount obstacle within the organizations. Therefore, organizations pursue the 

elimination of waste, effective utilization of resources, stabilization of the production 

process, and tightening productivity standards so as to obtain a cost-effective position. 

Moreover, quality issues including minimizing defect rates and/or conforming to 

design specifications are broadly involved in production activities to compete on 

quality. The propensity to accord with changes in product mix, production volume, 

and/or design, which is regarded as flexibility, and production rate/time to market are 

also essential sources through the perspectives of competition in manufacturing 

(Watson and Taminger, 2018; Russel and Taylor III, 2003: 19). 

Within the scope of Industry 4.0, apart from other transformative technologies, 

additive manufacturing is directly associated with manufacturing operations. 

Concordantly, additive manufacturing appears to be one of the backbones of Industry 

4.0 that are developed as a counterpart of conventional techniques such as lathe and/or 

milling and can automatically adapt the physical models specifically from 3D 

prototypes of CAD. That is to say, additive manufacturing processes also known as 

3D printing or rapid prototyping have a digital data flow transforming the various raw 

materials into homogeneous and heterogeneous final products with highly complex 

geometries in a time and cost-effective manner. So, the challenges of increasing the 
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individualization of products, decreasing product life cycles, and reducing time to 

market can be tackled by additive manufacturing technologies (Vaidya et al., 2018).  

Additive manufacturing is based upon building up of feedstock onto a substrate 

to produce a final product and/or work-in-process product, namely layer-by-layer 

manufacturing technology, whereas an operating logic of the conventional production 

paradigm, also known as subtractive manufacturing, hinges upon the removal of 

material in an (x-y) plane two-dimensionally to generate a final product and/or work 

in process product with such processes as lathing, drilling, turning, and milling. C.W. 

Hull introduced Stereolithography in 1983, providing the basis for the technologies 

that later would become additive manufacturing including direct laser powder fed 

processes, laser powder bed processes, and direct electron beam wire fed processes. 

Furthermore, various additive manufacturing techniques have been launched 

according to the structure of raw materials; for liquids Fused Deposition Modelling, 

for discrete particles Selective Laser Sintering, and for solid sheets Laminated Object 

Modelling (Watson and Taminger, 2015; Ahuett-Garza and Kurfess, 2018; Gibson et 

al., 2010; Ceruti et al., 2019).  

Even though additive manufacturing technologies are opening new 

opportunities in terms of design, manufacturing, and distribution to end-users, 

subtractive manufacturing appears to be more favorable in situations where material 

removal processes are less, thereby creating opportunities such as lower cost, faster 

and less energy consumption whereas, in other situations, additive manufacturing 

fulfills the aforementioned promises. According to Mehrpouya et al. (2019), one of the 

pitfalls of subtractive processes is that the amount of material waste is considerably 

high and there is a lack of control systems continuously modifying the processes. 

Therefore, shortcomings and positive aspects throughout the process are to take into 

consideration in selecting a suitable manufacturing approach (Watson and Taminger, 

2015).  

Having compared to traditional manufacturing approaches, additive 

manufacturing technologies provide several advantages. Additive manufacturing 

technologies can manufacture geometries that are extremely challenging or in some 

cases impossible to manufacture any other way. As the physical model can be 

developed rapidly through CAD representations, some tests such as functionality, 
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reliability, usability, maintainability can be done before the design cycle. Potential 

failures owing to misinterpretation of the design could be reduced. With additive 

manufacturing technology, raw materials are used efficiently by building parts layer 

by layer. Therefore, leftover materials can often be reused with minimum processing. 

Additive manufacturing is amicably established in specific applications characterized 

by a high level of customization and low volume production. Additive manufacturing 

provides decentralized production methods, flexibility in design for creating complex 

components, highly customizable products, efficient waste minimization, and time and 

material saving. Additive manufacturing equipment is economical in small batch 

production. The quality of the parts relies on the process rather than operator skills. 

The issue of fulfilling constantly changing customer demands and requirements could 

be coped with additive manufacturing since production can be synchronized with 

customer demand. Moreover, problems of line balancing and production bottlenecks 

can be virtually and promptly eliminated (Prakash et al. 2018; Ngo et al. 2018; 

Rüßmann et al., 2015; Mehrpouya et al., 2019).  

Additive manufacturing processes can be applied to a series of industries such 

as aerospace, automotive, bio-medical including custom medical implants in dentistry, 

artificial organs, and medical devices, transportation, machine-tool production, art, 

and architecture. Ingredients of aerospace generally are composed of highly complex 

structures and/or geometries and such advanced materials as titanium alloys, special 

steels, and/or ultra-high-temperature ceramics that are hard, costly, and time-

consuming to manufacture. Hence, using additive manufacturing technologies in 

aerospace applications is notably appropriate (Prakash et al. 2018). Additionally, in 

the automotive sector, using additive manufacturing technologies could diminish the 

cycles of design and development of automotive parts, hence a reduction in 

manufacturing costs. Additive manufacturing processes can be also used to obtain 

small quantities of structural and functional parts, such as engine exhausts, driveshafts, 

and gearbox components. However, in the automotive and aerospace sectors, the 

product quality and reliability of 3D prototypes are yet a concern. Additionally, 

strength in materials, limited printing volumes, and process velocity are being 

obstacles for additive manufacturing technologies (Garza and Kurfess, 2018).  
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Although additive manufacturing technologies demonstrate significant 

application potential and benefits in the aerospace, automotive, biomedical, energy, 

transportation, machine-tool production, dental care, art, and architecture, through the 

production of low-volume, customized products with cluttered geometries and 

advanced material features in a cost-effective and timely manner, some challenges in 

the implementation of additive manufacturing exist including building scalability, 

strength in materials, material heterogeneity, structural reliability, skills shortage, 

intellectual property issues, particularly regarding copyright, and development and 

standardization of new materials (Gao et al., 2015). Furthermore, despite some 

drawbacks such as manufacturing speed, accuracy, repeatability, and cost, 

conventional manufacturing approaches might be selected rather than additive 

manufacturing, particularly for the mass production of regular parts. Nevertheless, 

additive manufacturing technologies predominate conventional manufacturing 

approaches in the manufacturing of low-volume, customized products with cluttered 

geometries (Dilberoglu et al., 2017). Consequently, there are some situations in which 

conventional manufacturing tools and techniques are more appropriate, thus to 

compensate for the balance of drawbacks and advantages of these two manufacturing 

approaches, emerging hybrid manufacturing infrastructure might be developed further.  

  

1.2.1.2. Augmented Reality 

 

Having gathered various reviews on the occurrence of augmented reality, it can 

be deduced that it was not until Sutherland’s work in the 1960s. A pioneer of computer 

graphics Ivan Sutherland and his students exploited a see-through head-mounted 

display (Azuma et al., 2001; Fraga-Lamas et al., 2018; Bottani and Vignali, 2019). 

Scientists, then employed at the Boeing Corporation coined the term 

“augmented reality” while helping workers assemble wires and cable for an aircraft to 

increase the visual field of the workers with information regarding the task, thus 

simplifying the manufacturing processes of the air company (Caudell and David, 

1992).  

Later in 1994, a proposed model for augmented reality has been revealed by 

Paul Milgram and Fumio Kishino. As designed by Milgram and Kishino (1994), 
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Milgram’s Reality-Virtuality Continuum spans between the real environment and the 

virtual environment and embodies Augmented Reality (AR) and Augmented Virtuality 

(AV) in between, where AR is closer to the real environment and AV is closer to a 

purely virtual environment, as seen in Figure 1 below. 

 

 

 

Figure 1: Milgram’s Reality-Virtuality Continuum 

 

 

Source: Milgram and Kishino, 1994. 

 

Since the late-1990s, augmented reality has been a specific field of research, 

several conferences on augmented reality have been held including the International 

Workshop and Symposium on Augmented Reality, the International Symposium on 

Mixed Reality, and the Designing Augmented Reality Environments Workshop. 

Moreover, with such projects and organizations as mixed reality systems lab in Japan 

and the Arvika consortium in Germany, industrial augmented reality technologies and 

applications have been developed. However, the technical obstacle of augmented 

reality systems and applications was the lack of cost-affordable devices. With the 

widespread adoption of such mobile devices as smartphones and tablets having 

required sensors and processing units for the development and deployment of 

augmented reality applications, this limitation seems to be handled and augmented 

reality solutions, technologies, and applications have been boosted in several 

industries (Azuma et al., 2001; Fraga-Lamas et al., 2018). 

According to Berryman (2012) augmented reality is used to enhance the 

experience, perception, interaction, and understanding of the user by blending a digital 
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environment with the real-world, thus facilitating the user’s life. Augmented reality 

also differs from virtual reality, in virtual reality, a wholly digital environment is 

created, thus resulting in a digital, or simulation of reality and users immerse in an 

artificial world without seeing the real world, whereas, in augmented reality, there is a 

real-time combination of digital information and a physical real-world environment. 

Augmented reality enhances the real world with digital features, providing new 

patterns of environmental perceptions through virtual computer-generated information 

and interacting the users with these patterns (Schneider, 2019). Augmented reality 

systems and technologies have the following features: 

 merges real and virtual items in a real environment,  

 provide flexible real-time information,  

 coordinates real and virtual items with each other,  

 enables users to close the space between the physical and digital environment, and 

 promote a human-centric industrial environment (Azuma et al., 2001).  

Although a large variety of extensions of augmented reality systems and 

technologies are obtainable, there are several requirements and dimensions in the 

natural structure of an entire augmented reality system including displays, input 

devices, tracking, and computers. To put it simply, a display is required to provide a 

perception of reality and digital information. There exist three models of displays in 

augmented reality: head-mounted displays (HDM), handheld displays, and spatial 

displays. Even though HDMs offer synchronization of the virtual and real 

environment, it requires users to wear cameras on his/her head, leading to jittering of 

the virtual image. Handheld displays, on the other hand, are more portable and 

powerful but more expensive and heavy. Spatial displays foster a more natural 

perception of the real environment however do not support mobile systems. An input 

device is an indispensable pointing tool to convey and process information, that digital 

information is to be appropriately harmonized with what the user has been seeing via 

a tracking dimension. Last, a computer system is required to control, manage, and 

enhance what has been shown. Furthermore, based on an application being developed 

how the aforementioned requirements and dimensions of an augmented system are 

being assembled and operated varies (Carmigniani et al., 2011).  
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A wide range of applications of augmented reality exists changing from 

visualization of prototypes to interactive workshops for operators in risky industries. 

Applications of augmented reality have been broadly deployed in personal information 

and/or personal assistance, media, medical visualization, robot path planning, gaming, 

entertainment, fashion, real estate, retail, architecture, construction, education through 

innovative learning approaches, military, and tourism in an attempt to cultivate the 

experience of users and provide additional information regarding an object and/or a 

display (Berryman, 2012). 

Moreover, augmented systems and technologies are being utilized both in 

marketing to engage potential customers across the product design and development 

processes and advertising while launching new products: augmented brand experience 

and augmented advertisement, respectively (Zhao et al.,2019; Salah et al., 2019).  

Potentially, augmented reality systems and technologies can also be 

implemented to other senses comprising smell, touch, and hearing. Therefore, 

augmented reality systems and technologies can pamper individuals with poor visions 

and/or even blind and deaf ones by augmenting and substituting missing senses with 

such sensory substitutions as audio and visual cues (Carmigniani et al., 2011).  

According to a research paper by Bottani and Vignali (2019) classifying and 

analyzing the augmented reality literature based on sectors that deploy it, aerospace, 

automotive, electronics, food industry, footwear, manufacturing, machine tool, 

warehousing, nuclear/power plants are the most encountered industrial sectors.  

Owing to the proliferation of smart tools and devices, augmented reality 

technologies are anticipated to become widespread, however, there are some 

challenges of implementing augmented reality. The challenges encompass lack of 

interoperability as each device and platform depend on unique, individual 

development. Further, augmented reality documentation authoring is regarded as a 

time-consuming and complicated task due to the fact that 3D modeling, computer 

graphics/animation skills, programming, and know-how to registration and tracking 

are required (Gattullo et al., 2019).  

Moreover, privacy and ethical issues in displaying the information apart from 

the user and such user issues as ergonomic, aesthetic, and design-related hesitations, 
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as well as the rate of the user acceptance of technology are vulnerable points of 

augmented reality (Berryman, 2012).  

Some studies claim that the user adaptation to augmented reality equipment 

can negatively affect performance, another study shows that the augmented reality 

displays that could not provide the requirements of ergonomics might cause fatigue, 

eye strain, and concentration issues for long-term use (Biocca and Rolland, 1998; Ellis 

et al., 1997). Such human-related factors are to be investigated to eliminate the 

drawbacks and enrich the experience throughout augmented reality technologies. 

Other hurdles include hardware and software issues, data transfer, integration and 

security issues, content authoring, adaptive instructions, marker tracking reliability 

and cost (Masood and Egger, 2019). 

Comprehensively, being one of the enabling technologies of Industry 4.0, 

applications and systems of augmented reality are rapidly nourishing that provide 

flexible and innovative business models in the manufacturing environment intertwined 

with technology, improve the industrial productivity, reliability, performance, and 

safety, and unveil discrepancies precisely. As the user experience is the most important 

factor for expanding the applicable business models and the pervasiveness of 

augmented reality, organizations should play an arbiter role in the development of 

augmented reality solutions and applications. 

 

1.2.1.3. Autonomous Robots 

 

Autonomy encapsulates the systems that are inclined to operate in the real-

world environment deprived of external control for extended periods. Autonomous 

systems, thus are assumed they could survive in a dynamic environment, cultivate their 

internal structures and processes, demonstrate a variety of behaviors, and even within 

limits, adapt to environmental changes whereas automatic systems include devices and 

tools that operate on their own, self-managing or moved mechanically with the 

information from the sensor. In automatic systems, there are repetitive mechanical 

and/or electronic operations, there is neither instant decision power nor machine 

learning as such an automatic washing machine (Yılmaz, 2018).  
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Thereafter the emergence of digital control electronics in the 1970s, an 

intensive focus on automated perception and the advent of artificial intelligence along 

with reductions in the cost of sensors, actuators, and processors, autonomous systems 

and robots have developed enormously, yet been developing and found in a variety of 

applications (Watson and Scheidt, 2005). 

A myriad of tasks is performed through approaches of manual instructions or 

in a semi-autonomous way. Even though these approaches facilitate reliability in 

tackling unpredictable environments through the integration of human cognitive 

decision-making processes and robotics, efficiency is of immediate concern as human 

effort requires to grasp sensory data remotely and lead the robot accordingly. In this 

manner, there is a developing requirement for more prominent degrees of intelligence 

and autonomy to permit these physical systems to perform ideally inside brutal 

situations. Various approaches have started to rise as conceivably viable solutions 

including human-robot collaboration effort and machine learning for more generalized 

autonomy (Wong et al., 2018).   

Industrial robot manipulators formerly had lacked sensing and/or reasoning 

features, and merely were pre-programmed to execute certain tasks. That is to say, 

although robots have already been used in manufacturing environments, the functions 

and structures were quite limited. However, with the introduction of Industry 4.0 and 

its enabling technologies, mass customization alongside advanced manufacturing 

approaches autonomous robots and systems have occupied the agenda more than ever 

and become much more flexible, cooperative, self-configuring and the deployment of 

autonomous robots and systems have accelerated in manufacturing, assembling, 

maintenance, and logistics, warehousing, material handling, office management 

controlled via human-robot cooperation (Rüßmann et al., 2015: 3). Currently, such 

robots with different characteristics, functions, and designs as wheeled mobile 

vehicles, snake robots, legged robots, humanoids, household robots, industrial robots, 

and mobile robots are evolving hinged on the magnitude of autonomy, intelligence, 

dexterity, and mobility to carry out various tasks in dynamic, uncertain, complex, and 

unpredictable environments (Bekey, 2005: 2).   

The development of artificial intelligence, reduction in implementation costs 

of autonomous systems along with improvements in performance, punctuality, 
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versatility, flexibility, and endowments have enabled autonomous robots and systems 

to be deployed in various facets of life. There are several applications of mobile robots 

in manufacturing environments such as environmental monitoring and inspection 

processes including control of Heating, Ventilating, and Air Conditioning (HVAC), 

air quality, radiation rate, and detection of hazardous environmental changes. The 

flexible, intelligent, and autonomous robotic systems are also anticipated to affect 

incorporate information out of sensors with the operational and technical capabilities 

and to standardize communication interfaces with other factory-automation 

components, thus integration into an industrial computer integrated manufacturing 

environment (Freund and Rossmann, 1994). Furthermore, household chores 

applications, military, security, surveillance, and detection of intrusion are amidst the 

application of autonomous robots, namely mobile robots (Fahimi, 2009: 7). 

The harsh environment encompasses circumstances that are compelling to 

execute a task in a cluttered, dynamic, unstructured, and unpredictable environment 

and are hazardous by virtue of the high levels of radiation, explosive risk, extreme 

temperatures, and lack of oxygen (Fahrner et al., 2001).  Therefore, in such industries 

as oil and gas inspection, space exploration, deep-sea operations, deployment of 

autonomous robots and systems are broadly deemed to handle health, safety, and 

environment issues (Wong et al., 2018). Autonomous robots yielding safety, 

reliability, productivity, and efficiency are also utilized in such manufacturing 

industries as automotive, electronics, transportation, metal, machinery, chemical, 

rubber, plastics, and food to deal with tasks in dynamic, uncertain, complex, and 

unpredictable environments that are not practically handled by a man-power, thereby 

achieving a manufacturing optimization (Watson and Scheidt, 2005).  Furthermore, 

unmanned ground vehicles, namely UGVs, have been ushered in diverse fields such 

as search and rescue missions, labor automation, environment exploration, and map 

building tasks. Moreover, autonomous vehicles, generally deemed as self-driving cars 

and specifically developed for personal use, have been steadily developing and are 

ensuring augmented safety and mobility for individuals who are unable and/or 

unwilling to drive as well as providing sustainability benefits such as enhanced vehicle 

utilization, decreased demand for urban parking infrastructure, and reduced pollution 

(Bausys et al., 2019; Mitchell et al., 2010).   
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However, there are several challenges regarding autonomous systems and 

robots. Primarily, laws, legal systems, and regulations should be redesignated in order 

to cope with accountability issues and obligations and answer the question of whether 

autonomous robots have similar rights and responsibilities as humans (Schwab, 2016: 

165). Security issues and cyber-attacks are other consequences of embracing such 

autonomous systems and robots, therefore regardless of their size, organizations 

should be aware of these challenges and take precautions.  

 

 

1.2.1.4. Big Data and Analytics 

 

The rapid growth and advancements in technologies, notably in IoT (Internet 

of Things), wireless tools and sensors, mobile devices, and smart applications along 

with the kaleidoscopic manufacturing dynamics in line with operations’ dimensions 

and structures have spread big data and big data analytics out, both constructive and 

compelling phenomena in today’s information era. Having considered the recent data 

flow, scope, and spread, it can be deduced that enormous amounts of data are currently 

attainable for managerial and operational decision-making processes. Moreover, 

capture, storage, and collection of data capabilities have become apparently much 

more economical and effortless, however, dealing with such magnitude of data is of 

vast hassle and inefficient with conventional tools and techniques. Therefore, big data 

analytics evolving from business intelligence and decision support systems are 

benefitted in order to extract insights, patterns, and knowledge over diversified, rapidly 

changing and surging big data ranging from operational logs and connected devices to 

customer interactions and social network data (Perner, 2014).  

The framework of big data hinges upon constantly piling exponential data sets 

stretching from terabytes (TB) to petabytes (PB) that surpass the features of 

traditionally used software tools and techniques to capture, store, search, manage, 

share, visualize, and process the data (Kubick, 2012). Hence, dealing with such amount 

of heterogeneous, unstructured, and complex data so as to unveil the relevant 

information, correlations, trends, facts, and insights behind it is merely feasible with 

big data analytics applying advanced analytic techniques on big data sets. 
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Nevertheless, it can be deduced that the larger the dataset, the more burdensome it is 

to handle yet provide a more accurate statistical analysis (Russom, 2011).  

Big data can be outlined under the three V`s including volume, variety, and 

velocity. Basically, the volume of the data accounts for the size of the data, the velocity 

of the data is the rate with which data is varying, and the variety consists of the various 

formats and types of data, along with the numerous sorts of uses and the ways of 

analyzing the data (Elgendy and Elragal, 2014). Furthermore, the volume of the data 

is the fundamental attribute of big data: it can be quantified in proportion to its size in 

TBs or PBs and also according to the number of records, transactions, and files. The 

issue of what makes big data that big could be enlightened by considering the immense 

variety of sources than ever before including clickstreams, cloud platforms, and social 

media. Having these sources for analytics integrates common structured data with 

unstructured data drawn out of the text, audio, video, human language, and other 

devices and such semi-structured data as eXtensible Markup Language or Rich Site 

Summary feeds, hence the variety of big data is as big as its volume. Additionally, the 

velocity of big data ascribing to the frequency of data generation is among the leading 

edge of big data as it is piled up in real-time capacity (Elgendy and Elragal, 2014). 

Although many resources and researchers put forward the term three V`s for 

revealing the big data characteristics, some researchers are discussing the additional 

dimensions, namely veracity, value, and volatility. Veracity explains the quality of the 

data and relies on the data consistency, completeness, accuracy, context, availability, 

latency, deception, and approximations (Mills et al., 2012). As for value, it reveals 

improvements so as to back up big data analytics and establishes standards and norms 

to enlighten and demonstrate big data needs and competencies (Moyne and Iskandar, 

2017: 3). Volatility encapsulates storage capacity and retention of data as the volume 

and velocity of data increases enormously the storage and security of such amount of 

data become crucial (Belhadi et al., 2019: 2). Apart from these, such notions as 

validity, variability, venue, vocabulary, and vagueness are also used while explaining 

the big data features (Tsai et al., 2015: 2).  

With the emergence of big data analytics, data management and its techniques 

have started to shift from structured data into unstructured data, and from a stable 

environment to a ubiquitous cloud-based environment (Wang et al., 2018). In big data 
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analytics, data can be generated out of separate sources and in various forms as the 

reflection of its variety attribution. For instance, data could emerge from the web, logs, 

clickstreams, ERP systems, cloud systems, and social media applications in 

unstructured formats including image, audio, video, text, and graphics, hence the 

processing of such data is a basic task of big data analytics, or even more explicitly 

tasks of web analytics, social analytics, multimedia analytics, and so forth (Choi et al., 

2018). That is to say, regardless of the form of data that could be structured, semi-

structured, and/or unstructured, big data analytics technologies and tools aimed at 

transforming them into more understandable, analyzable, and processable data format 

so as to enhance business operations. 

However, there are some obstacles to big data analytics. These obstacles are 

not only limited to the existence of massive amounts of unstructured and complex data 

but also the hardship of capturing, storing, managing, analyzing, and processing the 

data with conventional tools and techniques. To handle the aforementioned obstacles 

of big data analytics such strategies as suggested by Choi and others (2018) including 

divide and conquer, distributed and parallel processing, incremental learning using 

unfamiliar situations, statistical inference, addressing uncertainty with learning, 

scalability, and heuristics can be implemented. Furthermore, statistics, machine 

learning, artificial intelligence, natural language processing, optimization, data 

mining, social network analysis, sequence pattern mining, decision trees, clustering 

algorithm analysis, data envelopment analysis, and visualization analysis are among 

the commonly used techniques for big data analytics. There are also different analytics 

tools like descriptive, inquisitive, predictive, exploratory, and golden path analysis. In 

descriptive analytics, dashboards, scorecards, and data visualization have been used to 

deduce a general assumption from the data. Inquisitive analytics interrogates the root 

causes and are nourished by the descriptive analytics outputs to discover the data 

characteristics, similarities, and correlations existing in data with clustering analytics, 

sequence pattern mining, and query tools. In predictive analytics, regression analysis, 

machine learning, and neural networks have been selected to make feasible forecasting 

regarding future events. Similarly, exploratory analytics have been focusing on the 

relationships in big data and creating further opportunities for understanding facts, 

insights, and associations. Golden path analysis is a developed form of predictive and 
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exploratory analytics and analyzes a large amount of behavioral data to divulge the 

hidden patterns, trends, and behaviors of events and activities in a more efficient way 

(Watson, 2014: 6). Moreover, based on the requirements of real-time analytics, off-

line analytics, business intelligence level analytics, and memory-level analytics are 

used to handle a huge amount of datasets within a feasible amount of time (Marjani et 

al, 2017: 3).  

According to Clemons et al. (2014), personal privacy violations and online 

invasions are among the biggest handicaps of big data analytics. For instance, spam 

advertising, pop-ups, and sponsored sites while browsing the internet might seem 

harmless though disturbing and annoying. However, fraudulent e-commerce 

transactions and identity theft are much more serious threats. Additionally, the term 

“personal profiling” that is related to gathering personal information can be used for 

commercial benefits without your knowledge and/or intention. Furthermore, an 

inadequately skilled workforce, difficulties in architecting big data analytics systems, 

data security and cyber-attacks, cost-related issues, data storage, and standardization 

are among the obstacles of big data analytics. Therefore, organizations that are inclined 

to adopt big data analytics within their business operations are required to be aware of 

both benefits and challenges of big data analytics and select the most suitable tools, 

techniques, and trends of big data analytics that match their organizational 

requirements.  

 

1.2.1.5. Cloud Systems 

 

Owing to the constantly accumulating data storage and computation 

requirements, cloud computing has become prominently crucial. Cloud computing 

reveals data storage potential as well as dynamic and scalable computing resources 

including infrastructure, software, and services through the network and real-time 

adaptations (Xu et al., 2009: 244; Dell et al., 2014). A broad definition of cloud 

computing is that it includes any pay-as-you-go or subscription-based services via the 

internet and is deprived of investing in new infrastructure or licensing new software 

(Knorr and Gruman, 2008: 1). Wang et al. (2010: 3) described cloud computing as “a 

set of network-enabled services, providing scalable, QoS (Quality of Service) 
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guaranteed, normally personalized, inexpensive computing infrastructures on demand, 

which could be accessed in a simple and pervasive way.” Another definition of cloud 

computing is that “cloud computing is a model for enabling convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction.” (Mell and 

Grance, 2009: 6). The basic characteristics of cloud computing are being “service-

based, massively scalable and elastic, shared, consumption-based billing, and 

delivered via internet technologies” (Voss, 2010: 7).  

The emergence of cloud computing dates back to 2007, however with the 

implications of Industry 4.0, the cloud computing paradigm has been conceptually 

evolving and contributing to both lives of individuals and business environments with 

growing data sharing, developed system performance, and reduced costs over online 

systems (Liu and Xu, 2017: 4). Basically, cloud computing encompasses five layers as 

clients, applications, platform, infrastructure, and servers (Gong et al., 2010: 1). 

Moreover, there are four sorts of clouds public cloud, private cloud, community cloud, 

and hybrid cloud based on the accessibility and requirements of the user. The public 

cloud is established for any users having an internet connection, whereas in the private 

cloud there is a bunch of users and the access to the private cloud is merely limited 

with them. The community cloud is a shared cloud system among two or more 

organizations with similar cloud needs. As for the hybrid cloud, it encompasses the 

combination of at least two clouds as in the mixture of public and private or public, 

private, and community (Huth and Cebula, 2011: 2). Therefore, users could opt for 

any sort of cloud system based on their requirements and demands.  

Furthermore, the functional aspects of cloud computing rely on flexible and 

convenient access to hardware, software, and data resources and there exist three 

deployment models of cloud computing including Infrastructure-as-a-Service (IaaS), 

Software as a Service (SaaS), and Platform-as-a-Service (PaaS). IaaS such as 

International Business Machines Corporation’s Blue Cloud project offers its users IT 

hardware solutions and an entire data center that is controllable, progressive, and 

versatile. SaaS provides access to software and/or an application via internet 

connection without installation such as Microsoft’s “Software + Service”. PaaS like 
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Microsoft’s Azure Services Platform is fundamentally a variation of SaaS that 

constitutes a link between hardware and an application and supports users to develop 

a set of applications and cloud services (Dillon et al., 2010: 2). Another deployment 

model of cloud computing is that file hosting services including Microsoft OneDrive, 

Amazon Simple Storage Service, and Google Docs and they are among the Data as a 

Service (DaaS) helping users to access, store, retrieve, and manage their data through 

network services. What differs cloud computing from other computing models like 

grid, global, and internet computing is lying behind its aspects of having user-centric 

interfaces, autonomous systems, adaptability to user’s requirements, and providing on-

demand service and virtualization (Wang et al., 2010). 

As cloud computing creates real-time access to various hardware, software, and 

data resources, this leads to agile and flexible on-demand services, improvements in 

development and emanation of new products and/or services as well as reductions in 

time to market thus enabling competitive advantages for many enterprises (Marston et 

al., 2011: 178). Additionally, the management and organization of hardware, software, 

and data resources are much more effortless, timely, and viable in the cloud 

environment. Apart from abrupt and unexpected outages, cloud computing caters for 

uninterrupted services to the users. More importantly, damages to the environment 

owing to broad-spectrum use of traditional systems in the enterprises could be 

diminished to some extent through the use of cloud computing as in the reduction of 

e-waste (Jadeja and Modi, 2012: 3).  

Although cloud systems address various solutions regarding hardware, 

software, and data usage of individuals and businesses, one of the main drawbacks of 

the system is the security owing to potential software bugs and crashes, increasing rate 

of hackers and malfeasance. As the users entrust their personal and private information 

to an external source, they are to be aware of such security measures as encryption 

methods of the service providers, methods of protection, and ways of the backups of 

the data (Huth and Cebula, 2011: 3). Other concerns regarding cloud computing are 

availability, standardization, privacy, support, interoperability, and compliance. The 

availability concern with cloud computing occurs when the cloud computing vendors 

are unable to deliver the service, namely outage, thereby in such circumstances, users 

should have contingency plans including keeping back-up storage and/or cloud, or 
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rigorously not putting critical and vital data on the cloud. The compliance issue is 

merely affiliated with enterprises because they are obliged to sustain business-related 

legal documents and ensure their integrity to comply with relevant laws and 

regulations hence cloud computing vendors are to actualize appropriate technologies 

to provide with these compliance requirements (Kim, 2009: 4).  

As a result, it is evident that there are some obstacles to adapting cloud 

computing systems into the enterprises’ current managerial and operational processes, 

therefore proper management and control of such agile and innovative solutions are 

crucial to ensure the effectiveness of cloud systems within enterprises. 

 

1.2.1.6. Cyber-Physical Systems  

 

Through the developments of manufacturing technologies along with Industry 

4.0 trends and extensions, production environments and paradigms have been 

revolutionizing, hence intellectualized, integrated, reliable, flexible, productive, 

efficient, and digitalized processes and systems have been emerging. Cyber-Physical 

System (CPS) is among the fundamental enabling technologies to actualize Industry 

4.0. CPSs harmonize and manage cyber and physical systems simultaneously via the 

broad use of computation, communication, and control technologies (Zhang et al., 

2017: 138). According to Rajkumar et al. (2010: 1), cyber-physical systems are 

“physical and engineered systems, whose operations are monitored, coordinated, 

controlled, and integrated by a computing and communicating core.”  CPSs in general 

pave the way for the intersection and/or integration of cyber and physical sources and 

enhance the capabilities of the physical environments. The features of cyber-physical 

systems are that having a cyber-aptitude in each physical item and integration among 

cyber and physical environments to train and adapt reactively along with being 

thoroughly networked, automated, dynamically reconfigurable for effective data-

flows, self-organization, reliable operation of the systems, and enhanced outputs 

(Huang, 2008).  

CPSs contain physical phenomena, cyber systems, and interfaces. The physical 

phenomena ascribe to the surrounding that is required to be monitored, managed, and 

controlled. The cyber systems are physically-aware next-generation sophisticated and 
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embedded systems. Such innovative approaches as real-time computing techniques, 

visualization methods, embedded systems to provide system reliability, safety, and 

security have been developed. Similarly, through the interfaces including embedded 

systems, actuators, sensors, analogue-to-digital converters, digital-to-analogue 

converters, and wireless communication generating an adaptive, autonomous, smart 

feedback loops physical sources and processes could be monitored and managed, 

hence real-time, reliable, resilient, and dynamic collaboration between physical and 

cyber systems are provided. That is to say, these aforementioned interfaces are 

bridging the cyber systems with the physical world (Leitao et al., 2016: 1; Gunes et 

al., 2014: 3).   

The term CPS could be intertwined with other technologies and tools of 

Industry 4.0 as in the IoT. However, cyber-physical systems differentiate from wireless 

sensor networks and the internet of things. That is to say, wireless sensor networks 

basically detect the signal and focus on the perception, collection, and processing of 

the data. As for IoT, it interconnects such tools as wireless sensors and Radio 

Frequency Identification (RFID) via wireless network and internet connections in 

order to provide reliable transmission and effective processing of information, so in 

general, the internet of things have merely the perception of the physical environment 

rather than the control. Cyber-physical systems, on the other hand, are manageable, 

reliable, and adaptable systems ensuring feedback loops distributed through embedded 

computing systems with the computation, communication, and control infrastructures 

and technologies. CPSs also have control of the physical environment and affect the 

functioning and route of the physical processes (Liu et. al, 2017). The establishment 

of cyber-physical systems yet inevitably requires such technologies as the IoT, cloud 

computing, augmented reality, big data, and machine-to-machine. In order to 

implement cyber-physical systems properly, a robust harmony providing real-time 

data acquisition out of the physical environment and information feedback out of the 

cyber environment along with agile data management and analytics are also necessary. 

Furthermore, a smart connection ensuring rigorous and reliable data out of machines, 

components, and equipment as well as an effective transformation from data to 

information creating a self-awareness attribute to machines, components, and 

equipment are required. A cyber-level acting as a pivotal information hub and creating 



33 

 

a self-comparison attribute to machines, components, and equipment through wide-

spread insights over the conditions, workflows, and schedules of them, a cognition 

level in which decisions are prioritized and optimized, and a configuration level 

operating as a feedback control mechanism out of the cyber environment to the 

physical environment and creating self-configuration and self-adaptiveness attributes 

to machines, components, and equipment are also among the functional requirements 

for the proper implementation of cyber-physical systems, hence acquiring better 

product quality, overall system and process reliability with smarter and agile 

production equipment (Lee et al., 2015).  

Although cyber-physical systems furnish a considerable amount of benefits, 

improvements, and implications in smart manufacturing, health care and medicine 

systems, transportation and traffic management, robotics, protection and control of 

infrastructures such as water, electricity, gas, and oil, the implementation and design 

of cyber-physical systems bring about various challenges and various requirements 

including functional, reliability, and performance. Based on the study conducted by 

Gunes et al. (2014: 3): 

 dependability that is the performance of the systems meeting the requirements of 

the processes and operations without disruptions, 

 maintainability that is the ability to fix and repair in case of any failure within the 

system, 

 availability referring to the accessibility even if the failure occurs,  

 reliability ascribing to what extend the system provide factuality and validity while 

functioning,  

 robustness that is the capacity to maintain the system coherence and handle any 

faults, 

 predictability referring to the level of the forecast of systems’ condition, pattern, 

and functionality,  

 accuracy that is the degree to which a system's tracked outcome resembles its real 

one, 

 compositionality that is the capability of digest the whole system by checking out 

any aspect of it,  
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 adaptability referring to adjustment of the system configuration based on the 

potential alterations,  

 confidentiality referring to sharing vulnerable information merely with the 

authorized entities, 

 interoperability that is the capability of the information exchange and collaboration 

of the systems and/ or items, and  

 the heterogeneity that is the ability of a system to integrate a variety of 

interconnected and interacting components are among the challenges of cyber-physical 

systems.  

Owing to the increasing number of IoT devices, vulnerability issues arise and 

cyber-physical systems might expose to cyber-attacks. Other barriers to these systems 

include a bunch of protocols and standards, safety, and security issues. Cyber-physical 

systems should ensure the issues of dependability, reliability, accuracy, availability, 

adaptability, effectiveness, predictability, interoperability, heterogeneity, and 

maintainability in the early design stage so as to prevent any disruptions within the 

processes and/or operations as well as the sensitive information leakage and malicious 

attacks. As a result, emerging technologies and mechanisms including human-centric 

sensing, wireless and quantum sensors, smart networked sensors could be developed 

in order to provide cyber-physical systems’ security, reliability, and privacy 

requirements (Alguliyev, 2018: 1).  

The term, cyber-physical systems generally collocate with cybersecurity and/or 

cyber security encompassing security issues related to information technology and/or 

operational technology environments. Cybersecurity handles the privacy, integrity, 

and availability of data and has no concern with an orchestration of physical and cyber 

sources and processes, on the other hand, it is often converged on computer security 

and information security (Walls et al., 2013). Some authors’ approaches to 

cybersecurity are relying on the fact that this discipline is broadly treated as a sub-

discipline of information security yet features including the nature, structure, 

implementation, and strategies behind these disciplines are to be distinguished. 

Overall, integrity and availability are highlighted in cybersecurity whilst information 

security’s primary concern is confidentiality (Barzilay, 2013; Wamala, 2011).  There 

exist such threats as “cyber-attacks” referring to harm and halt cyber systems and 
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“cyber-exploitation” referring to the exploitation of cyber-infrastructure illegally and 

defilingly. In order to cope with these sorts of threats and violations, measures should 

be taken at individual, non-governmental, national, and international levels (Tonge et 

al., 2013: 2).  

 

1.2.1.7. Internet of Things 

 

The notion of the Internet of Things (IoT) refers to a framework of the 

interconnection of everyday objects through the internet in which the connection of 

physical items to the virtual environment is provided incessantly along with the control 

of these items is ensured remotely owing to them operating as physical access points 

to internet services. The term IoT was first coined in 1999 by Kevin Ashton in the 

Auto-ID Laboratory of Massachusetts Institute of Technology in order to define a 

system providing the internet connection of objects in a physical world through sensors 

basically referring to RFID tags that are used in supply chains and logistics operations 

for counting and tracking down the commodities without the human interaction. Now, 

IoT is an emerging technology with its technical, social, and economic importance and 

variety of applications. According to predictions, it is anticipated that there will be at 

least 100 billion connected IoT devices along with its global economic impact of more 

than $11 trillion by 2025 (Rose et al., 2015).  

The International Telecommunication Union (ITU) describes the IoT as a 

“global infrastructure for the Information Society, enabling advanced services by 

interconnecting (physical and virtual) things based on, existing and evolving, 

interoperable information and communication technologies” (ITU, 2012). 

Accordingly, the features of the IoT encompass communication and cooperation via 

wireless technologies, identification via RFID and barcode technologies, tracking, data 

collection, identification, sensing, actuation, embedded information processing, 

localization, and user interfaces through smart objects and things (Rose et al., 2015). 

According to the authors, there are several definitions regarding the IoT 

including things-oriented, internet-oriented, and semantic-oriented. In the things-

oriented definitions, the focus is on the things including, particularly RFID, wireless 

sensors and actuators, smart items, and emerging sensing technologies that become 
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connected in the IoT. Even though these technologies and items constitute a 

fundamental component of the road to the IoT structure, the overall deployment of the 

IoT requires other components as well. In the internet-oriented definitions, the 

internet-related aspects of the IoT including internet protocols as the network 

technology have been buttressed. Moreover, it is evident that the merge of the terms 

“Internet” and “Things” creates a distinctive level of innovation in information and 

communications technology. IoT conceptually refers to ‘‘a worldwide network of 

interconnected heterogeneous objects (sensors, actuators, smart devices, smart objects, 

RFID, embedded computers, etc.) uniquely addressable, based on standard 

communication protocols.” (Fortino and Trunfio, 2014: 1).  

Another definition of the IoT is semantic-oriented and concentrates on the 

challenges in the IoT associated with the storage, interconnection, search, and 

organization information generated by the IoT. The figure below shows how these 

various definitions, explanations, and technologies are converging and forming the 

term IoT together (Atzori et al., 2010). 

 

Figure 2: ‘‘Internet of Things” Paradigm as a Result of the Convergence of Different Visions 

 

 

Source: Atzori et al., 2010: 2789.  
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IoT is regarded as the combination of physical and digital components for 

creating new products and enabling novel business models. From a technical point of 

view, the implementation of an IoT technology requires three layers including the 

thing or device, the connectivity, and the IoT cloud. The device layer is composed of 

core hardware components along with such IoT components as sensors, actuators, or 

processors and embedded software operating the physical thing to control and run its 

functionality. The connectivity level provides communication through protocols 

between the individual thing and the cloud. Next, the device communication and 

management software is used at the IoT cloud layer to communicate with, plan, and 

control connected things, whilst an application platform is used to design and run IoT 

applications (Wortmann, and Flüchter, 2015). According to another definition of IoT, 

it encompasses the sensing layer, the access layer, the network layer, the middleware 

layer, and the application layer. In the sensing layer, the required information is 

captured through various sorts of sensors, and the access layer is used to transfer 

information from the sensing layer to the network layer via mobile, wireless, and/or 

satellite networks as well as wireless local areas networks. The network layer is then 

responsible for integrating the information resources of the network with the internet 

platform and the establishment of an efficient and reliable infrastructure platform. The 

middleware layer manages and controls the real-time network information. Last, the 

application layer builds the practical application of several industries including smart 

logistics, disaster observation, and remote medical care (Chen and Jin, 2012).  

Based on a study conducted by Mukhopadhyay and Suryadevara (2014) 

business sectors including customer service/support, data management and analysis, 

supply chain management and logistics, energy management, asset management, 

technology infrastructure management are expected to be positively affected by the 

developments of IoT. However, due to lack of employee skills/knowledge, lack of top 

management commitment/knowledge, immaturity of industry standards around IoT, 

high costs of investment in IoT infrastructure, weaknesses in current technology 

infrastructure businesses are to deal with obstacles and challenges throughout the 

implementation of IoT. Other technological challenges include scalability, 

interoperability, software complexity, data volumes, security, privacy, computational 
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ability, fault tolerance, power supply, short-range communication, and interaction 

(Nižetić et al., 2020).  

As a result, the IoT is an emerging technology system that has significant 

potential and a wide range of application areas.  Furthermore, the development of IoT 

is expected to enable the interconnectedness among objects anytime, anywhere hence 

converting these real-world objects into smart virtual objects however technical, 

operational and managerial challenges aforementioned should be handled effectively 

so as to make the most of the IoT technologies and applications.  

 

1.2.1.8. System Integration  

 

A holistic system integration horizon has emerged with the Industry 4.0 

technologies and applications. Before Industry 4.0, organizations were barely 

integrated both horizontally and vertically. Nonetheless, there exist a considerable 

amount of organizations that are not yet wholly integrated. However, with the Industry 

4.0 technologies and applications, organizations, departments within the 

organizations, and entire value chains are expected to convert into much more 

cohesive, coherent, harmonious, and fully integrated (Rüßmann et al., 2015). Industry 

4.0 paves the way for various dimensions of integration including horizontal 

integration, vertical integration and network-based production systems, and end-to-

end engineering across the entire product life cycle (Stock and Seliger, 2016: 537).  

A horizontal integration refers to an accretion internally or externally through 

activities like mergers, strategic alliances, and acquisition hence the integration of 

companies that are at the same level is generated. With the horizontal integration 

economies of scale, elimination of competition, increase in market share and 

dominance, creation of win-win situation for the collaborators of the horizontally 

integrated structure, and new business opportunities could be achieved. However, a 

domino effect can be seen if one of the collaborators of the horizontal integration 

structure has a low-quality product and/or service or some delivery issues so the 

reputation of the other integrated parts could also fall into disrepute (Naik et al., 2010: 

2; Yelis, 2021). Therefore, understanding, analyzing, and seizing both the limitations 
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and opportunities are of great importance to work harmoniously in horizontal 

integration structures.  

A vertical integration basically occurs when a company handles its operations 

including sourcing, manufacturing, distribution, and marketing within its supply chain 

at various levels and the direction of the integration could be either upstream or 

downstream. In this way, a vertically integrated company could avoid any supply 

interruptions or bullwhip effects as it holds the control across the entire supply chain 

and it also experiences a reduction in the costs and increases in the competitive 

advantages. Nonetheless, as the company attempts to vertically integrate with other 

operational bodies some issues including the managerial complexity and decrease in 

flexibility might happen (Amadeo, 2020). 

As for the end-to-end integration, it encompasses the entire functions of the 

supply chain including demand and supply management, procurement, purchasing, 

sourcing, product and/or service design and development, scheduling, manufacturing, 

warehousing, delivery and transportation, after-sales services, reverse logistics, and 

recycling and it attempts to bring about a holistic view of the supply chain and gather 

abovementioned functions so as to drive down costs such as labor and material, 

provide efficiency, transparency, visibility across the entire value chain, hence 

providing customer satisfaction with much more customized products and services 

(Kremer, 2021).  

 

1.2.1.9. Simulation 

 

The basic definition of the simulation is that it is the replica, reproduction, 

reflection, and/or resemblance of a real-world process or system over time. Simulation 

fundamentally generates a simulated record of the process and/or system and through 

the observation of that simulated records functioning aspects of the represented real-

world process and/or system can be apprehended and analyzed (Jahangirian et al., 

2010. Simulation applications can be used in various fields including capacity 

planning, transportation management, forecasting, process design and improvement, 

production planning, inventory control, purchasing, resource allocation, logistics, 

scheduling, supply chain management, workforce planning, maintenance 
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management, project management, financial management, quality management along 

with defence, healthcare, and public services for diagnosing real-world problems, 

indicating and then analyzing the behavior of the process and/or system, exploring 

opportunities and possibilities, asking “what if” questions regarding the represented 

environment and identifying the constraints and limitations within the represented 

environment. However, the implementation can be quite time-consuming and 

expensive and requires a skilled workforce. Moreover, an exposition and analysis of 

the represented environment can also be difficult (Banks, 1999).  

Now being among the Industry 4.0 technologies, simulation collaborates with 

other Industry 4.0 related trends and extensions including cyber-physical systems, 

smart factories, and augmented reality for virtualization and optimization and has a 

significant impact on the designing, analyzing, and improving both the quality and 

efficiency of the manufacturing processes and other simulated functions (Gunal and 

Karatas, 2019). Furthermore, simulation provides various benefits such as reduced 

waste in time and resources, increased efficiency through the optimization and 

alteration of the routing conditions, machine processing times, and production speed 

along with increased revenue, productivity, and work safety (Gunal, 2019). 

 

1.2.1.10. Smart Factories  

 

The notion of “smart” encompasses individuals’ lives as in smartphones, smart 

appliances, smart home systems, even smart cities. Furthermore, the manufacturing 

approaches and systems have been penetrating smart technologies and smart devices, 

hence smart factories holistically (Radziwon et al., 2014).  

Smart factories are consisting of flexible structures that can optimize their 

performance on their own, adapt to unexpected and/or new situations, learn 

simultaneously, and manage the production processes autonomously. Smart factories 

have fundamental features including connectivity, optimization, transparency, 

proactiveness, and agility (Burke et al., 2017).  

Based on the horizon of Wang et al. (2016b) upon a smart factory, there exist 

distinct layers including physical resource, industrial network, cloud and intelligence, 

and control within a production plant.  In a physical resource layer, various sorts of 



41 

 

machines and equipment consisting of such as smart products, smart devices, and 

smart machines are located and operations are taking place as a reflection of a shop 

floor. The industrial network layer embodies the data flow process from machines to 

the cloud, and vice versa, in other words, it connects the physical resource layer with 

the cloud layer. The data is then captured, stored, in the cloud layer to further be 

processed via big data analytics. The last layer of the production plant is the control 

mechanism linking human force to the smart factory via enablers such as personal 

computers, tablets, and mobile phones. Moreover, smart factory encapsulates an 

integration of cyber-physical systems and such physical objects as machines, products 

with information systems as well as emerging technologies including Manufacturing 

Execution Systems (MES), ERP, IoT, big data, cloud computing, and embedded 

systems so as to adapt flexible and agile manufacturing environments (Wang et al., 

2016a). As a result, smart factories are extremely intelligent organisms that can use 

automation in all processes within the organization, improve themselves, and 

exchange data so as to ensure the combination of the physical world and the virtual 

world. In traditional factory systems, there are limited and predetermined resources, 

through the fixed routing and schedules, manufacturing operations are carried out. 

Table 2 below demonstrates the difference between traditional factory systems and 

smart factory mechanisms.  

 

Table 2: The difference between traditional factory systems and smart factory 

 

The smart factory production mechanism The traditional factory production mechanism 

Various resources   Limited and predetermined resources 

Flexible routing   Scheduled routing 

Strong Co-ordination   Diverse Layers 

Digitized processes and operations   Manual processes and operations 

Complete data for faster decision-making processes and 

data-driven decision-making 

Limited data for decision-making processes and 

process-driven decision making 

Enhanced productivity, flexibility, and resource utilization, 

high interoperability, faster procurement, improved 

customer experience, motivated workforce, and more 

improvements 

Reduced productivity, poor resource utilization, 

poor interoperability, slow procurement, poor 

customer experience, time-consuming, and fewer 

improvements 
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Technologies such as IoT, cloud computing, autonomous 

robots, additive manufacturing, big data and analytics are 

being involved in manufacturing systems 

  Limited technology involvement 

Source: Wang et al., 2016b. 

 

It is evident that the smart factory differs from the traditional factory with its 

operational and managerial approaches. While traditional factories include diverse 

layers including design, production, marketing, and other departments within the 

factory, departments in smart factories are deeply coordinated, cooperated, and 

collaborated. In smart factories, processes and operations are digitized, technology and 

data-driven, thus enhanced productivity, flexibility, and resource utilization, high 

interoperability, faster procurement, improved customer experience, motivated 

workforce, whereas in traditional factories processes and operations are manual, and 

there exist limited and poor data for decision-making processes, thus reduced 

productivity, poor resource utilization, poor interoperability, slow procurement, poor 

customer experience, time-consuming, and fewer improvements. Therefore, it is 

inevitable that traditional manufacturing systems and factories will be replaced by 

smart factories over time, as smart factories provide numerous positive outcomes and 

benefits. Accordingly, smart factories are shaping the future of manufacturing 

environments and Industry 4.0 technologies and extensions including cyber-physical 

systems, IoT, autonomous robots, augmented reality, big data and analytics, cloud 

computing, and artificial intelligence facilitate the smart factory implementation 

(Hozdić, 2015). 

Although smart factories have many benefits and advantages over the 

traditionally operating factories there are some requirements and challenges in the 

implementation of a smart factory including an update of smart management systems, 

identification, status knowledge, support for different queries, integration of 

heterogeneous information. Assignment of virtual world information to real-world 

objects via various identification methods, tags, and sensors can be also seen as one of 

the basic challenges in creating a smart industrial ecosystem. To execute continuous 

improvements in processes and drive down lead times, localization, that is to say, 

information regarding the position of such objects as tools and/or materials along with 

the status and/or situation of the objects are required (Lucke et al., 2008). Additionally, 
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implementation of the smart factory requires such factors as “modularity, 

interoperability, decentralization, virtualization, service orientation, and real-time 

capability” that should be taken into consideration. Challenges regarding the skilled 

workforce, technology, infrastructure, and investment are also required to be handled. 

As a large volume of real-time data, unstructured sensor data, machine logs are being 

piled up within the smart factory, storage, analysis, interpretation of these various sorts 

of data properly for conducting such functions and operations as quality control 

management and maintenance management are also regarded as complicated and 

complex tasks. Accordingly, the security and privacy of these data generated are of 

vital importance so factories demonstrating smart features and attributes are required 

to improve their data security and privacy systems (Hermann et al., 2015; Chen et al., 

2017; Wang 2016a). Therefore, challenges in the implementation of the smart factory 

systems should be handled effectively in order to make the most out of these systems 

and applications.  
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CHAPTER TWO 

SCOPE AND DISCUSSIONS OF SUSTAINABILITY AND CONVERGENCE 

OF INDUSTRY 4.0 TECHNOLOGIES WITH SUSTAINABILITY 

DIMENSIONS 

 

The root of the sustainability and/or sustainable development hinges upon “the 

Brundtland report” (World Commission on Environment and Development, 1987). In 

the report, sustainable development is described as “meeting the needs of the present 

without compromising the ability of future generations to meet their own needs”. The 

term development in the definition of sustainability appertains not only to economic 

growth but also to social progress and environmental protection. Another definition of 

sustainable development is that it includes economic and social development strategies 

that maintain and enhance the natural environment while also promoting social 

fairness (Diesendorf, 2000: 23). The author also stated that if the term sustainability 

would be regarded as a goal and/or an endpoint, sustainable development would then 

be considered as a process. To put it differently, sustainability embodies a bunch of 

today`s actions and plans that do not tether economic, social, and environmental 

opportunities for future generations (Elkington, 1997). An extension of these technical 

definitions is put forward by Veiderman (cited in Munier, 2005: 10) that is 

sustainability is a vision of the future that gives us a road map and helps us focus on a 

set of values, ethical and moral standards, by which we should lead our activities. 

Moreover, sustainability can be considered as a process of change and enhancement 

in behaviors, attitudes, consumption patterns, and habits involving individuals, 

institutions, and governments and is about a quality of life (Munier, 2005). According 

to Arowoshegbe and Emmanuel (2016: 91), sustainability can also be explained as: 

-an overarching conceptual framework that describes a desirable, healthy, and 

dynamic balance between human and natural systems, -a system of policies, 

beliefs, and best practices that will protect the diversity and richness of the 

planet’s ecosystems, foster economic vitality and opportunity, and increase 

quality of life levels for people and, -a vision describing a future that anyone 

would want to inhabit. 

 

Moreover, if we transform general sustainability definition into the business 

point of view, it can be gathered that sustainability is about filling the demands of a 

firm's direct and indirect stakeholders (such as shareholders, workers, clients, 
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communities, and so on) without jeopardizing the firm’s capacity to satisfy the needs 

of future stakeholders" (Dyllick and Hockerts, 2002: 131). Savitz (2013: 2) also 

suggested that a sustainable business makes profits for its shareholders while also 

safeguarding the environment and improving the lives of individuals it interacts with. 

In general, it can be concluded that sustainability stands out for societal, economic, 

and environmental evolution for a better future. The importance of sustainable 

development, hence the term sustainability has been rising as a result of the ever-

increasing mobility of industrial activities since the dawn of the industrial revolutions 

and has been occupying the agenda of businesses, stakeholders, governments, and non-

profit organizations to find viable and innovative solutions to problems of 

environment, society, and economy. In such, environmental problems include global 

warming, greenhouse effect, ozone depletion, lack of resources and even depletion of 

resources, pollution, loss of non-renewable resources, climate change, biological 

diversity loss, and waste; societal problems include high unemployment rates, poor 

working conditions, and social vulnerability; economic challenges include supply risk, 

the pressure of intense globalization, a need for differentiation strategies due to high 

levels of competition. Furthermore, changing demographic features, intergenerational 

differences like different requirements of generations X, Y, and Z worldwide, a need 

for coping with the target group with high awareness of social and environmental 

responsibility as a result of being a global information society also have pushed 

businesses to create towards sustainable industrial value in social, environmental and 

economic dimensions (Stock and Seliger 2016; Müller et al., 2018; Kiel et al., 2017).  

Apart from the term sustainability, there is also another term called “corporate 

social sustainability” and it is associated with the terms including environmental 

management, sustainable development, and corporate sustainability. According to the 

authors, focusing on environmentally and socially responsible activities leads to a 

better public image, hence economic benefits (Christofi et al., 2012). This encouraged 

businesses to report their environmental and social activities willingly and to do so the 

United Nations Environment Programme and the Nonprofit Coalition for 

Environmentally Responsible Economies together introduced the first standards for 

sustainability reporting: The Global Reporting Initiative (GRI) (Brockett & Rezaee, 

2012; Christofi et al., 2012). GRI sustainability reporting standards are developed for 



46 

 

organizations that are willing to share their economic, environmental, and/or social 

impacts. The figure indicates the economic, environmental, and social standards 

designated by GRI in 2016. 

 

Table 3: GRI’s Topic Specific Standards 

 

GRI 200: Economic  

201: Economic Performance 

202: Market Presence  

203: Indirect Economic Impacts  

204: Procurement Practices 

205: Anti-corruption  

206: Anti-competitive Behavior  

GRI 300: Environmental  

301: Materials  

302: Energy  

303: Water   

304: Biodiversity   

305: Emissions   

306: Effluents and Waste  

307: Environmental Compliance 

308: Supplier Environmental Assessment  

GRI 400: Social  

401: Employment 

402: Labor/Management Relations 

403: Occupational Health and Safety  

404: Training and Education  

405: Diversity and Equal Opportunity  

406: Non-discrimination 

407: Freedom of Association and Collective Bargaining  

408: Child Labor 

409: Forced or Compulsory Labor  

410: Security Practices  

411: Rights of Indigenous Peoples  

412: Human Rights Assessment  

413: Local Communities  

414: Supplier Social Assessment  

415: Public Policy 

416: Customer Health Safety 

417: Marketing and Labeling  

418: Customer Privacy  

419: Socioeconomic Compliance 

Source: GRI, 2016.  
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Apart from the GRI, International Integrated Reporting Council Framework, 

and the Sustainability Accounting Standards Board guidelines are considered to be 

among the most prevalent sustainability reporting frameworks (Calace, 2016, 2017).  

So, these reports in general provide some information regarding the economic 

indicators, environmental compliance, labor practices, human rights, society, and 

product responsibility. 

Furthermore, in an attempt to raise awareness and globally emphasize 

sustainable development, the latest “United Nations Sustainable Development 

Summit” was held in September 2015 and seventeen sustainable development goals 

were determined, which are targeted to be accomplished by 2030. These goals are 

demonstrated in Figure 3 below.  

 

Figure 3: United Nations Sustainable Development Goals 

 

 

Source: UNDP, 2021. 

 

As depicted in the figure above, the sustainable development goals are targeting 

at ending poverty, elimination of hunger, providing good health and well-being, 

offering quality education, adopting gender equality, supplying clean water and 

sanitation, creating affordable and clean energy, focusing on decent work and 
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economic growth, industry, development of innovation, and infrastructure, reducing 

inequalities among individuals, tendering sustainable cities and communities, 

encouraging responsible consumption and production, taking climate actions, caring 

the life below water and on land, spreading the peace, justice and strong institutions, 

and partnering for the goals (UNDP, 2021). An urge to achieve these sustainable 

development goals is of great importance. Not only the businesses alone but also the 

non-profit organizations, governments, more importantly individuals should be a part 

of these actions and act upon them to achieve these goals by altering the direction of 

quantitative economic development towards a more qualitative and responsible way. 

Among these seventeen sustainable development goals, the seventh goal, 

“accessible and clean energy”, the eighth goal “decent work and economic growth”, 

the ninth goal “industry, innovation and infrastructure”, the twelfth goal “responsible 

consumption and production” and the thirteenth goal “climate action” are chosen while 

shaping this study due to their solid relations with the environment, production and 

industry (Bonilla, 2018). In detail, the seventh goal, the use of accessible and clean 

energy, benefits both organizations and the fight against climate change with increased 

efficiency, employment, cost advantages, and prevention of environmental pollution. 

The eighth goal, decent work and economic growth, promotes superior working 

conditions with regards to health and safety, reasonable working hours, equal rights 

both on wage systems and in the working environment, and social security. The ninth 

goal, industry, innovation and infrastructure, offers real-time control on the production 

systems, productivity, flexibility, transparency, mass customization with the latest 

technologies and innovations. The twelfth goal, responsible consumption and 

production, emphasizes green production technologies and business strategies like 

“Triple Bottom Line of Sustainability” (TBL) thus organizations increase their public 

images and achieve competitive advantages with the responsible and effective use of 

resources and energy as well as increased financial gains. Lastly, the thirteenth goal, 

climate action, focuses on the reduction of greenhouse gases and carbon footprint 

particularly along the value chains of businesses along with the energy and resource 

efficiency (Özdağoğlu and Yılmaz, 2020; Korkmaz, 2020; Yılmaz and Özdağoğlu, 

2020; İpek and Hızarcı-Payne, 2020; Madran, 2020). Business strategies, government 

regulations, and legislation as well as the initiatives of non-profit organizations and 
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individual approaches are expected to pave the way for executing social, 

environmental and economic sustainability as well as sustainable development goals 

globally, thereby ensuring a better life for future generations.  

Based on the various views on sustainability, it is evident that sustainability 

covers the promise of societal, economic, and environmental evolution for a better 

future that refers to the “triple bottom line of sustainability", an extension of corporate 

social sustainability. The triple bottom (TBL) line was coined in 1994 and used by 

Elkington in 1997 and the author highlighted that the triple bottom line involves 

economic growth, environmental quality, and societal benefit simultaneously on the 

contrary to the traditional business accounting views focusing on the financial bottom 

line solely (Elkington, 1997). Moreover, TBL, also known as 3BL implies the 

necessity and importance of long-term social, environmental, and economic benefits 

instead of short-term financial gains because the success and/or failure of a business is 

thought not to be defined only by pecuniary return but also by its conformity with 

societal expectations and environmental impacts (Arowoshegbe and Emmanuel, 

2016).  

There are three main focuses of TBL: 3P (people, planet, profit) (Global 

Reporting Initiative, 2006). So, in general, it can be said that “people” is related to 

social performance, societal issues, and approaches, “planet” concerns ecological 

impacts and environmental performance, and “profit” refers to the financial stability 

and economic functions of the businesses. 

The Venn diagram of the three pillars was first presented by Barbier (1987) 

and the author suggests that rather than conflicting these dimensions are reinforcing 

each other. In Figure 3 below a demonstration of TBL and brief explanations are given. 

While adapting the figure below, a gear wheel shape is preferred to highlight the fact 

that sustainability revolves around these three dimensions and that the disruption of 

one would affect the operation of the others.  
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Figure 4: Triple Bottom Line 

 

 

Source: Gillis, 2021. 

 

Next, all three dimensions under the umbrella of sustainability will be 

mentioned in a detailed manner. 

 

2.1. SOCIAL SUSTAINABILITY 

 

The notion of social sustainability concerns human and society-related issues 

and has not been in the spotlight and has been overshadowed by economic and 

environmental sustainability. This dimension is also regarded as the weakest pillar of 

sustainability and there is a lack of understanding and work on this dimension 

(Vallance et al., 2011). In Jacobs et al. (1987)’s definition of sustainable development, 

a satisfaction of basic human needs for jobs, food, energy, water, sanitation, and 

education, achievement of equity and social justice, procuration for social self-

determination and cultural diversity cohere with the social dimension of the 
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sustainability. Furthermore, social sustainability includes satisfying basic needs, 

reducing poverty, equity-enhancing, increasing useful goods and services, and social 

justice (Barbier, 1987).  

According to the authors, the conceptual framework of social sustainability is 

composed of four concepts including safety, urban forms, equity, and eco-

prosumption. Safety is the basic requirement of social sustainability and refers to not 

only having the right to be safe but also adopting security measures to prevent potential 

safety risks. Urban forms include socially desired urban and communal dimensions 

including compactness, diversity, clean energy, greening, sustainable transport, and 

utilization. Equity promotes equal policies and justice to deal with vulnerabilities and 

enhance the development of public involvement in sustainability projects. Eco-

prosumption encourages individuals, hence society to consume, produce and gain 

values in and towards socially and environmentally responsible ways (Eizenberg and 

Jabareen, 2017). An industry-based definition of social sustainability can be found in 

the definition of Elkington (1987) that is the social dimension of the triple bottom line 

is regarded with the beneficial and fair business practices to the labor, human capital, 

and the community. Similarly, based on the empirical analysis done by the authors, 

the social part of sustainability covers such topics including protection of health and 

safety, education and free personal development, sustaining cultural and societal 

values, and juridical equality and certainty (Hansmann et al., 2012). 

Moreover, Dyllick and Hockerts (2002: 134) define socially sustainable 

companies as companies that “add value to the communities within which they operate 

by increasing the human capital of individual partners as well as furthering the societal 

capital of these communities. They manage social capital in such a way that 

stakeholders can understand its motivations and can broadly agree with the company’s 

value system.”  

In the context of this study, concerning the convergence of social sustainability 

with Industry 4.0, thanks to technologies such as autonomous robots, intelligent 

production infrastructures, intelligent factory systems, and advanced machine learning 

through human-machine interfaces, it is assumed that brainpower is used instead of 

the muscle power in order to perform monotonous and risky tasks for industrial 

workplaces (Koca, 2018). Therefore if these abovementioned technologies are used at 
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a factory level within various departments such as production, transportation, and 

logistics this situation will create a better, safe and secure working environment from 

a social sustainability aspect. However, this situation also leads to a clash of ideas. 

Some authors think that especially blue-collar workers will be unemployed and 

replaced by robots. However, others think that various job definitions will emerge and 

these new job definitions will offer new opportunities. These job definitions include 

robot engineering, industrial computer engineering, network development 

engineering, 3D printer engineering, big data expertise, data security analyst, data 

analyst, e-commerce and social media expertise, and artificial intelligence and 

machine learning experts (Prause, 2015; Cohen et al., 2019). Both arguments should 

be tackled carefully because there is a fine line between utilizing and suffering from 

these new technologies. So,  the biggest share of the worries falls on the top 

management of the enterprises in eliminating the worries of the workers who are afraid 

of losing their current works to smart systems or robots. Top management needs to 

answer the following questions before applying these technologies:  

 What is the current status of the enterprise in terms of technological, worker 

capacity and workers’ competence, managerial approaches of top management? 

 How will the senior management of the business and workers approach these 

transformation processes? 

 What is the road map to follow in the transformation or adaptation processes to 

Industry 4.0? 

After analyzing the current situation in the transformation or adaptation 

processes to Industry 4.0, the top management should prepare a road map to follow in 

this transformation process.  

As a result, based on the studies analyzed earlier Industry 4.0 technologies and 

applications not only will offer new job definitions in terms of social sustainability but 

also will offer such opportunities as workplace safety, enhanced employee welfare and 

health as well as the improvement and development of working standards and 

conditions of the working environment. 
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2.2. ENVIRONMENTAL SUSTAINABILITY 

 

Although environmental and/or ecological sustainability has emerged due to 

social concerns, it is clearly distinguished from social sustainability. However 

economic sustainability and environmental sustainability overlap to some extent. In 

fact,  the term industrial metabolism originated from the linkage between the industry 

and the ecosystem. Here, the industry is considered as a living organism that consumes 

energy and materials and creates both the desired output like a product/service and an 

undesired output like a waste. Unless the balance between this consumption and 

production can be provided efficiently ecologically unsustainable situation occurs 

(Ayres, 1989). There is also another term called “eco-development” describing the 

process of balancing social and economic goals with environmentally sound 

management in the interest of future generations (Mellos, 1988).  Accordingly, a key 

to achieving economic sustainability is based on efficient use of materials and 

environmental sustainability basically focuses on the protection of the raw materials 

used, elimination of waste, and the use of renewable energy sources (Goodland, 1995). 

Another definition of the environmental dimension is in line with the general definition 

of sustainability and refers to the practices that do not jeopardize the environmental 

resources for future generations. It also focuses on the efficient use of energy 

recourses, reduction of greenhouse gas emissions, and minimization of the ecological 

footprint (Goel, 2010).  According to Dyllick and Hockerts (2002: 133), 

 ecologically sustainable companies use only natural resources that are 

consumed at a rate below the natural reproduction, or a rate below the 

development of substitutes. They do not cause emissions that accumulate in the 

environment at a rate beyond the capacity of the natural system to absorb and 

assimilate these emissions. Finally, they do not engage in activity that degrades 

eco-system services.   
 

In order to survive in today’s business environments and attract customers 

organizations apply green innovation strategies. These strategies are to create 

environmental sustainability and offer many opportunities including decreasing the 

impact of operations on the natural environment and using renewable energy while 

mitigating the use of chemicals and waste (Meseguer-Sánchez et al., 2021). Other 

opportunities for environmental sustainability include the protection of natural spaces 



54 

 

and biodiversity, reduction of the use of nonrenewable resources, protection from 

environmental hazards, and reduction of ecological risks (Hansmann et al., 2012). 

The environmental dimension of sustainability has gained importance due to 

factors such as the continuous increase in population growth, development of new 

products, high production levels and intensification of global industrialization with 

excessive consumption, contributing to economic development while causing 

environmental degradation of ecosystems (Carvalho et al., 2018; Koren et al., 2018).  

Within this study, the relationship between environmental sustainability and 

Industry 4.0 along with the technologies it brings are analyzed. These technologies are 

expected to lead to such drivers including increasing transparency and traceability in 

both demand and processes, designing sustainable products and services, intelligent 

planning of processes, and hereby reducing energy and material consumption. In a 

factory, intelligent production systems offer flexible and open systems by creating 

horizontal and vertical integration of digital and production systems, and these systems 

are designed to immediately control and intervene in indicators such as excess 

emissions of carbon dioxide and greenhouse gases, wastes, environmental pollution, 

and resource consumption, and thus reduce environmental damages. Furthermore, the 

internet of things applications, one of Industry 4.0 technologies, can be used in 

planning environmental factors, uninterrupted monitoring of environmental changes, 

analysis and control of pollution sources (Yu et al., 2015). Additionally, cloud 

computing systems and automation optimize processes to predict and better manage 

water quality, air pollution, pollution caused by heavy metals or mercury (Zhang et al., 

2017). Similarly, sensors and RFID technology embedded in internet-connected smart 

objects could enable efficient information collection and real-time control of 

environmental conditions and reveal the direct and indirect environmental impacts of 

the operations in sectors such as agriculture, transport, and manufacturing. In addition, 

the adoption of Industry 4.0 concepts and technologies, such as big data, can lead to 

improved environmental conditions, particularly in the quality of the soil where it is 

used (Yu et al., 2015). 

 Other potential environmental benefits that may arise with the inclusion of 

Industry 4.0 technologies in production processes are ensuring the accuracy, 

reliability, and comparability of the reported environmental accounting data through 
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improved data quality, less management discretion about what is measured, how is 

measured and reported, and elimination of the concept of “Green Washing” as well as 

contribution to sharing more reliable information with the public (Burritt and Christ, 

2016; Valdez et al., 2015; Posada et al., 2015). 

As a result, Industry 4.0 technologies and applications are expected to provide 

benefits including reducing the negative environmental impacts, resource and energy 

efficiency, effective energy management, reduced amount of material used, increased 

share of reused, remanufactured, and recycled materials, reduced total amount of waste 

and pollution, improved use of renewable resources, less amount of greenhouse gas 

emissions in the fight against depletion of non-renewable resources, loss of 

biodiversity, climate change, waste, and pollution as well as the creation of a 

sustainable ecosystem. 

 

2.3. ECONOMIC SUSTAINABILITY 

 

In its simplest form, economic sustainability refers to the balance between 

financial costs and financial values (Popovic et al., 2013). Economic sustainability 

however does not only deal with the economic indicators but also considers 

manufacturing, circulation, and consumption of goods and services (Mohamed and 

Antia, 1998). Economic sustainability can be measured by life cycle costing and 

alleviation of both short-term and long-term environmental impacts of a 

product/service through its life cycle is of great importance to achieve economic 

sustainability (Six et al., 2016). Economic sustainability revolves around the 

management of financial capital like equity and debt, tangible capital like machinery 

and inventory along with intangible capital like reputation, brand image, customer 

satisfaction, know-how, and organizational routines. If an organization is 

economically sustainable then that organization ensures cash flow adequate to assure 

liquidity at all times while providing shareholders with a consistently above-average 

return (Dyllick and Hockerts, 2002). The economic pillar of sustainability “focuses on 

the economic value provided by the organization to the surrounding system in a way 

that prospers it and promotes for its capability to support future generations” 

(Arowoshegbe and Emmanuel, 2016: 104). Furthermore, economic sustainability, 
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hence sustainable growth forms a basis for both social and environmental 

sustainability and is mainly wheeled by the pursuit of economic growth, economic 

objectives, and profit-driven strategies (Purvis et al., 2019). On the contrary, Elliott 

(2005) believed that a primary focus of economic sustainability should be on efficiency 

rather than equity along with a trade-off between current and future consumption. By 

providing economic sustainability, a firm can achieve such opportunities include 

creating revenue and employment, strengthening human and social capital, promoting 

the economy’s innovative power, market consideration of externalities, and future 

generations’ economic status (Hansmann et al., 2012). 

Technological developments in manufacturing have played a vital role in 

supporting economic growth and generating social benefits for decades. Sustainable 

factories of the future form the basis of industrial growth and economic and social 

well-being. Globalization has significantly changed the consumption habits of society 

so that the manufacturing processes of the products produced in line with customer 

demands have changed significantly in this period, which in turn has caused 

sustainability concerns. New technologies emerging with Industry 4.0, providing 

faster and cheaper research and development (R&D) processes, such as 3D printing, 

simulation, and concurrent engineering can significantly reduce product launch time 

and provide a competitive advantage as being the first supplier in the market. 

Furthermore, the applications such as smart production technologies and blockchain 

brought by Industry 4.0 increase the competitive power of a company with such 

opportunities as efficiency, flexibility, transparency, traceability, optimization of 

quality problems and resource utilization, minimization of waste, and early detection 

of errors, thus increase profitability (de Man and Strandhagen, 2017). It is also likely 

to optimize processes and use of resources based on speed and efficiency and to reduce 

material costs by using cyber-physical systems that provide real-time monitoring. 

Moreover, thanks to Industry 4.0-based technologies, it is possible to reduce machine 

downtimes or replacement times with early detection of possible machine-related 

faults through continuous and remote monitoring of machine conditions. Costs can be 

reduced and production efficiency can be improved as a result of preventing and 

correcting errors. It has been supported by studies that Industry 4.0 applications have 

potentials such as reduced energy and resource use, optimization of material and waste 
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flows, and reduction of production waste (Kamble et al., 2018; Stock et al., 2018). In 

logistics systems as well as in production systems, it is also possible to diminish the 

number of transportation processes, wrong deliveries, unnecessary waiting times, and 

damaged goods throughout the entire supply chain and prevent unnecessary material 

flows (Blunck & Werthmann, 2017). Additionally, the issue of the efficient 

management of inventories as too much inventory results in huge capital costs can be 

addressed with Industry 4.0 applications. This is because with Industry 4.0 

technologies and applications such as real-time supply chain optimization and 

advanced analytical demand planning, excessive stock-keeping can be prevented and 

this makes it possible to meet customer needs completely and accurately (Bakkari and 

Khatory, 2017). Therefore, it can be concluded that Industry 4.0 technologies and 

applications are assumed to provide numerous economic benefits including cost 

reduction, optimization, increased productivity, enhanced quality, and elimination of 

waste. 

Having taken sustainability dimensions separately into consideration, next the 

convergence of Industry 4.0 technologies with the sustainability dimensions based on 

a systematic literature review will be given in the following headings. 

 

 2.4. ADDITIVE MANUFACTURING FROM SUSTAINABILITY 

PERSPECTIVES 

 

Recently, the sustainability concept has been incorporated vigorously into 

manufacturing environments. Therefore, organizations are perpetually in the tendency 

to embrace path-breaking and innovative trends that are adaptable with their existing 

equipment and technologies in order not to lag in the market. Accordingly, the 

emergence of Industry 4.0 and its enabling technologies like additive manufacturing 

systems are assumed to provide organizations with an opportunity to fully integrated, 

automated, and optimized production flow, thus leading to sustainability potentials 

(Prakash et al. 2018). Table 4 demonstrates an overview of convergence of additive 

manufacturing and sustainability dimensions based on various studies.  
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Table 4: An Overview of a Convergence of Additive Manufacturing with Sustainability 

Dimensions 

 

Authors Reviews 

(Morrow et al., 

2007; Reeves, 

2009) 

Additive manufacturing processes enable material and resource efficiency, and 

flexibility in production, hence providing economic sustainability.  

(Watson and 

Taminger, 

2015). 

There exist some potential advantages of additive manufacturing processes for enabling 

more environmentally sustainable manufacturing through reduced consumption of energy and 

materials. 

(Butt, 2020). Additive manufacturing plays a significant role in economic sustainability with 

increased customization options and allows manufacturers to print on-site promptly reducing 

shipping costs, diminishing waste and time to market. 

(Dilberoglu et 

al., 2017). 

Additive manufacturing may have an important effect in diminishing waste resources 

and reducing energy consumption by employing just-in-time production. 

(Paris et al., 

2016). 

Based on a combined indicator for environmental impact ratio and volume of material 

removal ratio, additive manufacturing appears to be environmentally friendly. 

(Huang et al., 

2015). 

Additive manufacturing procures opportunities in promoting materials efficiency, 

reducing life cycle impacts, less requirement for special tooling in part fabrication, rapid tooling 

production, and diminishing material waste. 

(Peng et. al, 

2018). 

Three aspects of environmental impact including resource consumption, waste 

management, and pollution control in the context of sustainable additive manufacturing have 

been studied. The results showed additive manufacturing has the potentials to diminish the 

amount of raw material required in the supply chain, reduce the need for energy-intensive, 

wasteful, and polluting manufacturing processes, and enable more efficient and flexible product 

design. 

(Ford and 

Despeisse, 2016). 

On the social sustainability side, when compared to traditional production techniques, 

additive manufacturing provides health advantages by allowing workers to avoid long-term 

exposure to demanding and possibly dangerous work situations. Furthermore, additive 

manufacturing has various environmental benefits, including the capacity to generate less waste 

during manufacture, the ability to optimize geometries and make lightweight components, all of 

which minimize material and energy consumption.  

(Haleem and 

Javaid, 2019). 

Positive outcomes of additive manufacturing can be summarised under the following: 

customization, virtual inventory, prototyping, flexibility in design and development, waste, risk, 

and cost reductions, improvements in customer satisfaction, speed, accuracy, productivity, 

profitability, and supply chain performance. 

(Chen et al., 

2015; Mani et 

al., 2014). 

Additive manufacturing brings along numerous sustainable benefits including less raw 

material consumption, waste material, and pollution, higher resource efficiency and flexibility in 

production processes, reduced number of transportation processes and carbon footprint, 

decentralized and close-to-consumer manufacturing, extended product life through novel 

technical methods such as remanufacturing, reusing, repairing, refurbishing, and sustainable 

socio-economic production. 
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As a result, it appears that additive manufacturing technologies could be 

embedded into manufacturing processes in order to enhance flexibility and efficiency 

in the mass personalization of complex materials, hence providing potentials for a 

working sustainable environment (Kobryn et al., 2006; Kohtala, 2015).  

 

2.5. AUGMENTED REALITY FROM SUSTAINABILITY PERSPECTIVES 

 

Incessantly accelerating developments and advancements in manufacturing 

environments, processes, and technologies along with volatile market circumstances 

and ever-challenging core requirements regarding precise quality, customer demands, 

and improvements in cost and time issues have led organizations to push their 

capabilities and keep up with Industry 4.0 and its enabling technologies. Proven to be 

amidst the Industry 4.0 technologies, augmented reality is a set of systems and 

technologies that provide the visual and aural understanding and reasoning of cyber-

physical production systems in a context-sensitive manner (Grieves, 2014).  

Industry applications of augmented reality systems can be dispersed into 

process monitoring and control, real-time evaluation of plant layout, plant and building 

construction, online guidance systems for operators, decision-making processes 

combining the physical experience along with the display of information extracted in 

real-time from databases, material management, enhancing industrial safety, and 

human resources through recruitment, hiring, and training. Augmented reality can be 

also used in quality assurance and inspections since the variety and complexity of 

products increase the inspection task becomes even harder not to mention owing to the 

cognitive limitations of human inspection processes are less effective. So, with 

augmented reality systems providing a direct comparison between the real object and 

an ideal model, the performance and effectiveness of quality assurance and inspections 

surge. Additionally, augmented reality could be applied to product design, facility 

inspection and management, assembly, and repair processes and provide 

improvements and acceleration in product and process development, reduction in costs 

and performance enhancements in plant and machinery maintenance through textual, 

visual, or auditory information. Hence, repetitive and prone to human error tasks are 

to be handled by augmented reality systems as augmented reality systems are expected 
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to cause less cognitive load and body fatigues and reduce the number of errors per 

employee as well as the time it takes to accomplish a task (Fite-Georgel, 2011; Zhu et 

al., 2014; Masood and Egger, 2019; Zubizarreta et al., 2019).  

Table 5 below shows the various views of the authors regarding the 

convergence of augmented reality and sustainability dimensions.  

 

Table 5: An Overview of a Convergence of Augmented Reality with Sustainability 

Dimensions 

 

Authors Reviews 

(Fite-Georgel, 2011; Zhu et al., 2014; 

Masood and Egger, 2019;  

Zubizarreta et al., 2019). 

 

Augmented reality enables less cognitive load and body 

fatigues, decreasing both the number of errors and the time required to 

complete a given task. These advantages could lead to material and 

resource efficiency, and flexibility in production, thus both social and 

economic sustainability.  

(De Pace et al., 2018). Some economic benefits of augmented reality applications are 

improvements in product design and product development, early 

determination and elimination of any design-related errors and/or 

discrepancies, reduction in the number of physical prototypes and 

helping and facilitating employees’ workloads. 

(Azuma et al., 2001). Additive manufacturing plays an important role in the 

improvement of industrial productivity, reliability, performance, and 

safety, thus referring to social and economic sustainability. 

 

Industry applications of augmented reality systems can be dispersed into 

process monitoring and control, real-time evaluation of plant layout, plant and building 

construction, online guidance systems for operators, decision-making processes 

combining the physical experience along with the display of information extracted in 

real-time from databases, material management, enhancing industrial safety, and 

human resources through recruitment, hiring, and training. Augmented reality can be 

also used in quality assurance and inspections since the variety and complexity of 

products increase the inspection task becomes even harder not to mention owing to the 

cognitive limitations of human inspection processes are less effective. So, with 

augmented reality systems providing a direct comparison between the real object and 

an ideal model, the performance and effectiveness of quality assurance and inspections 

surge. Additionally, augmented reality could be applied to product design, facility 
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inspection and management, assembly, and repair processes and provide 

improvements and acceleration in product and process development, reduction in costs 

and performance enhancements in plant and machinery maintenance through textual, 

visual, or auditory information. Hence, repetitive and prone to human error tasks are 

to be handled by augmented reality systems as augmented reality systems are expected 

to cause less cognitive load and body fatigues and reduce the number of errors per 

employee as well as the time it takes to accomplish a task (Fite-Georgel, 2011; Zhu et 

al., 2014; Masood and Egger, 2019; Zubizarreta et al., 2019).  

Having taken applications and solutions of augmented reality in various fields 

into account, it can be deduced that augmented reality should not be comprehended as 

a tool replacing the labor force, but rather as a tool helping and facilitating their 

workloads. Moreover, with augmented reality, tasks are anticipated to be performed 

promptly and efficiently, resulting in optimization in the core operating business 

processes. As a result, augmented reality supports mainly the economic and social 

pillar of sustainability as it encompasses such benefits as increased health and safety 

throughout the working environment as well as optimization and reliability in 

manufacturing processes.  

 

2.6. AUTONOMOUS ROBOTS FROM SUSTAINABILITY PERSPECTIVES 

 

In today’s manufacturing environment, pressures on ensuring competitive 

advantages over cost, increasing product variety, mass customization, and market 

volatility led to the adoption of innovative, flexible, and automated manufacturing 

approaches because even though the workforce is sufficient, there exist highly 

complex products requiring compatibility, precision, and reliability that are beyond the 

skills of human employees. Furthermore, such issues as enhanced human safety, 

production flexibility, process quality, and efficiency, and reductions in environmental 

impact stimulate the use of autonomous robots and systems in manufacturing 

environments (Esmaeilian et al., 2016).  

The table below illustrates the relationship between autonomous robots and 

sustainability dimensions. 
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Table 6: An Overview of a Convergence of Autonomous Robots with Sustainability 

Dimensions 

 

Authors  Reviews 

(Pan et al., 2018; 

Bock and Linner, 

2012; Hong et al., 

2015). 

 

 Employment of automation and robotics is seen as a viable path to enhance 

sustainability performance including reductions in material consumption, energy 

consumption, air pollution, and greenhouse gas emissions in process refinement, construction 

waste reduction, natural resources preservation, workplace safety improvements, and high-

quality living environment in an environmental pillar of sustainability, reductions in labor, 

resource, operation, maintenance, and waste management costs, and impacts on quality and 

competitiveness in the economic pillar of sustainability, reduction of injuries and fatalities, 

heavy works, working hours, improved job satisfaction, and impacts on job security and 

welfare in the social pillar of sustainability. 

(Saidani et al., 

2020). 

 Autonomous systems and solutions are anticipated to benefit the agricultural 

industry through the reduction of the ecological footprint of farming, production waste, and 

gardening tasks, cultivating and harvesting crops, monitoring favorable soil conditions, 

increase in profitable yieldings, thus contributing both on the economic and environmental 

sustainability. 

(Bugmann et al., 

2011). 

 According to research on the role of robotics in sustainable development, high 

precision autonomous systems can relatively drive down the labor costs and decrease the 

amount of waste of raw materials as well as increase the productivity of operators it works 

with, thus it can be deduced that improvements in the line of robotics and artificial intelligence 

could improve, accelerate, and support sustainable development. 

(Çengelci and 

Çimen, 2005; 

Fitzgerald and 

Quasne, 2017). 

 The fundamental motives for using autonomous robots in industrial applications are 

as the followings: reducing labor costs, errors, reworks, and risk rates, substituting operators 

in hazardous, unpredictable, and risky working environments, thus improving safety and 

health, providing a more flexible production system and consistent quality control, increasing 

the amount of output and efficiency, meeting the shortage of skilled labor ability to work 

continuously even in the lights-out manufacturing environments, the ability to reach results 

faster than human beings, competence in tedious and repetitive jobs, hence humans could 

focus more on strategic efforts that cannot be controlled by automation, and enhancing 

revenue by improving order fulfillment rates, delivery speed, and ultimately, customer 

satisfaction. So, it is evident that these advantages are expected to contribute to social, 

environmental, and economic sustainability. 

 

Furthermore, Kohl et al. (2020) investigated the social sustainability of service 

robots intertwined with environmental and economic aspects. The authors found out 

that the developments in autonomous systems and robots unveil further opportunities 

in the service sector having close interactions with humans in crowded urban 

environments, elder care, nursing, and surgeries using robotics. However, this has led 
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to several changes in established social settings including workplaces, the public 

domain, and institutions. According to the study the authors conducted, it can be 

deduced that some occupations, particularly related to hazardous, monotonous, and 

repetitive tasks are assumed to be lost to automation and job loss as well as 

repositioning can be experienced however, new job descriptions are also expected to 

emerge. Moreover, autonomous robots and systems diminish physical barriers and 

accessibility problems in the working environment, thus equalizing opportunities 

(McKinsey and Company, 2017; Lowrey, 2018).  

Technological developments and innovations have been shaping the working 

environment and even eradicating stereotypes and traditional approaches, as such 

human and robot operators effectively collaborate and learn from each other, resulting 

in efficient and value-added manufacturing processes, a vigorous working harmony, 

decreased waste and related costs, and thriving trusted autonomy. The collaborative 

robots, namely cobots, are designated as an apprentice, observing and digesting how 

an operator performs a task, then learning from its surroundings and embarking on the 

desired task. Moreover, as the cobots are aware of the collaborative working style and 

the presence of an operator, cobots handle safety and risk-related issues that might 

occur while laboring together (Nahavandi, 2019).  

As a result, based on the studies analyzed even though autonomous robots and 

systems are regarded as the key to the social dimension of sustainability they also have 

potential effects on the environmental and economic dimensions of sustainability.  

 

2.7. BIG DATA AND ANALYTICS FROM SUSTAINABILITY 

PERSPECTIVES 

 

The massive amount of data availability has affected many fields and industries 

such as engineering, finance, marketing, production, management and has led to re-

examining conventional use of data and techniques and propelled them to take the 

advantage of using big data analytics including gathering more precise and transparent, 

useful, and detailed information and, hence, creating sustainable opportunities with 

enhancing performance, improving decision-making, and optimizing processes (Qin, 
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2014: 2).  In Table 7, an overview of convergence of big data and analytics with 

sustainability dimensions based on various studies is shown. 

 

Table 7: An Overview of a Convergence of Big Data and Analytics with Sustainability 

Dimensions 

 

Authors Reviews 

(Lv et al., 

2018). 

Big data analytics appears to be crucial in the employment of accurate predictions on 

weather and availability of such renewable energies as solar and wind, thus creating solutions for 

environmental sustainability issues and improving energy efficiency. 

(Wang et al., 

2018). 

There exist operational and managerial benefits of big data analytics such as cost 

reduction, cycle time reduction, productivity and quality improvement, better resource 

management, improved decision making and planning, facilitating organizational learning and 

empowerment, and changing working patterns, hence providing economic sustainability.  

(Marjani et 

al., 2017: 2). 

Big data analytics can be applied to smart ecological environments, smart traffic, smart 

grids, and intelligent buildings, hence creating sustainable conditions both socially and 

environmentally. 

(Belhadi et al., 

2019). 

Big data analytics can generate solutions for manufacturing process challenges including 

quality and process control, energy and environment efficiency, proactive diagnosis and 

maintenance, safety and risk analysis through enhanced transparency, improved performance, 

supported decision-making, and developed knowledge. In particular, with big data acquisition and 

mining, energy consumption patterns and smart grids, as well as energy and environment efficiency, 

could be provided. 

(Zhang et al., 

2019). 

Authors attempted to apply big data analytics capabilities to air pollution management 

through the collection of real-time air quality data and take precautions to prevent pollution. 

Thereby, it can be deduced that big data analytics capabilities of reactive, preventive, and proactive 

can be applied in a sustainability context. 

(Mani et al., 

2017; Dubey 

et al., 2019). 

According to the study, various issues including workforce safety and health, fuel 

consumptions monitoring, the physical condition of vehicles, unethical behavior, theft, speeding 

and traffic violations can be predicted, managed and controlled through big data analytics, hence 

providing social, environmental, and economic sustainability on supply chains. 

(Raut et al., 

2019). 

Big data analytics positively affects sustainable business performance based on such 

factors as environment technology, air pollution control, carbon footprint, eco-packaging recycling 

efficiency, responsiveness, reduction in solid and water waste, improvement in organizational 

relevant knowledge. 

 

Accordingly, big data analytics could be benefitted in diverse functional 

operations including inventory management, quality control management, revenue 

management and marketing, strategy and business development, supply chain and 
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logistics management, risk and waste management, customer experience management, 

brand management. This is because big data analytics offers efficient data-driven 

decision-making processes, optimization of products and/or services in both delivery 

and after-sales operations, targeted marketing campaigns and promotions, 

understanding consumers’ shopping habits and behaviors, developed customer 

experience, improved business processes, operations, and workforce allocation 

effectiveness along with optimization of resource allocation and auto-replenishment, 

and ideas for new products design (Choi et al., 2018; Watson, 2014: 5).  

Furthermore, based on research conducted, adoption of big data analytics could 

emerge numerous potential benefits including customer-base segmentation, better-

targeted marketing, recognition of sales and market potentials, accurate business 

insights, better planning and forecasting, identification of root causes of cost, the 

quantification of risks, and fraud detection with real-time monitoring (Russom, 2011: 

11).  

Thereby, discovering and disseminating patterns, trends, correlations, facts, 

insights, and knowledge over big data analytics could assist in making better, 

felicitous, and punctual decisions, detecting faults and deficiencies within the 

organization, and creating opportunities for operational quality improvements, cost 

efficiency, and lead time reductions, hence providing potentials for revenue growth, 

effectiveness, and competitive differentiation through innovation in the marketplace.  

 

2.8. CLOUD SYSTEMS FROM SUSTAINABILITY PERSPECTIVES 

 

Cloud computing tenders several advantages including reduced IT investments 

and such fixed costs as labor-power, maintenance, and infrastructure, hence reducing 

the total cost of ownership. Especially, for small-medium enterprises having cost-

related difficulties, cloud computing drives down the costs radically and offers an 

opportunity to effective use of compute-intensive business analytics like 

understanding operational and functional processes within the enterprise, consumer 

purchase patterns and habits, as well as the supply chain tasks (Chou, 2015).  

In Table 8 below a convergence of cloud computing with sustainability, 

dimensions are represented with various authors` views. 
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Table 8: An Overview of a Convergence of Cloud Computing with Sustainability 

Dimensions 

 

Authors Reviews 

(Chang et al., 

2010). 

Cloud computing systems attempting on operational savings and green technology 

could improve organizational sustainability with the appropriate business models.  

(Chang et al., 

2011). 

Based on a study, it is evident that cloud computing systems have the potential to 

offer not only economical and financial solutions but also environmental and social solutions 

such as reducing the organization's carbon footprint and the accumulation of greenhouse gases 

by alleviating the CO2 emissions, thus provide reductions in environmental destruction. 

(Kumar and 

Vidhyalakshmi, 

2012). 

 

Using cloud computing reduces the cost of operations,  additional staff, extra 

equipment and redundant data processes, thus decreasing capital spending on IT resources. 

Furthermore, according to Carbon Disclosure Project, organizations implementing cloud 

computing could drive down their energy consumptions, lower the level of carbon emissions 

and yield energy efficiency, environmental protection and sustainable development via the 

effective and efficient utilization of resources. 

(Garg and Buyya, 

2012). 

Cloud computing is expected to turn traditional data centres into more energy-

efficient centres via resource virtualization and workload consolidation. Furthermore, lower 

carbon emission is anticipated owing to energy-efficient infrastructure with cloud computing, 

particularly fewer carbon emissions in SMEs (Small-Medium Enterprises) compared to larger 

enterprises.  

(Isaias et al., 2015). According to the findings, cloud computing is a promising technology for 

organizations to become greener, reduce carbon footprint, and contribute to environmental 

sustainability.  

(Balasooriya et al., 

2016). 

Green cloud computing is anticipated to ensure the efficient processing, utilization 

of resources, and reduction of energy consumptions, thus proving energy-efficient sustainable 

operations. 

 

Overall, cloud computing systems provide various economical and financial 

opportunities in order to sustain the economical sustainability of the enterprises, in 

addition to these aspects cloud computing offers several benefits for ensuring 

environmentally sustainable working environments, thus achieving organizational 

sustainable growth. 
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2.9. CYBER-PHYSICAL SYSTEMS FROM SUSTAINABILITY 

PERSPECTIVES 

 

Cyber-physical systems represent an environment that makes existing systems, 

processes, machines, and equipment smart and physically aware through generating 

real-time, digital information that ensures communication among each other along 

with the environment (Liu et. al, 2017). Table 9 gives information regarding the 

convergence of cyber-physical systems with sustainability dimensions. 

 

Table 9: An Overview of a Convergence of Cyber-Physical Systems with Sustainability 

Dimensions 

 

Authors Reviews 

(Pinzone et 

al., 2020). 

Cyber-physical systems are anticipated to enhance both social and economic sustainability 

performances through ergonomics, knowledge and innovation, management, work-life balance, health 

and safety risks reduction, employee satisfaction, resource efficiency, less human-prone faults, cost 

reductions, labor/product/process/production efficiency, the resilience of production system, 

traceability, increasing internal and external quality, time efficiency, and scheduling robustness. 

(Horcas et 

al., 2019). 

According to the authors, the implementation of cyber-physical systems generates energy-

aware systems and applications along with management and reducing energy consumption, thus 

creating environmental sustainability.  

(Wang et 

al., 2015). 

With the help of real-time integrity of cyber and physical environments and sensing 

technology, wireless communications and networking, effective solutions to water sustainability are 

to be provided via improved wastewater management and protection of water quality; and reductions 

in the risks of natural and human-induced water-related disasters, hence achieving environmental 

sustainability. 

(Banerjee 

et al., 2011). 

Cyber-physical systems bear the potential to enhance environmental sustainability via 

environmentally aware and energy-efficient computing units.  

(Gupta et 

al., 2011) 

Through the managerial and technical decision-making processes on workload, and power, 

resource energy-sustainable environments could be created and energy requirements could be 

managed and diminished, thereby environmental sustainability could be achieved.  

 

Cyber-physical systems target synchronizing human interaction and learning 

theory with knowledge from electrical, mechanical, civil, chemical, biomedical, 

aeronautical, industrial, and other engineering disciplines (Baheti and Gill, 2011: 1). 

Therefore, cyber-physical systems could be applied to automotive systems, production 

management and manufacturing, health care, robotics, military and defence systems, 
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agriculture, traffic control and safety, industrial process control, power generation and 

distribution, energy conservation, air and water management systems (Lee, 2015: 

4838). Both at the plant and individual level, energy requirements including electricity, 

air, water, ventilation are determined, adjusted, and delivered, so a substantial amount 

of energy savings are guaranteed and outages could be avoided through detection and 

prevention systems enabled via cyber-physical systems. Moreover, cyber-physical 

systems entail the development of smart products and/or services, operations and 

processes that are manageable, adaptable, and reconfigurable. Thus, such smart 

applications as smart traffic management, smart agriculture, smart factory, smart 

cities, and other smart practices are remotely managed, optimized, and create such 

opportunities as reduced human-prone faults and accidents, optimized routing and 

scheduling, yield performance accelerations, downtime minimization, enhanced 

efficiency and effectiveness of processes, resources, and systems, and improved 

quality of products and/or services (Serpanos, 2018: 2). Thus, cyber-physical systems 

furnishing robustness, self-organization, self-maintenance, real-time control, 

transparency, and efficiency could be among the key enabling technologies for the 

proper implementation of Industry 4.0 within the production ecosystems (Monostori 

et al., 2016: 623).  

Overall, cyber-physical systems are expected to ameliorate social, 

environmental, and economic factors, thus an effective adoption of such systems is 

required in order to fully execute Industry 4.0 and create competitive advantages. 

Moreover, through the interoperability aspect of cyber-physical systems sustainability 

metrics including social: workloads, working hours, safety, health, working 

conditions, economic: costs of material, energy, production, acquisition, and 

maintenance as well as wages, environmental: energy consumption, greenhouse gas 

emissions, recyclable materials, material extraction, the material choice could be 

evaluated, controlled, and required actions could be taken to provide sustainability 

proactively (Gürdür and Gradin, 2017).  
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2.10. INTERNET OF THINGS FROM SUSTAINABILITY PERSPECTIVES 

 

An introduction of the IoT based products and services tender substantial 

economic and social benefits including enhanced business process management, cost 

reductions particularly in logistics and service industries, increased efficiency in 

automation and industrial manufacturing, improved customer relations, increased 

targeted sales, emerging business models involving smart production, smart products, 

smart home, smart security and transportation solutions, smart energy applications 

focusing on smart electricity, gas and water meters, thus improved quality of life owing 

to these smart assistance systems and associated smart services (Mattern and 

Floerkemeier, 2010). Owing to the bottlenecks in the energy, transportation, logistics 

sectors along with the increasing demands of individuals, the application and use of 

the IoT and information technologies are expanding to handle such issues encountered 

in social and economic frameworks (Xiaojiang et al., 2020). Next, in the table below 

a convergence of the Internet of Things with social, economic, and environmental 

sustainability dimensions are represented with various authors’ views.  

 

Table 10: An Overview of a Convergence of Internet of Things with Sustainability 

Dimensions 

 

Authors Reviews 

(Bandyopadhyay 

and Sen, 2011).  

According to the authors, IoT technologies have substantial impacts on green and 

environmental issues by monitoring the supply chain, revealing the emissions and redundant 

use of vehicles, supervising air quality, collecting recyclable materials, and reusing the 

packaging resources. 

(Rose et al., 2015). 

 

The implementation of IoT technologies offers solutions to environmental 

challenges, including resource management, water quality and use, climate change, and 

natural resource monitoring. 

(Kopetz, 2011). IoT technologies through embedded systems can play a prominent role in energy 

savings in various areas such as the enhanced fuel efficiency of automotive engines and the 

improved energy efficiency of household appliances. Furthermore, IoT has the potentials for 

the reduction of maintenance and diagnostic costs with the help of the computerized 

monitoring and visibility of industrial equipment, hence improved safety at the factory level.  

(Nižetić et al., 

2020). 

An increased application of IoT technologies reveals a more intense utilization of 

energy resources via effective waste and power management as well as increased competition 

among firms with more efficient quality control and minimization in wastes.  
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Authors Reviews 

(Khatua et al., 

2020). 

Smart public services including emergency management, traffic management, e-

public services, and street lighting management that controls the consumption of electricity; 

smart buildings and homes providing energy efficiency and effective energy management, 

water distribution management and leak detection are among the implementation of IoT that 

heralds such functions as traceability, visibility, and controllability. 

(Bashar, 2020). Through smart grids, smart control, real-time data tracking and control, effective 

management of water, waste, and energy can be ensured hence a more sustainable industrial 

environment.   

(Maksimovic, 

2018). 

With the combination of green technology and IoT the term “Green IoT” emerges. 

Green IoT encapsulates smart city (traffic and parking management, waste management, smart 

lighting, and smart road) smart environment (quality of air, soil, and water), smart industry 

(smart factory, smart building, transportation management), and smart metering (water, 

power, gas, and radiation level measuring). So the utilization of these concepts leads to 

energy-efficient, lower carbon emissions and pollutions, and pose a great potential to 

strengthen both economic and environmental sustainability. 

 

Based on the views above regarding IoT, it can be deduced that IoT 

technologies and applications serve widely for environmental sustainability Apart 

from its benefits to environmental sustainability, the deployment of the IoT can be also 

utilized in manufacturing processes. With the connection of physical items through 

embedded smart devices and/or unique identifiers and data carriers that can exchange 

information regarding themselves and their surroundings, manufacturing processes 

can be monitored, controlled and managed effectively from the design stage to the end 

stage, thus transparency and visibility of the production, inventory, and logistics 

functions can be enhanced and hassles encountered throughout these functions can be 

handled vigorously. Moreover, IoT can be applied to the aerospace and aviation 

industry in an attempt to increase the safety and operational reliability of the products. 

IoT applications can be also seen in the telecommunications and social media sectors 

with gathering information regarding individuals to promote social interaction and 

personal demands, medical and health care industry along with the pharmaceutical 

industry with the smart labels to drugs that track supply chain and provide a prompt 

medical intervention (Bandyopadhyay and Sen, 2011).  
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2.11. SYSTEM INTEGRATION FROM SUSTAINABILITY PERSPECTIVES 

 

In today`s volatile market situations and a competitive working environment, 

a combination of vertical and horizontal integration, namely a holistic approach, based 

on the needs and scope of the organization is thought to be a more viable choice rather 

than just going for vertical integration or horizontal integration alone. With the vertical 

integration, control over the entire supply chain is possible while with the horizontal 

integration market share and market dominance of the firm is likely to enlarge so the 

combination of these integrations along with the end-to-end engineering integration 

might provide efficiency, flexibility and stability to business operations, customized 

production, new opportunities to increase market share and effective financial 

management (Naik et al., 2010: 6), thus achieving organizational sustainable growth. 

Table 11 below demonstrates an overview of the convergence of system integration 

and sustainability dimensions. 

 

Table 11: An Overview of a Convergence of System Integration with Sustainability 

Dimensions 

 

Authors Reviews 

(Zhou and Zhou, 

2015: 2148).  

 

A system integration could enable improved resource efficiency so this can 

balance and even reduce the impacts of resource use that cause environmental pollution 

and destruction. Furthermore, efficient and effective control over the entire value chain 

can affect the economic sustainability of the organizations that are entirely integrated. 

Ensuring a reliable and visible working environment can also increase working 

standards, safety and security, thus providing social sustainability.  

(Rahman et al., 

2020). 

With the “horizontal interconnection across the supply chain, vertical 

interconnection across functional departments, and end-to-end engineering from 

product development to recycling” both economic and environmental sustainability 

could be provided.  However, a requirement of a skilled workforce can affect the social 

sustainability dimension as the low-skilled workforce is thought to be redundant. 

(Büyüközkan, 

and Göçer, 

2018). 

Apart from the traditional supply chains, integrated digital supply chains offer 

various opportunities on speed, flexibility, real-time inventory, cost-effectiveness, 

transparency, scalability, innovation, proactivity, and eco-friendly operation 

capabilities, thus leading to environmental and economic sustainability.  
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Overall, a system integration provides various economic and financial 

opportunities in order to maintain the economic sustainability of the enterprises, in 

addition to these aspects the system integration offers several benefits for 

environmentally and eco-friendly sustainable environments. However, there are some 

obstacles to creating an entirely integrated system such as the lack of technological 

and structural infrastructure, skilled workforce, therefore a proper investment in 

creating such an integrated system environment, and then management and control of 

these systems are crucial for ensuring economically and environmentally sustainable 

working conditions.  

 

2.12. SIMULATION FROM SUSTAINABILITY PERSPECTIVES 

 

Simulation provides various financial opportunities tendering economic 

sustainability, in addition to that simulation applications introduce many benefits for 

creating environmentally and eco-friendly sustainable environments. By balancing the 

workloads, optimizing the scheduling and increasing the safety of the working 

environments simulation also touches upon social sustainability. Table 12 

demonstrates an overview of convergence of simulation with sustainability dimensions 

and gives potential views on the sustainability aspects of the simulation.  

 

Table 12: An Overview of a Convergence of Simulation with Sustainability Dimensions 

 

Authors Reviews 

(Widok and 

Wohlgemuth, 

2011). 

 

Simulation can affect social, environmental and economical 

sustainability through the utilization of resources, balancing the workloads, 

ensuring work safety, analyzing the bottlenecks, and increasing the efficiency and 

effectiveness of the systems. 

(Moon, 2017). The application of simulation in various fields including agriculture, 

construction, climate, energy, human health, information systems, manufacturing, 

supply chains, transportation, urban and community planning, waste, and recycling 

can lead to creating social, environmental and economical sustainability. 

(Burinskiene et al., 

2018). 

Simulation is a beneficial tool for efficient resource utilization and 

contributes to the efficiency of processes, energy savings, waste reductions, and 

optimization of transportation time and related costs, thus creating environmental 

and economic sustainability. 



73 

 

Overall, it can be said that simulation affects all three pillars of sustainability. 

However, simulation software vendors are required to adapt into a manufacturing 

environment equipped with Industry 4.0 enablers like collaborative robots, 

autonomous machines, sensor technologies and advanced visualization and more 

importantly in order to create a digital twin, a simulation model of a machine, a 

process, or a whole factory, vendors are to make sure that their software can interact 

with the real systems (Gunal, 2019). These sorts of software and infrastructure issues 

along with the skilled workforce requirements should be sorted out to get the optimum 

benefit out of the simulation models and applications while offering social, 

environmental, and economical sustainability. 

 

2.13. SMART FACTORIES FROM SUSTAINABILITY PERSPECTIVES 

 

Smart factories that enable horizontal and vertical integration, self-optimizing, 

self-configuring, and interactive industrial robots, as well as real-time data flow, 

advanced automation and digitalization in the production, cyber-physical systems, and 

internet of things, constitute the key factors of the Industry 4.0 concept, further provide 

grounds for more productive, flexible, high quality, versatile, safer and collaborative 

ecosystems (Martín et al., 2017). According to Table 13 below, there are several views 

upon the triangle of smart factories, smart manufacturing systems, and sustainability 

dimensions.  

 

Table 13: An Overview of a Convergence of Smart Factories with Sustainability Dimensions 

 

Authors Reviews 

(Büchi et al., 

2020). 

The performance of the smart factory through the Industry 4.0 enabling technologies can 

be pointed out as production flexibility, higher output capacity, decreased set-up costs, fewer errors 

and machine downtimes, better product quality, and customers’ improved feedbacks on products, 

hence providing economic sustainability. 

(Radziwon et 

al., 2014). 

A smart factory provides flexible manufacturing processes and optimization of 

manufacturing resulting in the reduction of unnecessary labor and waste of resources.  

(Wang et al., 

2016b). 

It is suggested that with the emerging information technologies including IoT, big data, 

and cloud computing, and artificial intelligence, smart factory of Industry 4.0 leading to sustainable 

production ecosystems and novel business models could be adopted.  
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Authors Reviews 

(Chen et al., 

2017). 

The smart factory is a flexible and dynamic manufacturing solution through the analysis 

of production data for fulfilling industrial demands and production optimization, hence creating 

economically sustainable opportunities. 

(Strozzi et al., 

2017). 

It is evident that today’s factories are being converted into smarter, more efficient and 

sustainable, and safer facilities through the convergence of production technologies and devices 

together with emerging information and communication systems and infrastructures. 

(Mabkhot et 

al., 2018). 

With the integration of such technologies as cyber-physical systems, semantic web, and 

virtualization smart factories are anticipated to enhance performance, flexibility, quality, 

manageability, and traceability of manufacturing processes. 

(Shi et al., 

2020). 

The smart factory does not necessarily mean lights-out manufacturing instead within the 

smart factory human-machine collaboration is emphasized, thus promoting more flexible and 

effective production and leading to both social and economic sustainable benefits. 

 

According to Lucke et al. (2008), a smart factory is envisioned as a 

manufacturing environment through the collaboration of the human workforce with 

computer-based systems to ensure non-stop manufacturing, enhanced output quality 

as well as flexibility. Smart factories are designated to deal with dynamics in 

manufacturing environments and effective management of production processes 

through the use of real-time and relevant information. Furthermore, smart factories can 

increase visibility as the real-time information is available to inventory management, 

warehouse management, material requirements planning, production and operations, 

sales and order management, thus achieving on-time delivery, resource utilization, 

energy efficiency, reduction in costs, and customer satisfaction. Additionally, 

decision-making within all processes and operations at the factory level can become 

easier and more effective through real-time and complete data (Shi et al., 2020). The 

framework of a smart factory is shaped through the entire linked production systems 

that build, process, manage required data to carry out all scheduled tasks for producing 

various sorts and batches of products (Osterrieder et al., 2020). Based on several 

resources regarding smart manufacturing, a smart factory consists of eight main pillars 

including decision-making, CPSs, data handling, digital transformation, human-

machine interaction, IoT, cloud manufacturing, and service (Wang et al., 2016a). 

Moreover, within the smart factory environment, smart devices and tools in 

cooperation with human beings provide flexibility, quality, and efficiency in 
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production, while providing a safe work environment by undertaking hazardous tasks, 

thus leading to social and economic sustainability opportunities  (Wang et al., 2016b).
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CHAPTER THREE 

INDUSTRY 4.0 TECHNOLOGY ALTERNATIVES` SELECTION BASED ON 

SOCIAL, ENVIRONMENTAL, ECONOMIC SUSTAINABILITY CRITERIA: 

A CASE STUDY WITHIN VARIOUS INDUSTRIES 

 

This chapter compasses the aim and objectives of the study, the conceptual 

background of the decision theory as well as the virtual representation of the 

convergence of sustainability dimension with Industry 4.0 technologies in a holistic 

way, questionnaire design, sample and data collection, data analysis and measurement 

as well as the empirical findings.  

 

 3.1. AIM AND OBJECTIVES OF THE RESEARCH 

 

The main research question of this thesis is “Do Industry 4.0 applications and 

technologies play a role in creating a sustainable working environment?”. In order to 

find out an answer to this research question, hence actualize the aim of the study 

versatile objectives have been proposed. The first objective is to gain information on 

creating sustainable social, economic, and environmental value through the use of 

Industry 4.0 technologies and practice with presenting a systematic and comprehensive 

original framework that examines the role and effects of Industry 4.0 technologies and 

practices in creating a sustainable production ecosystem. Therefore, to achieve this 

firstly, a systematic literature review has done and then the main and sub-criteria of 

the sustainability framework with focus group study were determined and Industry 4.0 

technology and applications that meet the social, economic and environmental 

sustainability sub-criteria were ranked. Lastly, Industry 4.0 technologies and 

applications that are most suitable for the sustainability sub-criteria were selected.   

Another objective of this study is to reveal whether Industry 4.0 technologies 

and applications are differentiated on the basis of different sectors in terms of the 

mindset of social, economic, and environmentally sustainable value. Therefore, 

analysis has been conducted in various sectors including petrochemical, metal 

production, textile, automotive, and food and then the differences while weighting the 

sub-criteria of sustainability along with the ranking of Industry 4.0 technologies based 
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on the sub-criteria and selection the most appropriate Industry 4.0 technologies under 

the umbrella of sustainability dimensions were revealed.  

 

 3.2. CONCEPTUAL BACKGROUND 

 

To form a basis for the analysis of this study, various academic articles, books, 

and book chapters were gathered from the Scopus database with the keywords 

“Industry 4.0 and Sustainability”.  In total 720 academic resources have been found 

varying from the year 2021 to 2014. In this manner, the framework of Industry 4.0 

technologies under environmental, economic, and social dimensions of sustainability 

have been evaluated with a holistic perspective. The academic resources have been 

used in the bibliometric analysis to add depth to the study and a word cloud was created 

by using the abstracts of the academic resources to provide visual insight into certain 

texts or concepts. The image of the word cloud that emerged as a result of this analysis 

is given in Figure 5, shown below. 

 

Figure 5: A Visual Representation of the most used words 

 

 

Source: Aria and Cuccurullo, 2017. 
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What stands out in this figure are the patterns of concepts such as Industry 4.0, 

sustainability, supply chain management, IoT, sustainable manufacturing, industrial 

development, artificial intelligence, competition, digital transformation, innovation, 

energy efficiency, decision making, manufacturing, embedded systems, industrial 

economic, environmental impact. It is an expected result that these concepts come to 

the fore in the visual analysis of the studies examined using certain keywords. In 

addition, words that contribute to environmental, economic, and social sustainability 

such as flexibility, optimization, autonomy, energy, performance, autonomy, 

efficiency, cooperation, efficiency, sensitivity, management, recycling, emissions, 

carbon emissions are also mentioned in the abstracts of the selected academic 

resources apart from this word cloud analysis. In other words, the findings obtained 

from the relevant literature review, which deals with the contribution and benefits of 

Industry 4.0 technologies to sustainability pillars support this visual tool.  

Overall, it can be deduced from the analysis of the studies, which were 

examined through the keywords, mainly qualitative methods are preferred and there 

are deficiencies in the practical studies. The biggest reason for this deficiency can be 

shown as the fact that the enterprises could not fully incorporate Industry 4.0 

technologies, due to problems such as insufficient technological infrastructure and 

high cash capital requirements. Moreover, enabling technologies of Industry 4.0 

including cyber-physical systems, IoT, autonomous robots, augmented reality, big data 

and analytics, cloud computing, artificial intelligence technologies, and smart factories 

pave the way for creating a sustainable working environment. Internet of Things 

enables all objects to access the internet and interact and communicate with other 

devices. Autonomous robots in cooperation with human beings provide flexibility, 

quality and efficiency in production while providing a safe work environment by 

undertaking dangerous tasks. To promote the human-centred industrial environment, 

augmented reality coordinates real and virtual elements with each other, providing 

flexible and real-time information, while also filling the gap between users in physical 

and digital environments. Big data and analytics enable storing, analyzing, interpreting 

the exponentially increasing data rate, and understanding customer profiles and 

consumption habits in this way create an opportunity to highlight the companies that 

are in constant competition with each other in today’s global world. Lastly, cloud 
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computing provides faster innovation, flexible resources and economical scaling by 

providing information technology services over the internet. Aforementioned Industry 

4.0 technologies and extensions are anticipated to generate a horizontal, vertical, and 

end-to-end digital integration of such backbone functions of a factory as engineering, 

production and management, thus converting traditional factory systems into smart 

factory systems that are highly flexible, manageable and more importantly sustainable 

(Mattern and Floerkemeier, 2010; Esmaeilian et al., 2016; Qin, 2014; Grieves, 2014; 

Chou, 2015). 

After gathering the terms Industry 4.0 and sustainability together and 

demonstrating their relationships in a broad framework, the research question of this 

study, that is to say, revealing the role of Industry 4.0 technology alternatives in 

creating a sustainable working environment and decision making the best Industry 4.0 

technology alternatives providing the sustainability criteria can be answered.  As the 

research question suggests, this is a decision question. Therefore, this study is 

constructed based on a decision theory. According to Rapoport (1998: 3), 

Decision theory deals with situations in which one or more actors must make 

choices among given alternatives. Decision theory is based on an assumption that 

each choice (decision) entails consequences called outcomes and that each of the 

actors making the decisions has preferences for the different outcomes. It is not 

assumed that an actor necessarily has full knowledge of just what those 

consequences will be, but it is assumed that an actor envisages at least some of 

them, and it is these envisaged consequences that he prefers in varying degrees. 

 

Accordingly, North (1968) suggested that decision theory is a technique of 

putting common sense into words. The decision-maker considers the potential 

consequences of his/her available options in two dimensions: value (as determined by 

utility theory) and the likelihood of occurrence. The decision-maker then selects the 

one he/she believes to be the most valuable. It is not guaranteed that the result will be 

as excellent as the decision-maker hopes, but he/she has made the best decision based 

on his/her preferences and available information. Decision-making can be regarded as 

an indispensable part of life that changes from a simple decision to a complex one. In 

our daily lives, we deal with such basic decision problems as purchasing decisions, 

dinner plans, and traveling options whereas in a business environment there are critical 

decisions to make within the levels of strategic, managerial, and operational including 

new product launch, facility location selection, scheduling and so on. No matter the 
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size of the decision it consists of a process. This process in decision making has some 

basic steps including: 

1. setting goals or defining problems 

2. examining goals and problems, determining priorities 

3. identifying alternatives 

4. examining and valuing alternatives 

5. determining and choosing selection criteria (Can, 2015).  

In this decision-making process the nature of the decision-making problem, 

decision-maker, time, decision-making environment, physiological factors, risks, 

criteria, goals, and alternatives play a role while choosing the decision analysis 

methods (Özbek, 2017). Therefore, within the scope of this study, based on the nature 

of the decision-making problem, Multi-Criteria Decision Making Methods (MCDM) 

have been chosen to answer the research question. Next, the methodology part will be 

given. 

 

 3.3. METHODOLOGY 

 

In the methodology part, information regarding questionnaire design, sample 

and data collection as well as the data analysis and measurement will be explained in 

a detailed manner. 

 

2.3.1. Questionnaire Design 

 

The questionnaire form was designated with several steps. Firstly, a purposely 

selected group of nine representatives from various sectors including the 

petrochemical, metal production, and textile industry gathered together to conduct a 

focus group study, which is a form of qualitative research gathering various views, 

ideas, and perceptions together to gain an in-depth understanding on the matter 

(Nyumba et al. 2018). Within this focus group study, brainstorming and mind mapping 

techniques were utilized by using the Xmind tool and sub-criteria of the sustainability 

dimensions that were considered to be related to the Industry 4.0 framework along 

with the Industry 4.0 technology alternatives were determined. After that, for a 
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preliminary test of the questionnaire form, a pilot study is done by three experts 

working within the metal production industry. Furthermore, in order to provide 

consistency, five academics from various backgrounds were gathered together and 

asked for a close examination of the questionnaire. Based on the outputs of the pilot 

study and feedbacks from the academics, some redundant and overlapping expressions 

were eliminated from the questionnaire form to provide clarity and enhance 

understandability. The table below shows the final version of the criteria, sub-criteria, 

and Industry 4.0 technology alternatives that are determined in the wake of focus group 

and pilot studies.  

 

Table 14: Hierarchy of the proposed model 

 

Source: Created by the author. 

 

 

Main Goal        Main Criteria             Sub-Criteria                                                                          Alternatives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To find out the 

best Industry 

4.0 alternative. 

Economic 
Sustainability 

Environmental 

Sustainability 

Workplace Safety  

Improvement in working standards and 

conditions 

The emergence of new job definitions  

Demand for a qualified workforce 

Increase in social welfare  

 

Increase in profitability 

Cost Reductions 

Productivity in production 

Flexibility in production 

Quality Control and Assurance 

Delivery and lead time reductions 

Transparency and monitoring in production 

Process Optimization 

Standardization in Production 

 

Increasing the use of renewable energy 

resources 

Environmental pollution prevention, 

management and control 

Increasing recovery, recycling and reusing 

rates 

Reducing Greenhouse Gas Emissions 

Ensuring efficiency in resource and energy use 

Developing green innovative strategies 

 

Additive 

Manufacturing 

Augmented 

Reality 

Autonomous 

Robots 

Big Data 

Analytics 

Cloud Computing 

Cyber-Physical 

Systems 

Internet of 

Things 

System 

Integration 

Simulation 

Smart Factories 

Social 
Sustainability 
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The main criteria and alternatives have been explained in a detailed manner 

throughout the previous chapters. As for the sub-criteria, they were developed by 

taking the GRI`s economic, environmental and social standards as well as the decision-

makers focus group study results into account. During the sub-criteria development 

process, Industry 4.0 technology alternatives and their potential relationships with 

these sub-criteria were considered. As a result of the focus group study, workplace 

safety, improvement in working standards and conditions, the emergence of new job 

definitions, demand for a qualified workforce, and an increase in social welfare have 

been evaluated under the social sustainability criteria. Ensuring workplace safety 

encompasses such factors as elimination of unsafe working conditions provoked by 

hazardous equipment, machinery, processes, and practices along with the enhanced 

occupational health and well-being of the employees. Improvement in working 

standards and conditions refers to the fair and equal compensation policies, work 

schedules, and other perks of jobs. The emergence of new job definitions and demand 

for a qualified workforce can be treated under the job creation and/or employment 

approaches of the organizations. These variables are expected to be a reflection of 

Industry 4.0 adoption as in shifting from labor-intensive to mind-intensive works and 

be ameliorated with the hiring, recruitment and human resource departments’ 

initiatives. An increase in social welfare for both employees and employers refers to 

the enrichment in both work and social life standards. Such factors as an increase in 

profitability, reductions in cost such as operational, maintenance, and labor, enhancing 

productivity, flexibility, standardization in production, quality control and assurance 

as in reductions in the margin of error by eliminating the waste, delivery and lead time 

reductions, hence ensuring customer satisfaction, transparency and monitoring in 

production, thereby prevention any errors across the manufacturing processes, process 

optimization with continuous improvement, and increase in competitiveness are 

related to economic performance and economic impacts, hence economic 

sustainability. As for the environmental sustainability sub-criteria, increasing the use 

of renewable energy resources, prevention, management and control of environmental 

pollution such as air, water, soil, and noise, increasing recovery, reusing and recycling 

rates as in the strategies of waste management, reducing greenhouse gas emissions, 

ensuring efficiency in resource and energy use, and developing green innovative 
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strategies were generated. The use of renewable energy is of great importance in an 

attempt to combat climate change and reduce an organization’s overall environmental 

footprint. Effective management, control, and prevention of environmental pollution 

are critical to reducing an organization’s environmental impact. The type and amount 

of materials that are used in recovery, reusing and recycling indicate organizational 

approaches to waste management. As greenhouse gas emissions are a primary enabler 

to climate change, reducing the emissions volume can have benevolent and decent 

impacts on ecosystems, air quality, agriculture, human, and animal health. Moreover, 

the efficient use of energy and resources along with the development of green 

strategies approaches can help evade the deterioration of ecosystems, thereby ensuring 

environmental sustainability (GRI, 2016). These aforementioned sub-criteria are 

thought to be actualized with the implementation of Industry 4.0 technologies. 

Based on the hierarchy proposed model above, the questionnaire form contains 

three sections including matrices for evaluation of criteria and sub-criteria 

relationships, matrices for determining relations between alternatives and sub-criteria 

along with the open-ended questions regarding the business size, personal information 

such as respondents’ roles and working durations in their working environment, 

technical information within the scope of sustainability and Industry 4.0 as well as the 

general views on the predictions about these terms.  

 

2.3.2.  Sample and Data Collection 

 

The sample of the implementation constitutes respondents from a blend of 

various departments spanning from R&D, production, marketing, occupational safety 

and health, supply chain management, human resource departments to top 

management among five sectors functioning in petrochemical, metal production, 

automotive, textile and food industries. The issue of determining the sample size in an 

effort to obtain high accuracy rates by providing error minimization and viable 

comparison matrices in multi-criteria decision-making-based methods were debated. 

Although there is no certain rule for determining the number of decision-makers whom 

data is collected, it is suggested that it should be between 5-10 respondents. (Chang et 

al., 2019; Özbekler and Akgül, 2020). Therefore, for this study, three decision-makers 
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from each sector and in total 15 respondents were selected. That is to say, multi-

industry sample was employed in an attempt to increase observed variance and to 

enhance the generalization of the findings (Morgan et al., 2004: 94). Furthermore, for 

this analysis, a convenience and purposive sampling approach was preferred. The 

convenience sampling is a type of nonprobability or nonrandom sampling in which 

individuals of the target population fulfill particular practical criteria, such as ease of 

access, closeness, availability at a certain time, or desire to participate (Dornyei, 2007). 

Furthermore, the purposive sampling is commonly employed in implementation 

research in an effort to determine and opt for information-rich examples linked to the 

topic of interest (Patton, 2014). Additionally, the respondents in the sample are 

deliberately chosen on account of the qualities the respondents have. Hence, being 

among the types of the purposive sampling method, expert sampling was utilized. As 

the name implies, the expert sampling method advocates for purposive sampling to be 

conducted on experts in a certain field. When looking into new topics of research, 

expert sampling is considered to be a useful technique to provide solid results or when 

there is currently a lack of observational evidence (Etikan et al., 2016). Apart from the 

knowledge and experience, Bernard (2017) emphasized the significance of 

volunteerism to participate and convenience in this sampling approach. Thereafer, the 

reasons for choosing these sectors along with the general information regarding the 

selected firms are as follows: 

The petrochemical industry is one of the most polluting industries with its 

carbon footprint ratios and the selected firm gives specific importance to sustainability 

issues and waste management as well as holds the certifications including “ISO 9001 

Quality Management System, OHSAS 18001 Occupational Health and Safety 

Management System and ISO 14001 Environmental Management System”. The 

selected petrochemical firm is regarded as a large enterprise, located in Aliağa, İzmir 

and the leading petrochemical company of Turkey. The outputs of the fırm are used in 

many sectors such as plastics, chemicals, packaging, construction, agriculture, 

automotive, textiles, and pharmaceuticals. The firm operating in the metal production 

industry is managed as a group of companies combining valve, cable, metal factories, 

and ship recycling facilities in itself. The metal production facility of the firm is located 

in Kemalpaşa Organized Industrial Zone, İzmir and produces brass and bronze. The 
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firm launched a department concerning the adoption of the Industry 4.0 technologies 

and pays attention to issues including creating employment, employee training and 

development, product and service responsibility, business ethics, social policies, 

environmental awareness, energy efficiency, waste management, and reducing water 

use within its operations. The firm in the textile industry with its eight production 

facilities is among the largest garment manufacturers in Turkey. One of the 

headquarters of the company, which is a large enterprise, is located in Işıkkent 

Organized Industrial Zone, İzmir. This firm implements waste management policies 

and aims to minimize environmental impact. Moreover, the firm focuses on diversity 

in the workplace, supports supporting women’s empowerment and education, thus 

having a strong corporate social responsibility. The firm in the food industry is located 

in Sarıçam Organized Industrial Zone, Adana and produces traditional soft drinks like 

turnip and lemonade as well as sauces segments. This firm has green deal strategies 

and gives importance to sustainability issues. Moreover, the firm aims to minimize its 

negative impacts on nature in all its production processes along with the firm holds 

“ISO 22000 Food Safety Management System, ISO 9001 Quality Management 

System, HACCP (Hazard Analysis Critical Control Point), and Turkish Standards 

Institution certifications”. As for the firm in the automotive industry it is located in 

Tarsus, Mersin and manufactures semi-trailers for the transportation and logistics 

sector as well as tactical wheeled vehicles for use in the defence industry. The firm 

also offers sales and after-sales services and does vehicle superstructure and assembly 

works of one of the most leading automotive brands worldwide. The firm applies lean 

manufacturing strategies and attempts to adopt Industry 4.0 technologies and has the 

mindset of zero environmental accidents by complying with the legal and other 

requirements to protect the environment, ensuring the disposal of non-recoverable 

wastes, and taking measures to reduce the pollution load of air emissions and 

wastewater. As a result, determined firms are selected owing to their interests in 

sustainability and Industry 4.0 technologies.  Moreover, only volunteer respondents 

were selected because of difficulties in availability, time, and budget constraints. The 

prepared questionnaire forms were sent to respondents via e-mail and the survey 

collection period was between August to December 2021. 
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2.3.3.  Data Analysis and Measurement 

 

Within the data analysis and measurement, the methods used are called 

MCDM, also known as Multiple-Criteria Decision Analysis (MCDA) or Multi-

Attribute Decision-Making (MADM). The main idea lying behind the MCDM is that 

multiple objectives and multiple criteria conflict with each other (Nădăban et al., 

2016). MCDMs are applied in decision-making processes within various areas 

including engineering, construction, tourism, management, and finance to choose 

and/or rank alternatives based on the determined criteria. The structure that constitutes 

the background of the multi-criteria decision-making methods has been developed 

based on the decision makers’ alternative preferences along with the criteria 

requirements (Yang and Tzeng, 2011). Although there exist different sorts of MCDM 

methods in the literature, there is no consensus on which method is the most 

appropriate for a certain decision-making process. Therefore, technical and practical 

limitations, the dataset type whether it has qualitative or quantitative attributes as well 

as the aim of the decision-making problem itself lead the way while choosing the 

MCDM methods (Mulliner et al., 2013). In this study, a multicriteria decision-making 

approach for the evaluation and selection of Industry 4.0 technology alternatives under 

a fuzzy environment has been performed. Based on the nature of the problem, the 

criteria can be subjective with linguistic/qualitative definition and/or objective with 

monetary/quantitative terms. So, to eliminate the ambiguity and vagueness stemming 

from the qualitative expressions a fuzzy set theory was put forward by Zadeh (1965) 

and applied in MCDM methods. Another reason why fuzzy methods have been used 

in MCDM methods is describing the subjective judgment of a decision-maker 

quantitatively gives much more meaningful and efficient results (Nădăban et al., 

2016). Overall, the followings explain some of the benefits of fuzzy logic are: it is 

extremely near to the human thinking style, in the application, there is no need for too 

many mathematical models and expensive software, thereby both time and cost-

effectiveness, it is more versatile than other control systems due to the usage of 

membership values, and modelling or a system based on fuzzy logic may be simply 

created using only the expertise of decision-makers. However, fuzzy logic also has 

some drawbacks. As a method, the fuzzy logic is suitable for trial and error and there 
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is no certain method that gives definite results in the determination of membership 

functions (Albertos and Sala, 1998). Due to its benefit outweighs the drawbacks along 

with the structure of our research problem and criteria gathered, the fuzzy logic was 

applied. Table 15 below shows the steps taken throughout the application stage. 

 

Table 15: Proposed Model for Industry 4.0 Technology Selection Problem 

 

Source: Created by the author. 
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Hence, in this study Fuzzy-DEMATEL for criteria weighting and fuzzy-

TOPSIS for selecting out of the alternatives, that are among the MCDM methods, have 

been used owing to the structure of the criteria gathered. The fırst method used in the 

analysis is Decision Making Trial and Evaluation Laboratory (DEMATEL) method 

and was proposed between 1972 and 1976 by American scientists in the Science and 

Human Affairs Program to tackle the complex and interconnected problem group. 

DEMATEL is based on a graph theory and allows users to evaluate and solve problems 

using a visualization method. To depict the interdependent relationships and the values 

of effects between criteria, this structural modeling approach uses a cause-effect 

relationship diagram. DEMATEL deploys mathematical techniques to acquire analysis 

of logical and direct impact relations among systematic criteria. Furthermore, this 

method can improve understanding of respondents’ perspectives on intertwined 

factors, criteria, as well as propose a viable solution with the help of a visualization 

structure model (Gabus and Fontela, 1972, 1973). So, with the help of this method, it 

can be found out which aspects are more fundamentally important for the whole 

system and which are not by evaluating and discussing the structural model. For 

understanding the criteria relationships and weighting them other MCDM methods 

exist like “Analytic Hierarchy Process (AHP), Analytic Network Process (ANP)”, 

“Step-Wise Assessment Ratio Analysis”, and “Entropy”. The AHP method relies on 

the pairwise comparisons, however, in our model due to the large number of sub-

criteria the analysis using the AHP method would transform the model into a rather 

complex task. Moreover, in our research problem determined sub-criteria might have 

potential relationships among them so it is not possible to denote the causality and 

dependency with the AHP method. As for the use of the ANP method in such 

circumstances, it is also not recommended because of the fact that there are more than 

seven sub-criteria and alternatives and that their heterogeneity creates a problem 

(Özbek, 2017). Moreover, in decision-making problems rather than the superiority of 

methods to each other, what is necessary is that to determine the most suitable method 

according to the structure and nature of the problem. Therefore, in this study 

DEMATEL method was preferred. However, due to the environments that are unclear 

and hard to estimate by exact numerical values caused by human judgment in decision-
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making, fuzzy logic is required. Thus, the DEMATEL method is extended to fuzzy 

DEMATEL to make better decisions in hesitant environments (Wu and Lee, 2007). 

Fuzzy DEMATEL has been extensively used in various fields as an effective 

decision-making method. Table 16 below gives a demonstration of the several studies 

conducted with the use of fuzzy DEMATEL.  

 

Table 16: Fields of Research Using Fuzzy DEMATEL Method 

 

Related Authors Fields of Research using Fuzzy DEMATEL  

(Lin, 2013;  

Lin et al., 2018;  

Govindan et al., 2015). 

Green supply chain management 

Sustainable Supply Chain Management 

Eco-efficiency based Green Supply Chain Management  

(Chang et al., 2011). Supplier Selection 

(Zhou et al., 2011). Identification of Critical Success Factors in Emergency Management 

(Özdağoğlu et al., 2021). Sorting of Airports 

(Organ, 2013). Machine Selection for a Textile Company 

(Chen Yi et al., 2007). Determining the Factors Affecting Customers’ Purchasing Decisions  

 

 As for the functioning of the fuzzy DEMATEL, it contains seven stages. In the 

first stage, the interactions between the criteria are evaluated by experts (Altan and 

Aydın, 2015, 103-105). The linguistic expressions and triangular fuzzy number 

equivalents used for this process are given in Table 17.  

 

Table 17: Fuzzy DEMATEL Scale 

 

Linguistic Variable  Corresponding Triangle Fuzzy Numbers 

No interaction between the two criteria 0,00; 0,00; 0,00 

There is very little interaction between the two criteria 0,00; 0,00; 0,25 

There is little interaction between the two criteria 0,00; 0,25; 0,50 

There is normal interaction between the two criteria 0,25; 0,50; 0,75 

There is much interaction between the two criteria 0,50; 0,75; 1,00 

There is too much interaction between the two criteria 0,75; 1,00; 1,00 

Source: Wu and Lee, 2007. 

 

Based on the abbreviations and explanations denoted below, the analysis was 

designated and carried out. 
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𝑖, 𝑗: 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛; 𝑖 = 1,2,3, … , 𝑛; 𝑗 = 1,2,3, … , 𝑛 

𝐾: 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟;𝐾 = 1,2,3, … , 𝑘 

𝑙𝑖𝑗𝐾 : 𝑇ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟′𝑠 𝑜𝑝𝑖𝑛𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓  

𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑛 𝑗. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑚𝑖𝑗𝐾: 𝑇ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑠 1  

𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟′𝑠 𝑣𝑖𝑒𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗. 

𝑢𝑖𝑗𝐾: 𝑇ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟′𝑠 𝑜𝑝𝑖𝑛𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 

 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑛 𝑗. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛  

𝑑̃𝑖𝑗𝐾: 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑜𝑓 𝐾. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟′𝑠 𝑣𝑖𝑒𝑤  

𝑜𝑛 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑛 𝑗. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

The triangular fuzzy number showing the effect of the criterion in the row on 

the criterion in the column can be shown by the expert as in equation 1. 

𝑑𝑖𝑗𝐾 = 𝑙𝑖𝑗𝐾;  𝑚𝑖𝑗𝐾;  𝑢𝑖𝑗𝐾     (1) 

In the second stage, an initial direct-relation matrix is generated. The expert 

opinions form the fuzzy initial direct relationship matrix for that expert. The structure 

of the fuzzy initial direct relationship matrix is shown in equation 2.  

𝐷𝐾̃: 𝐾. 𝑓𝑢𝑧𝑧𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟 

      𝐷̃𝐾 =

[
 
 
 
𝑑̃11𝐾 𝑑̃12𝐾 … 𝑑̃1𝑛𝐾

𝑑̃21𝐾 𝑑̃22𝐾 … 𝑑̃2𝑛𝐾

… … … …
𝑑̃𝑛1𝐾 𝑑̃𝑛2𝐾 … 𝑑̃𝑛𝑛𝐾]

 
 
 

               (2) 

In the next step, expert opinions are blended in to form a single fuzzy initial 

direct relationship matrix.  

𝑙𝑖𝑗: 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗 

𝑚𝑖𝑗: 𝑇ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓  

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗 𝑖𝑠 1 

𝑢𝑖𝑗: 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗 

𝑑̃𝑖𝑗 : 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑔𝑎𝑟𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓  

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗 

The joining operations are shown in equations 3, 4, and 5. 

𝑙𝑖𝑗 =
∑ 𝑙𝑖𝑗𝐾

𝑘
𝐾=1

𝑘
                       (3) 

𝑚𝑖𝑗 =
∑ 𝑚𝑖𝑗𝐾

𝑘
𝐾=1

𝑘
                                    (4) 

𝑢𝑖𝑗 =
∑ 𝑢𝑖𝑗𝐾

𝑘
𝐾=1

𝑘
                    (5) 

The resulting fuzzy initial direct relationship matrix is formed as in equation 6. 
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𝐷̃𝐾 =

[
 
 
 
𝑑̃11 𝑑̃12 … 𝑑̃1𝑛

𝑑̃21 𝑑̃22 … 𝑑̃2𝑛

… … … …
𝑑̃𝑛1 𝑑̃𝑛2 … 𝑑̃𝑛𝑛]

 
 
 

                  (6) 

In the third stage, the normalized fuzzy direct relationship matrix is prepared. 

The steps to be applied for the normalization process are given in equations 7, 8, and 

9. 

𝑥̃𝑖𝑗 : 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑔𝑎𝑟𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑖 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗. 

∑ 𝑢𝑖𝑗
𝑛
𝑗=1 , ∀ 𝑓𝑜𝑟 𝑖                        

∑ 𝑢𝑖𝑗
𝑛
𝑖=1 , ∀ 𝑓𝑜𝑟 𝑗                                            

𝑥̃𝑖𝑗 =
𝑙𝑖𝑗

𝑚𝑎𝑥{∑ 𝑢𝑖𝑗
𝑛
𝑗=1 ,∀ 𝑓𝑜𝑟 𝑖 ; ∑ 𝑢𝑖𝑗

𝑛
𝑖=1 ,∀ 𝑓𝑜𝑟 𝑗 }

;                                (7) 

 

𝑚𝑖𝑗

𝑚𝑎𝑥{∑ 𝑢𝑖𝑗
𝑛
𝑗=1 ,∀ 𝑓𝑜𝑟 𝑖 ; ∑ 𝑢𝑖𝑗

𝑛
𝑖=1 ,∀ 𝑓𝑜𝑟 𝑗 }

;                                (8) 

 

𝑢𝑖𝑗

𝑚𝑎𝑥{∑ 𝑢𝑖𝑗
𝑛
𝑗=1 ,∀ 𝑓𝑜𝑟 𝑖 ; ∑ 𝑢𝑖𝑗

𝑛
𝑖=1 ,∀ 𝑓𝑜𝑟 𝑗 }

}                                    (9) 

  

The normalized fuzzy direct relationship matrix obtained as a result of these 

operations is demonstrated in equation 10.  

𝑋̃ = [

𝑥̃11 𝑥̃12 … 𝑥̃1𝑛

𝑥̃21 𝑥̃22 … 𝑥̃2𝑛

… … … …
𝑥̃𝑛1 𝑥̃𝑛2 … 𝑥̃𝑛𝑛

]                 (10) 

In the fourth stage, the total relationship matrix and/or the fuzzy sum 

relationship matrix is calculated with the help of equation 11. 

𝑇̃: 𝑓𝑢𝑧𝑧𝑦 𝑠𝑢𝑚 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐼: 𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 

    𝑇̃ =
𝑋̃

𝐼−𝑋̃
                                       (11) 

Accordingly, the fuzzy sum relationship matrix is formed as in equation 12. 

𝑡̃𝑖𝑗: 𝑇ℎ𝑒 𝑓𝑢𝑧𝑧𝑦 𝑠𝑢𝑚 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑣𝑎𝑙𝑢𝑒 𝑟𝑒𝑔𝑎𝑟𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 

𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑛 𝑗. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑇̃ = [

𝑡̃11 𝑡̃12 … 𝑡̃1𝑛

𝑡̃21 𝑡̃22 … 𝑡̃2𝑛

… … … …
𝑡̃𝑛1 𝑡̃𝑛2 … 𝑡̃𝑛𝑛

]                             (12) 
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In the fifth stage, the row and column totals in the fuzzy sum relationship 

matrix are obtained. Row totals are calculated using equation 13, column totals are 

calculated using equation 14.  

𝑅̃𝑖: 𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 

𝐶̃𝑖: 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑢𝑚 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 

𝑅̃𝑖 = ∑ 𝑡̃𝑖𝑗
𝑛
𝑗=1 , ∀ 𝑓𝑜𝑟 𝑖                                   (13) 

𝐶̃𝑖 = ∑ 𝑡̃𝑗𝑖
𝑛
𝑖=1 , ∀ 𝑓𝑜𝑟 𝑖                              (14) 

𝑎𝑖 : 𝑅̃𝑖 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑏𝑖: 𝑅̃𝑖 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑐𝑖 : 𝑅̃𝑖 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑑𝑖: 𝐶̃𝑖  𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑒𝑖: 𝐶̃𝑖  𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑓𝑖: 𝐶̃𝑖  𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖. 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

By taking the sums and differences of the values in equations 15 and 16, the 

degree of influence and influence for each criterion is determined. 

𝑅̃𝑖 + 𝐶̃𝑖 = {𝑎𝑖 + 𝑑𝑖 ;  𝑏𝑖 + 𝑒𝑖;  𝑐𝑖 + 𝑓𝑖}        (15) 

𝑅̃𝑖 − 𝐶̃𝑖 = {𝑎𝑖 − 𝑓𝑖;  𝑏𝑖 − 𝑒𝑖;  𝑐𝑖 − 𝑑𝑖}       (16) 

In the sixth stage, the defuzzification process is performed by taking the 

average of the values that make up the triangular fuzzy number. The clarification 

processes are shown in equations 17 and 18. 

𝑅𝑖 + 𝐶𝑖 =
𝑎i+di+bi+ei+ci+fi

3
                                      (17) 

Ri − Ci =
(ai−fi)+(bi−ei)+(ci−di)

3
                               (18) 

Unnormalized criterion weights are found with the help of these defuzzified 

values. Finding unnormalized criterion weights is shown in equation 19. 

nwi: Unnormalized weight value of criterion i 

nwi = √(Ri + Ci)
2 + (Ri − Ci)

2                               (19) 

Finally, the weight values are normalized with the help of equation 20. After 

the normalization process, the sum of the weight values of the criteria is equal to 1. 

wi: Normalized weight value of criterion i 

wi =
nwi

∑ nwi
n
i=1

;  ∀ for i                                  (20) 

The largest value among these values represents the most important criterion 

to be considered in the decision-making problem.  



93 

 

As for the TOPSIS, the method was first proposed by Hwang and Yoon (1981) 

and has been used in various fields for tackling ranking and selecting problems. The 

main purpose of this method is to determine the alternative that is closest to the positive 

ideal solution minimizing the cost criteria and maximizing the benefit criteria and the 

farthest from the negative ideal solution. The advantages of this method include its 

ease of use, having the ability to rank the best alternatives quickly, handling conflicting 

situations, and requiring low mathematical complexity (Rajak and Shaw, 2019). 

However, in order to eliminate vagueness and ambiguity arising from experts’ 

judgments, opinions, and views fuzzy logic is applied. Moreover, the use of TOPSIS 

with fuzzy logic covering linguistic evaluations leads to feasible solutions as the 

number of alternatives increases the complexity of the decision making processes gets 

complicated (Özdağoğlu and Güler, 2016).  

Table 18 gives a demonstration of the several studies conducted with the use 

of the fuzzy TOPSIS method.  

 

Table 18: Fields of Research Using Fuzzy TOPSIS Method 

 

Related Authors Fields of Research using Fuzzy TOPSIS  

(Chen et al., 2006). Supplier Selection 

(Özdağolu and Güler, 2016). Evaluation of E-Service Quality of Internet-Based Banking Alternatives 

(Kaya and Kahraman, 2011). Selection of the Best Energy Technology Alternative 

(Awasthi et al., 2011). Evaluating Sustainable Transportation Systems 

(Maldonado-Macías et al., 2014). Ergonomic Compatibility Evaluation of Advanced Manufacturing 

Technology 

(Kabir and Hasin, 2012). Evaluation of Travel Website Service Quality 

(Chu and Lin, 2003). Robot Selection 

(Chu, 2002). Plant Location Selection 

 

Apart from these studies, fuzzy TOPSIS methods are also used in areas related 

to energy sources, business, environment, and supply chain as the method offers 

simplicity, computational efficiency, and simultaneous consideration of the ideal and 

the anti-ideal solutions (Palczewski and Sałabun, 2019).  
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After demonstrating the usage area of the fuzzy TOPSIS method, the steps of 

the method will be given. The fuzzy TOPSIS model fundamentally is implemented 

according to the following steps: 

1. Evaluate the relationship between sub-criteria and alternatives. 

2. Transform the evaluation results into trapezoidal fuzzy numbers. 

Fuzzy triangular and trapezoidal numbers are employed to assess each 

technology alternative. The linguistic variable for assessment lies between “very poor” 

and “very good”, the membership function set is shown in Figure 6, and as an example, 

the linguistic variable ‘‘Very Good (VG)’’ can be demonstrated as (8,9,9,10), the 

membership function of which is given in Equation 21: 

 

(21) 

 

 

Figure 6: Linguistic variables for ratings 

 

 

Source: Chen et al., 2006. 

 

An evaluation of Industry 4.0 technology alternative can be regarded as a multi-

criteria decision-making problem and this problem can be described by means of the 

following sets (Chen et al., 2006):  

 a set of K users called E = {D1; D2; . . .; DK} 

 a set of m possible Industry 4.0 technology alternatives called A = {A1; 

A2; . . .; Am} 
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 a set of n criteria, C = {C1; C2; . . .; Cn} with which Industry 4.0 

technology alternatives` performances are measured; 

 a set of performance ratings of Ai (i = 1; 2; . . .; m) with respect to 

criteria Cj (j=1; 2; . . .; n), called X = {xij; i = 1; 2; . . .; m; j = 1; 2; . . .; 

n} 

Suppose that a decision group has K decision-makers, and the fuzzy rating of 

each decision-maker Dk (k= 1; 2; . . .  ; K) can be represented as a positive trapezoidal 

fuzzy number  kR
~

(k= 1; 2; . . . ; K) with membership function )(~ x
kR

 . 

3. Construct the aggregated fuzzy rating matrix. 

A good aggregation method should be considered the range of fuzzy ratings of 

each decision-maker. That is to say, the range of aggregated fuzzy ratings must consist 

of the ranges of all decision-makers’ fuzzy ratings. Let the fuzzy ratings of all decision-

makers be trapezoidal fuzzy numbers kR
~

= (ak; bk; ck; dk,), k = 1; 2; . . . ; K. Thereafter, 

the aggregated fuzzy rating can be defined as R
~

 = (a; b; c; d), k = 1; 2; . . . ; K. 

Equation 22 to 25 shows the detailed computations: 

where, 

}{min k
k

aa                                                                                                                      (22) 





K

k

kb
K

b
1

1                                                                                                                         (23) 





K

k

kc
K

c
1

1                                                                                                                       (24) 

}{max k
k

dd                                                                                                                    (25) 

4. Normalize the aggregated fuzzy rating matrix. 

 After the ratings are aggregated into one matrix the normalized weighted 

matrix is calculated by Equation 26:  

Vij=wij x rij.                             (26) 

Xij is the aggregated fuzzy rating matrix R of alternative i under the evaluation 

criterion j. After normalization, the elements of matrix R are converted into rij. 

Normalization is carried out by one of the methods which transform them into the 

numerical value, i.e. between 0-1, according to the structure of the problem (Chen et 

al., 2006). 
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5. Construct the weighted normalization matrix according to the values 

determined for each criterion.  

Weights (wij) can be gathered by any method such as eigenvector, fuzzy 

numbers, linear programming models, etc., then the weight vector is multiplied by 

normalized matrix R to obtain the weighted normalized matrix vij. In this analysis, as 

mentioned before, the weight of each criterion is calculated using the Fuzzy-

DEMATEL method which produces crisp weights through fuzzy numbers. Hence, in 

order to aggregate weights with ratings, weights are supposed trapezoidal fuzzy 

numbers which have equal values (a=b=c=d). Then rating matrix is multiplied by the 

weight matrix and finally weighted normalized matrix is procured. 

6. Determine the negative and positive ideal solutions. 

According to the weighted normalized fuzzy-decision matrix, normalized 

positive trapezoidal fuzzy numbers can also approximate the elements jivij ,,~  .  

Then, the fuzzy positive-ideal solution (FPIS, A*) and fuzzy negative-ideal solution 

(FNIS, A-) can be demonstrated as: 

),~,.....,~,~( **

2

*

1

*

nvvvA 
   

),~,.....,~,~( 21

  nvvvA
  

where the values can be constructed by Equations 27 and 28: 

}{max~
4

*

ij
i

j vv                                                                                                                (27) 

  }{min~
1ij

i
j vv 

i = 1; 2; . . .; m, j = 1; 2; . . .; n.                                           (28) 

7. Calculate the distance measure.  

The distance measure can be chosen from among the measurements to calculate 

distances such as the Euclidean distance or vertex distance (Chen and Tzeng, 2004; 

Chen et al., 2006). The distance of each alternative from A* and A- can be calculated 

with Equation 29 and 30: 

mivvdd
n

j

jijvi ,.....,2,1,)~,~(
1

** 


                                                 (29) 

    mivvdd
n

j

jijvi ,.....,2,1,)~,~(
1




                                                    (30) 

where dv (.,.) is the vertex distance measurement between two trapezoidal fuzzy 

numbers that are calculated by Equation 31: 
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                   (31) 

8. Calculate the negative closeness to the ideal solution.  

The relative closeness of the ith alternative concerning the ideal solution is 

calculated by negative distance over total distance. A closeness coefficient is described 

to establish the ranking order of all possible
*

id  and 


id  of each Industry 4.0 

technologies Ai (i=1; 2; . . . ;m) has been calculated. The closeness coefficient 

demonstrates the distances to the fuzzy positive-ideal solution (A*) and the fuzzy 

negative-ideal solution (A-) simultaneously by taking the relative closeness to the 

fuzzy positive-ideal solution. The closeness coefficient (CCi) of each alternative is 

calculated in Equation 32: 

.,...,2,1),24(
*

mi
dd

d
CC

ii

i

i 







                (32) 

9. Rank the priority: a set of alternatives are sorted according to descending 

order of relative closeness. 

 It is clear that CCi = 1 if Ai = A* and CCi = 0 if Ai = A-. That is to say, 

alternative Ai is closer to the FPIS (A*) and farther from FNIS (A-) as CCi approaches 

1. According to the descending order of CCi, the ranking order of all technology 

alternatives can be determined and the best one among a set of feasible Industry 4.0 

technology alternatives can be selected.  

For the evaluation process, the approval status for each alternative is defined 

in Table 19 which can also be used for further evaluation when a decision is required 

for any technology alternatives. 

 

Table 19: Approval status 

 

Closeness coefficient (CCi) Evaluation status 

CCi [0;0,2) Do not recommend 

CCi [0,2;0,4) Recommend with high risk 

CCi [0,4;0,6) Recommend with low risk 

CCi [0,6;0,8) Approved 

CCi [0,8;1,0) Approved and preferred 

Source: Chen et al., 2006:8. 



98 

 

 

The formulations, steps and usage areas of fuzzy DEMATEL and fuzzy 

TOPSIS are mentioned separately however these two methods also have been used 

together to find out solutions for various business applications including logistics, 

transportation, supply chain, manufacturing, project selection, purchasing, and 

technology selection decisions. 

 Table 20 below depicts the studies that benefit these two methods 

collaboratively. 

 

Table 20: Fields of Research Using both Fuzzy DEMATEL and Fuzzy TOPSIS Methods 

 

Related Authors Fields of Research using Fuzzy DEMATEL and Fuzzy TOPSIS together  

(Zhang and Su, 2019). Estimation of participants in knowledge-intensive crowdsourcing 

(Sangaiah et al., 2017). The offshore/onsite teams’ knowledge transfer effectiveness is based on 

knowledge, team, technology, and organizational factors 

(Ocampo et al., 2020). Determination of a Mapping Strategy for Sustainable Food Manufacturing 

(Petrovic and Kankaras, 2020). Selection and Evaluation of Criteria for Determination of Air Traffic Control 

Radar Position 

(Vinodh et al., 2016). Agile Manufacturing Selection 

(Vinodh and Swarnakar, 2015). Lean Six Sigma Project Selection 

(Büyüközkan and Çifçi, 2012). Evaluation of Green Suppliers 

 

As it can be seen from the table above, a combination of fuzzy DEMATEL and 

fuzzy TOPSIS has been applied in various areas, especially in manufacturing 

problems. By virtue of ease of use and effective interpretation of the results of these 

methods as well as the nature of the research problem and properties of the determined 

sub-criteria these two methods are planned to be combined within the scope of this 

study.  

Next, the empirical findings obtained through the responses of the selected 

firms will be mentioned based on these formulations and steps given in this section. 

 

 3.4. EMPIRICAL FINDINGS 

 

In this study, an Excel sheet on the basis of equations and formulations given in 

the previous section was prepared with 3 main criteria, 21 sub-criteria, and 10 
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alternatives. The questionnaire form is then conducted with the participation of 15 

experts from various sectors. Participants expressed their own opinions and knowledge 

on a questionnaire form and later the scoring and evaluations of participants were 

entered into a prepared Excel in order to solve the equations of fuzzy DEMATEL and 

fuzzy TOPSIS methods.  

Due to the length of the definitions of the criteria and alternatives, coding was 

made before the analysis for ease of handling and is shown in the table below. 

 

Table 21: Coding the Criteria and Alternatives 

 

Coding Main Criteria 

A Social Sustainability 

B Economic Sustainability 

C Environmental Sustainability 

Coding Sub- Criteria 

A1 Workplace Safety  

A2 Improvement in working standards and conditions 

A3 The emergence of new job definitions  

A4 Demand for a qualified workforce 

A5 Increase in social welfare  

B1 Increase in profitability 

B2 Cost Reductions 

B3 Productivity in production 

B4 Flexibility in production 

B5 Quality Control and Assurance 

B6 Delivery and lead time reductions 

B7 Increasing competitiveness 

B8 Transparency and monitoring in production 

B9 Process Optimization 

B10 Standardization in Production 

C1 Increasing the Use of Renewable Energy Resources 

C2 Environmental Pollution Prevention, Management and Control 

C3 Increasing Recovery, Recycling and Reusing Rates 

C4 Reducing Greenhouse Gas Emissions 

C5 Ensuring Efficiency in Resource and Energy Use 

C6 Developing Green Innovative Strategies 

Coding Alternatives 

A1 Additive Manufacturing 

A2 Augmented Reality 

A3 Autonomous Robots 

A4 Big Data Analytics 

A5 Cloud Computing 

A6 Cyber-Physical Systems 

A7 Internet of Things 

A8 System Integration 

A9 Simulation 

A10 Smart Factories  

Source: Created by the author. 
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Thereafter coding the main and sub-criteria as well as the alternatives, the 

required steps given in the data analysis and measurement section will be employed 

for both determining the main and sub-criteria relationships and weights along with 

the evaluation of the alternatives. 

 

2.3.4.  Determining the Main and Sub-Criteria: Relationships and 

Weights 

 

At this stage, firstly 15 decision-makers have evaluated the main criteria, the 

relationships between the main criteria as well as the weights of the main criteria and 

the analysis of these evaluations are handled with the fuzzy DEMATEL method. As 

the analysis includes 15 respondents from five different sectors and only one sector 

results, that is textile, will be given step by step to set an example and later all results 

of the main criteria will be indicated according to sectors.  

Step 1. Expert's main criteria evaluation results and their conversion to fuzzy 

numbers. The evaluation results of the first expert are given numerically in Table 22, 

and their converted versions into triangular fuzzy number equivalents that are 

explained in the fuzzy DEMATEL scale in Table 16 and with equation 1 are given in 

Table 23 as an example. 

 

Table 22: Evaluation of the Main Criteria 

 

Expert 1 A B C 

A 0 3 2 

B 4 0 4 

C 4 3 0 

Source: Created by the author. 

 

Table 23: Converting the Main Criteria to Fuzzy Numbers 

 

Expert 1 A   B   C   

 l m u l m u l m u 

A 0.00 0.00 0.00 0.25 0.50 0.75 0.00 0.25 0.50 

B 0.50 0.75 1.00 0.00 0.00 0.00 0.50 0.75 1.00 

C 0.50 0.75 1.00 0.25 0.50 0.75 0.00 0.00 0.00 

* The same calculations are also done with the expert 2 and expert 3. 

Source: Created by the author. 
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Step 2. Preparation of a single fuzzy initial direct relationship matrix of the 

experts.  The single fuzzy initial direct relationship matrix is formed as in the table 

below by taking the average of each cell of the matrices created in Table 23, which 

was prepared based on the data received from three expert decision-makers. 

 

Table 24: The Single Fuzzy Initial Direct Relationship Matrix 

 

Expert 1, 2, 3 A   B   C   

 l m u l m u l m u 

A 0.00 0.00 0.00 0.25 0.50 0.75 0.08 0.33 0.58 

B 0.50 0.75 0.91 0.00 0.00 0.00 0.41 0.66 0.91 

C 0.41 0.66 0.91 0.25 0.50 0.75 0.00 0.00 0.00 

Source: Created by the author. 

 

Step 3. Forming the normalized fuzzy direct relationship matrix. 

The normalized fuzzy direct relationship matrix is prepared by dividing the 

total u value which is 1.83 for this example into the fuzzy initial direct relationship 

matrix. The calculations are also given in equations 7,8,9 and 10. The table below 

shows the normalized fuzzy direct relationship matrix. 

 

Table 25: The Normalized Fuzzy Direct Relationship Matrix 

 

Expert 1, 2, 3 A   B   C   

 l m u l m u l m u 

A 0.00 0.00 0.00 0.13 0.27 0.40 0.04 0.18 0.31 

B 0.27 0.40 0.50 0.00 0.00 0.00 0.22 0.36 0.50 

C 0.22 0.36 0.50 0.13 0.27 0.40 0.00 0.00 0.00 

Source: Created by the author. 

 

Step 4. Forming the fuzzy sum relationship matrix  

The total relationship matrix and/or the fuzzy sum relationship matrix is 

calculated with the help of equation 11. First of all, l, m, u matrices are formed then 
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by extracting the unit matrix and taking the reverse l (l-X)^(-1), m (I-X)^(-1), u  (I-

X)^(-1) matrices are obtained to further use in the fuzzy sum relationship matrix. The 

table below gives the fuzzy sum relationship matrix. 

 

Table 26: The Fuzzy Sum Relationship Matrix 

 

 A   B   C   

 l m u l m u l m u 

A 0.06 0.35 2.00 0.15 0.48 2.03 0.08 0.42 1.97 

B 0.35 0.81 2.83 0.08 0.40 2.17 0.26 0.65 2.49 

C 0.28 0.71 2.66 0.18 0.55 2.32 0.05 0.33 2.00 

Source: Created by the author. 

 

Step 5. The row and column totals in the fuzzy sum relationship matrix are 

calculated to obtain 𝑅̃𝑖 and  𝐶̃𝑖 values as well as the 𝑅̃𝑖 + 𝐶̃𝑖 and 𝑅̃𝑖 − 𝐶̃𝑖 values and 

given in the table below. 

 

Table 27: Row and Column Values 

 

𝑹̃𝒊   𝑪̃𝒊   𝑹̃𝒊 + 𝑪̃𝒊 𝑹̃𝒊 − 𝑪̃𝒊 

 

l M u l m u l m u l m u 

0.30 1.25 6.02 0.70 1.87 7.50 1.00 3.13 13.53 -7.20 -0.61 5.31 

0.70 1.86 7.50 0.42 1.44 6.53 1.12 3.31 14.04 -5.83 0.42 7.08 

0.52 1.60 6.99 0.40 1.41 6.47 0.92 3.01 13.46 -5.94 0.19 6.59 

Source: Created by the author. 

 

Step 6. In this step, the defuzzification process is performed by taking the 

average of the values that make up the triangular fuzzy number. Unnormalized 

criterion weights are found with the help of these defuzzified values. The table below 

shows the values of defuzzified and unnormalized weights. 
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Table 28: Defuzzied Values and Unnormalized Weights 

 

 

 

 

 

Source: Created by the author. 

 

With the defuzzied values, a causal diagram for the textile sector is created and 

given in the figure below. 

 

Figure 7: The Casual Diagram for Textile Sector 

 

 

Source: Created by the author. 

 

Based on this casual diagram, it can be said that social sustainability criterion 

is affected whereas environmental and economic sustainability criteria are affecting 

and the most affecting criteria is economic sustainability according to the data gathered 

from the textile sector. 

Next, the weight values are normalized and after the normalization process, the 

sum of the weight values of the criteria is equal to 1. The normalized weights of the 

main criteria gathered through the responses of the decision-makers working in the 

textile sector are 0.33, 0.34, and 0.33 for social, economic, and environmental 

sustainability, respectively. This method suggests that the largest value among the 

weight values represents the most important criterion to be considered in the decision-
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making problem (Wu and Lee, 2007). Accordingly, although the values are quite close 

to each other, it is possible to say by seizing upon the results the most important 

criterion for the textile industry is economic sustainability, followed by social and 

finally, environmental sustainability and this result is also similar to the causal 

diagram.  

The same logic, as well as the formulations of fuzzy DEMATEL, are applied 

and the same steps are taken for determining the weights and relationships of sub-

criteria and other sectors’ main and sub-criteria. The weights of the main and sub-

criteria for each sector are given in the table below in which local weights refer to the 

weights of each criterion separately and global weights clarify the weights of each 

criterion when considering their interrelationships among each other. 

Based on the table below, for the metal production sector, the most important 

main criterion is environmental sustainability followed by social and finally economic 

sustainability. As for the automotive sector, social and environmental sustainability 

are equally important and the least important criterion seems to be economic 

sustainability. The petrochemical industry focuses predominantly on social 

sustainability and economic as well as environmental sustainability have the same 

importance level. Lastly, for the food sector, social sustainability is the most essential 

criterion followed by economic and environmental sustainability, respectively. 

 

Table 29: The Weights of the Main and Sub-Criteria for Each Sector 

 

Main and Sub-

Criteria 

Metal Production  

Sector 

Automotive 

Sector 

Petrochemical 

Industry 

Textile 

Sector 

Food Sector 

Local Global Local Global Local Global Local Global Local Global 

A 0.33  0.34  0.34   0.33   0.35  

B 0.31  0.33  0.33   0.34   0.33  

C 0.35  0.34  0.33   0.32   0.32  

A1 0.24 0.08 0.21 0.07 0.18 0.06 0.19 0.06 0.19 0.07 

A2 0.24 0.08 0.21 0.07 0.22 0.08 0.23 0.07 0.21 0.07 

A3 0.12 0.04 0.19 0.06 0.18 0.06 0.17 0.06 0.20 0.07 

A4 0.20 0.07 0.18 0.06 0.21 0.07 0.20 0.07 0.21 0.07 

A5 0.20 0.07 0.20 0.07 0.21 0.07 0.22 0.07 0.20 0.07 

B1 0.10 0.03 0.10 0.03 0.11 0.03 0.11 0.04 0.10 0.03 

B2 0.09 0.03 0.10 0.03 0.10 0.03 0.10 0.04 0.11 0.04 
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Main and Sub-

Criteria 

Metal Production  

Sector 

Automotive 

Sector 

Petrochemical 

Industry 

Textile 

Sector 

Food Sector 

Local Global Local Global Local Global Local Global Local Global 

B3 0.13 0.04 0.10 0.03 0.10 0.03 0.10 0.04 0.11 0.04 

B4 0.09 0.03 0.09 0.03 0.10 0.03 0.10 0.03 0.09 0.03 

B5 0.10 0.03 0.11 0.03 0.10 0.03 0.09 0.03 0.10 0.03 

B6 0.09 0.03 0.11 0.04 0.10 0.03 0.10 0.03 0.09 0.03 

B7 0.11 0.03 0.10 0.03 0.11 0.04 0.10 0.04 0.10 0.03 

B8 0.09 0.03 0.09 0.03 0.09 0.03 0.09 0.03 0.10 0.03 

B9 0.11 0.04 0.09 0.03 0.10 0.03 0.10 0.03 0.10 0.03 

B10 0.10 0.03 0.10 0.03 0.10 0.03 0.10 0.03 0.10 0.03 

C1 0.16 0.06 0.16 0.05 0.16 0.05 0.17 0.05 0.17 0.05 

C2 0.17 0.06 0.16 0.05 0.17 0.06 0.17 0.05 0.17 0.05 

C3 0.14 0.05 0.16 0.05 0.16 0.05 0.17 0.05 0.17 0.05 

C4 0.17 0.06 0.18 0.06 0.17 0.05 0.17 0.05 0.16 0.05 

C5 0.18 0.06 0.18 0.06 0.17 0.06 0.17 0.05 0.17 0.05 

C6 0.18 0.06 0.16 0.05 0.17 0.06 0.16 0.05 0.16 0.05 

Source: Created by the author. 

 

In order to support the findings and enhance the validity of the results casual 

diagrams for the main criteria were built relying on the defuzzied values and denoted 

in the figures below. 

 

Figure 8: The Casual Diagram for Metal Production Sector 

 

 

Source: Created by the author. 
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criteria are affecting (a cause group) and the most influencing criterion is 

environmental sustainability according to the data gathered from the metal production 

sector. 

Figure 9: The Casual Diagram for Automotive Sector 

 

Source: Created by the author. 

 

Although the weights of the environmental and social sustainability criteria are 

the same, when looking at the casual diagram it is evident that environmental 

sustainability is slightly more important than the other sustainability pillars and both 

environmental and social sustainability are in the position of affected criteria whereas 

economic sustainability is an affecting criterion.  

 

Figure 10: The Casual Diagram for Petrochemical Industry 

 

 

Source: Created by the author. 
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According to the petrochemical industry, parallel with the results of the weight 

of the criteria, social sustainability is the most affecting criterion followed by the 

economic sustainability criterion though environmental sustainability is an affected 

criterion.  

Figure 11: The Casual Diagram for Food Sector 

 

Source: Created by the author. 

 

In the food sector, environmental and social sustainability are considered to be 

the affecting criteria while economic sustainability is regarded as an affected criterion 

for the food sector, social sustainability is attributed to the most important criterion 

within the sustainability perspective and the deductions coincide with the results of the 

weight. 

As for the evaluation of sub-criteria according to Table 30 above, A1 

(workplace safety), B3 (productivity in production), and C6 (developing green 

innovative strategies) are the most significant criteria whereas A3 (the emergence of 

new job definitions), B6 (delivery and lead time reductions), and C3 (increasing 

recovery, recycling, and reusing rates) are the least significant criteria for the metal 

production sector when taking into social, economic, and environmental sustainability 

perspectives account. Thereafter calculating the effects of each criterion with one 

another it is found out that the most critical criterion for the metal production sector is 

A1 (workplace safety) while the least critical one is B2 (cost reductions).  

For the automotive sector, A1 (workplace safety), B6 (delivery and lead time 

reductions), and C4 (reducing greenhouse gas emissions) are the most prominent 

criteria while A4 (demand for a qualified workforce), B9 (process optimization), and 
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C1 (increasing the use of renewable energy) are the least important among the social, 

economic, and environmental sustainability, respectively. Overall, the least important 

criterion is process optimization and the most important one is workplace safety for 

the automotive sector.  

The data gathered from the experts working in the petrochemical industry 

implies that A2 (improvement in the working standards and conditions), B7 

(increasing competitiveness), and C6 (developing green innovative strategies) precede 

the other criteria and A1 (workplace safety), B8 (transparency and monitoring in 

production), and C1(increasing the use of renewable energy) fall behind the remaining 

criteria. Furthermore, A2 (improvement in the working standards and conditions) and 

A5 (increase in social welfare) are the most important criteria whereas the B8 

(transparency and monitoring in production) B4 (flexibility in production) and B6 

(delivery and lead time reductions) are the least important ones.  

Textile sector’s data indicates that A2 (improvement in the working standards 

and conditions), B1 (increase in profitability), and C3 (increasing recovery, recycling, 

and reusing rates) are among the most remarkable criteria. On the other hand, A3 (the 

emergence of new job definitions), B5 (quality control and assurance), C6 (developing 

green innovative strategies) are insignificant when compared to other criteria. Overall, 

for the textile sector A2 (improvement in the working standards and conditions) is the 

most significant and B5 (quality control and assurance) is the least significant criteria.  

Lastly, for the food sector A4 (demand for a qualified workforce), B2 (cost 

reductions), and C3 (increasing recovery, recycling, and reusing rates) have the highest 

weights while A1 (workplace safety), and B6 (delivery and lead time reductions), and 

C6 (developing green innovative strategies) have the lowest weights out of the 

remaining criteria. Moreover, A4 (demand for a qualified workforce) is the leading 

criterion whereas B6 (delivery and lead time reductions) is the least important 

criterion. 
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2.3.5.  Determining the Alternatives: Selection Process of the Best 

Alternative  

 

At this stage, 15 decision-makers evaluate the relations between the sub-criteria 

and the alternatives, and the alternative rankings are derived from these relations with 

the fuzzy TOPSIS method. First of all, it has been determined that there are 10 different 

solution alternatives after the evaluation of the decision-maker group, who has the 

authority to decide on the solution of the problem and determine the main and sub-

criteria weights. 

Step 1. Evaluation of the relationship between sub-criteria and alternatives. 

Based on the table below, 15 decision-makers evaluated the alternatives according to 

sub-criteria. 

 

Table 30: Linguistic Variables and Corresponding Values 

 

Linguistic  Expression  Value 

Very poor level by alternative criteria 1 

Poor by alternative criteria 2 

Bad to moderate according to alternative criteria 3 

Intermediate by alternative criterion 4 

Good to moderate according to alternative criteria 5 

Good by alternative criteria 6 

Very good by alternative criteria 7 

Source: Converted from Chen et al., 2006. 

 

As the analysis includes 15 decision-makers from five different sectors with 10 

alternatives and 21 sub-criteria, only one sector’s partial results will be given step by 

step to set an example, and later all results of alternatives will be given according to 

sectors. Table 32 depicts the first decision-maker reviews of alternatives based on the 

sub-criteria A1 and A2, other tables shown in the rest of this analysis also belong to 

the reviews of the same decision-maker working in the textile sector.  
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Table 31: An Evaluation of the Social Sustainability Sub-criteria and Alternatives 

 

Sub-Criteria             A1            A2 

Alternative 1 1 2 

Alternative 2 1 2 

Alternative 3 3 4 

Alternative 4 2 3 

Alternative 5 1 2 

Alternative 6 2 2 

Alternative 7 1 2 

Alternative 8 1 2 

Alternative 9 1 2 

Alternative 10 2 2 

Source: Created by the author. 

 

Step 2. Transforming the evaluation results into trapezoidal fuzzy numbers. 

Evaluations made in the first step are converted into trapezoidal fuzzy numbers 

according to the membership function set given in Figure 6 and the table below shows 

these transformations of the evaluations of the expert 1 into the trapezoidal fuzzy 

numbers. 

 

Table 32: The Trapezoidal Fuzzy Numbers 

 

Trapezoidal Fuzzy Numbers  a b c d a b c d 

 Sub-Criteria  A1      A1 A1 A1 A2 A2 A2 A2 

Alternative 1  0 0 1 2 1 2 2 3 

Alternative 2  0 0 1 2 1 2 2 3 

Alternative 3  2 3 4 5 4 5 5 6 

Alternative 4  1 2 2 3 2 3 4 5 

Alternative 5  0 0 1 2 1 2 2 3 

Alternative 6  1 2 2 3 1 2 2 3 

Alternative 7  0 0 1 2 1 2 2 3 

Alternative 8  0 0 1 2 1 2 2 3 

Alternative 9  0 0 1 2 1 2 2 3 

Alternative 10  1 2 2 3 1 2 2 3 

 Source: Created by the author. 
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Step 3. Forming the aggregated fuzzy rating matrix. Based on the Equations 

given from 22 to 25 aggregated fuzzy ratings are prepared as a matrix and given in the 

table below. 

 

Table 33: The Aggregated Fuzzy Rating Matrix 

 

Trapezoidal Fuzzy Numbers a b c d a b c d 

Sub-Criteria A1 A1 A1 A1 A2 A2 A2 A2 

Alternative 1 0.00 2.66 3.33 9.00 0.00 2.66 3.33 8.00 

Alternative 2 0.00 2.00 3.00 8.00 0.00 2.66 3.33 8.00 

Alternative 3 2.00 4.66 5.33 8.00 4.00 5.33 5.66 8.00 

Alternative 4 0.00 2.33 2.66 6.00 1.00 3.33 3.66 6.00 

Alternative 5 0.00 1.66 2.33 6.00 1.00 3.00 3.00 6.00 

Alternative 6 1.00 4.00 4.00 9.00 1.00 3.00 3.00 6.00 

Alternative 7 0.00 2.33 2.66 6.00 1.00 3.00 3.00 6.00 

Alternative 8 0.00 2.33 2.66 6.00 1.00 3.00 3.00 6.00 

Alternative 9 0.00 3.66 4.33 9.00 1.00 5.00 5.00 9.00 

Alternative 10 1.00 6.00 6.00 9.00 1.00 6.00 6.00 9.00 

Source: Created by the author. 

 

Step 4. Constructing the normalized aggregated fuzzy rating matrix. 

The aggregated matrix above is normalized by dividing each column by 10 and the 

normalized version is given in the table below. 

 

Table 34: The Normalized Aggregated Fuzzy Rating Matrix 

 

Trapezoidal Fuzzy Numbers a b c d a b c d 

Sub-Criteria A1 A1 A1 A1 A2 A2 A2 A2 

Alternative 1 0.00 0.26 0.33 0.90 0.00 0.26 0.33 0.80 

Alternative 2 0.00 0.20 0.30 0.80 0.00 0.26 0.33 0.80 

Alternative 3 0.20 0.46 0.53 0.80 0.40 0.53 0.56 0.80 

Alternative 4 0.00 0.23 0.26 0.60 0.10 0.33 0.36 0.60 
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Trapezoidal Fuzzy Numbers a b c d a b c d 

Alternative 5 0.00 0.16 0.23 0.60 0.10 0.30 0.30 0.60 

Alternative 6 0.10 0.40 0.40 0.90 0.10 0.30 0.30 0.60 

Alternative 7 0.00 0.23 0.26 0.60 0.10 0.30 0.30 0.60 

Alternative 8 0.00 0.23 0.26 0.60 0.10 0.30 0.30 0.60 

Alternative 9 0.00 0.36 0.43 0.90 0.10 0.50 0.50 0.90 

Alternative 10 0.10 0.60 0.60 0.90 0.10 0.60 0.60 0.90 

Source: Created by the author. 

 

Step 5. Constructing weighted normalization matrix. The weighted 

normalization matrix is formed according to the values determined for each criterion. 

These weights (wij) are obtained by multiplying the normalized aggregated matrix to 

the weights found by the fuzzy DEMATEL. The table below shows the weights of the 

sub-criteria obtained from the fuzzy DEMATEL and weighted normalization matrix. 

 

Table 35: Weighted Normalization Matrix with Fuzzy DEMATEL Weights 

 

Fuzzy DEMATEL Weights A1 A1 A1 A1 A2 A2 A2 A2 

W 0.062 0.062 0.062 0.062 0.074 0.074 0.074 0.074 

Trapezoidal Fuzzy Numbers a b c d a b c d 

Sub-Criteria A1 A1 A1 A1 A2 A2 A2 A2 

Alternative 1 0.0000 0.0167 0.0209 0.0564 0.0000 0.0199 0.0249 0.0597 

Alternative 2 0.0000 0.0125 0.0188 0.0501 0.0000 0.0199 0.0249 0.0597 

Alternative 3 0.0125 0.0292 0.0334 0.0501 0.0298 0.0398 0.0423 0.0597 

Alternative 4 0.0000 0.0146 0.0167 0.0376 0.0075 0.0249 0.0274 0.0448 

Alternative 5 0.0000 0.0104 0.0146 0.0376 0.0075 0.0224 0.0224 0.0448 

Alternative 6 0.0063 0.0251 0.0251 0.0564 0.0075 0.0224 0.0224 0.0448 

Alternative 7 0.0000 0.0146 0.0167 0.0376 0.0075 0.0224 0.0224 0.0448 

Alternative 8 0.0000 0.0146 0.0167 0.0376 0.0075 0.0224 0.0224 0.0448 

Alternative 9 0.0000 0.0230 0.0271 0.0564 0.0075 0.0373 0.0373 0.0671 

Alternative 10 0.0063 0.0376 0.0376 0.0564 0.0075 0.0448 0.0448 0.0671 

Source: Created by the author. 
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Step 6. Determination of fuzzy negative and fuzzy positive ideal solutions. The 

fuzzy positive-ideal solution is represented by FPIS, A* and fuzzy negative-ideal 

solution is represented by FNIS, A-. With the help of equations 27 and 28, these values 

of A* and A-.  are found and shown in the table below.  

 

Table 36: Fuzzy Positive and Fuzzy Negative Ideal Solutions 

 

Trapezoidal Fuzzy Numbers a b c d a b c d 

 Sub-Criteria A1 A1 A1 A1 A2 A2 A2 A2 

A* 0.056 0.056 0.056 0.056 0.067 0.067 0.067 0.067 

A- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Source: Created by the author. 

 

Step 7. Calculation of the distance of each alternative from A* and A-.  Based 

on equations 29 and 30 as well as the vertex distance method shown in equation 31, 

the distance of each alternative from positive and negative ideal solutions are 

calculated and represented in the table below.  

 

Table 37:  Distances of Each Alternative from A* and A- 

 

d*  Sub-Criteria A1 A2  d-  Sub-Criteria A1 A2 

Alternative 1 0.0388 0.0463   Alternative 1 0.0312 0.0338 

Alternative 2 0.0405 0.0463   Alternative 2 0.0275 0.0338 

Alternative 3 0.0284 0.0265   Alternative 3 0.0341 0.0442 

Alternative 4 0.0414 0.0431   Alternative 4 0.0218 0.0293 

Alternative 5 0.0430 0.0449   Alternative 5 0.0208 0.0277 

Alternative 6 0.0334 0.0449   Alternative 6 0.0334 0.0277 

Alternative 7 0.0414 0.0449   Alternative 7 0.0218 0.0277 

Alternative 8 0.0414 0.0449   Alternative 8 0.0218 0.0277 

Alternative 9 0.0359 0.0365   Alternative 9 0.0333 0.0429 

Alternative 10 0.0284 0.0338   Alternative 10 0.0389 0.0463 

Source: Created by the author. 

 

Step 8. Calculation of closeness coefficient for each alternative. A closeness 

coefficient is defined to determine the ranking order of all possible
*

id  and 


id  of each 
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Industry 4.0 technology. The closeness coefficient demonstrates the distances to the 

fuzzy positive-ideal solution (A*) and the fuzzy negative-ideal solution (A-) 

simultaneously by taking the relative closeness to the fuzzy positive-ideal solution. 

The closeness coefficient (CCi) of each alternative is calculated with Equation 32 and 

shown in the table below.  

 

Table 38: The Closeness Coefficient (CCi) of Each Alternative 

 

 Sum d* Sum d- CCi 

Alternative 1 0.5670 0.4295 0.4295 

Alternative 2 0.6130 0.3846 0.3846 

Alternative 3 0.4361 0.5568 0.5568 

Alternative 4 0.5016 0.4752 0.4752 

Alternative 5 0.5524 0.4425 0.4425 

Alternative 6 0.5753 0.4290 0.4290 

Alternative 7 0.4779 0.5145 0.5145 

Alternative 8 0.4125 0.5704 0.5704 

Alternative 9 0.4580 0.5443 0.5443 

Alternative 10 0.3595 0.6385 0.6385 

Source: Created by the author. 

 

Step 9. Ranking the alternatives. Here, it can be said that if an alternative Ai is 

closer to the FPIS (A*) and farther from FNIS (A-) CCi approaches to 1. According to 

the descending order of CCi, the ranking order of all technology alternatives is 

determined. The same logic, as well as the formulations of fuzzy TOPSIS, are applied 

and the same steps are taken for evaluating the alternatives for all the sectors. The 

ranking results of the alternatives based on the sub-criteria weights for each sector are 

given in the table below.  

 

 

 

 

 

 



115 

 

Table 39: Ranking the Alternatives Based on the Sectors 

 

Sector/Rank Metal Production 

Sector 

Automotive 

Sector 

Petrochemical 

Industry 

Textile 

Sector 

Food 

Sector 

Alternative 1 5 6 3 8 7 

Alternative 2 10 1* 8 10 6 

Alternative 3 2 8 4 3 2 

Alternative 4 8 9 7 6 1* 

Alternative 5 9 5 9 7 5 

Alternative 6 4 10 6 9 8 

Alternative 7 3 7 10 5 10 

Alternative 8 7 4 2 2 4 

Alternative 9 6 3 5 4 9 

Alternative 10 1* 2 1* 1* 3 

Source: Created by the author. 

 

According to the table, the smart factory is the alternative that best meets the 

social, economic, and environmental sustainability criteria for companies operating in 

the metal production sector, petrochemical industry, and textile sector. Furthermore, 

for the metal production sector alternative 3 (autonomous robots) and alternative 7 

(cyber-physical systems) are among the other potential options though alternative 2 

augmented reality appears to be the last alternative.   

As for the automotive sector, the best possible alternative is augmented reality 

that is followed by alternative 10 (smart factory) and alternative 9 (simulation). 

However, alternative 6 (cloud computing) is the least preferred technology. 

Apart from the smart factory, alternative 8 (system integration) and alternative 

1 (additive manufacturing) are also considered to be potential choices for the 

petrochemical industry but alternative 7 (cyber-physical systems) is the last option. 

According to this ranking, it can be said that alternative 10 (smart factory) is 

the best alternative for the chosen textile sector out of the set of feasible Industry 4.0 

technology alternatives. Then, alternative 8 (system integration) and alternative 3 

(autonomous robots) have the highest scores when taking into sub-criteria 

consideration. However, alternative 2 (augmented reality) has the least score among 

the other alternatives. 
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Lastly, for the food sector alternative 4 (big data analytics) is considered to be 

the most effective Industry 4.0 technology alternative while creating a sustainable 

working environment, and that is followed by alternative 3 (autonomous robots) and 

alternative 10 (smart factory). In parallel with the results of the petrochemical industry, 

alternative 7 (cyber-physical systems) is among the last preferences. 

Overall it can be said that, although the best technology selection decision is 

similar among the specified sectors, that is smart factory for three sectors out of five, 

other alternatives’ ranking differs from sector to sector. 

In order to validate and reinforce the fuzzy TOPSIS method results for the 

ranking and selection of alternatives, another MCDM that is Multi-Attribute Utility 

Theory (MAUT) was employed and the fuzzy version of this method was preferred. 

MAUT method interprets a number of alternatives in terms of a number of decision 

criteria (Shanmuganathan et al., 2018) and the process of the method is based on the 

expected utility theory (von Winterfeldt and Edwards, 1986; French, 1988). The table 

below represents the results of the fuzzy MAUT for the textile sector and clarifies the 

comparison of these two methods.  

 

Table 40: A Comparison of Ranking the Alternatives  

 

Alternatives Textile 

Sector/Fuzzy 

TOPSIS Results 

Textile 

Sector/Fuzzy MAUT Results 

  

Alternative 1 8 8   

Alternative 2 10 10   

Alternative 3 3 3   

Alternative 4 6 6   

Alternative 5 7 7   

Alternative 6 9 9   

Alternative 7 5 5   

Alternative 8 2 2   

Alternative 9 4 4   

Alternative 10 1* 1*   

Source: Created by the author. 
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As it is evident from the table above our results regarding the ranking and 

selection of the alternatives are consistent with the results of the other method chosen. 

According to the results of the fuzzy MAUT method smart factory is the best 

alternative. Thereafter, system integration and autonomous robots have the highest 

scores when taking into sub-criteria consideration. However, augmented reality is 

regarded as the last option among the other alternatives. 

2.3.6. Evaluation of the In-Depth Interviews and Open-Ended 

Questions 

 

In this study, in order to apprehend decision-makers` perceptions and 

tendencies towards sustainability and Industry 4.0 notions as well as enhance the 

validity of the analysis results open-ended questions are prepared and gathered through 

both in-depth interviews and from the questionnaire forms. Open-ended questions 

include questions regarding the business size, personal information such as 

respondents’ roles experience in their working environment, technical information 

within the scope of sustainability and Industry 4.0 as well as the general views on the 

predictions about sustainability and Industry 4.0 technologies and applications. 

Using the expert sampling technique of purposive sampling approach, 

interviews were conducted with competent sources including managers from 

production, marketing, R&D, quality, and human resources departments as they are 

equipped with sufficient knowledge and expertise in the field. The characteristics and 

demographic features of decision-makers in this study are depicted in Table 40. 

 

Table 41: Demographic Profile of the Decision-Makers 

 

Decision-

Makers 

Sectors Departments Job Titles Experience  

(Years)  

1 Petrochemical Production Production Manager 2 

2 Petrochemical Production Supply Chain Planning and Logistics Manager 4 

3 Petrochemical Production Planning Specialist 1 

4 Metal 

Production 

Marketing Corporate Communications and Brand 

Manager 

1 

5 Metal 

Production 

Top 

Management 

Chief Executive Officer 21 
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Decision-

Makers 

Sectors Departments Job Titles Experience  

(Years)  

6 Metal 

Production 

Quality  Quality, Environment and Occupational 

Safety and Health Coordinator 

16 

7 Textile R&D R&D and Innovation Center Manager 4 

8 Textile Top 

Management 

Executive Board Member 3 

9 Textile R&D R&D and Innovation Center Manager 4 

10 Automotive R&D Technology and Intellectual Property Officer 4 

11 Automotive R&D R&D Specialist 2 

12 Automotive R&D R&D Manager 15 

13 Food Production Production Manager 6 

14 Food Human 

Resource 

Human Resource Manager 1 

15 Food R&D R&D Manager 5 

Source: Created by the author. 

 

In-depth interviews were conducted via phone and lasted approximately 30 

minutes and interviews are noted verbatim simultaneously. Additionally, 

questionnaire forms were sent via e-mail and then was merged with the results of the 

in-depth interviews. Based on the data collected through both in-depth interviews and 

questionnaire forms, a tag cloud is prepared by using an open-source Edwordle.net 

(2021), one of the visualization tools. Thereby, a visual analysis of the data was 

achieved and depicted in the figure below. 

 

Figure 12: A Visual Representation of Word Cloud 
 

 

Source: Edwordle.net, 2021. 
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Thereafter rendering the data gathered, the most highlighted terms include 

sustainability, technologies, production, generations, digitalization, development, 

processes, industry, competitiveness, change, efficiency, production, resources, and 

profitability throughout the in-depth interviews and questionnaire forms. In addition, 

decision-makers overwhelmingly highlighted that Industry 4.0 and sustainability are not 

adequately understood and applied in our country, but that they have awareness of 

these concepts. Furthermore, the decision-makers acknowledged that having a mindset 

of sustainability is essential to stimulate businesses operations and to leave a better 

future for the next generations as indicated in the quotes below: 

 

In today's world, waste and resource management have been occupying the 

agenda and become a topical instance on account of global warming and climate 

change threats. For this reason, businesses should reorganize their structures 

with a holistic approach and with a sense of responsibility for the future while 

creating their goals. (Decision-maker 4) 

 

The future of the world depends on our natural resources. Our natural resources 

are unfortunately not inexhaustible. This is where the concept of sustainability 

comes into play. The sustainability phenomenon can be used as a shield and/or a 

protection approach to the effective environmental and economic use of 

resources. Thus, cultivating a sustainable frame of mind makes it possible for us 

to leave a more livable world to future generations. (Decision-maker 5) 

 
In order to leave tomorrow’s resources to future generations, we have to act upon 

them today. Limiting the increase in world temperature to below 2 degrees and 

1.5 degrees that was mentioned in the 2015 Paris Agreement is the least we can 

do for climate change instead we need to work harder to create a sustainable 

world for both our businesses and our future. (Decision-maker 7) 

 
Organizations should scrutinize and if necessary regulate their mechanisms to 

leave a sustainable life with ecological, economic, and social conditions for 

future generations. (Decision-maker 11) 

 

It is evident from the statements that there is an awareness among the decision-

makers regarding the sustainability issue and a necessity of taking steps towards 

sustainability at both the businesses level and individually. Moreover, decision-makers 

also stated their views on Industry 4.0 and its revolving technologies as appeared in 

the quotes below: 

Although we call it the 4th Industrial Revolution, it is actually a change and 

development process that includes the increase in the applications of new digital 

technologies in production and the development of business models, rather than 
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a radical change that comes suddenly. In the global competitive environment, it 

has become a necessity for every manufacturer who aims to maintain their market 

share, drive down their costs, and increase their profitability in the future. In this 

changing environment, inevitably, companies that cannot adapt new technologies 

to production and even develop these technologies will lag behind the race in the 

future. The competitiveness of our country and domestic producers in 10 years 

will be determined by our perspective on the technologies presented under the 

title of Industry 4.0 today. It is of great importance to develop policies that will 

support the production of these technologies in our country, especially on a 

macro scale, instead of buying and consuming them from abroad. (Decision-

maker 9) 

 

Instant tracking, digitalization, efficiency, traceability, and competitiveness will 

be possible for manufacturers in the coming periods with the use of Industry 4.0 

technologies. For this reason, developing investments and projects from today 

will make a difference (Decision-maker 3) 

 
It is the 4th generation industrial revolution that aims to bring a new horizon to 

the industry together with an emerging generation of technologies. (Decision-

maker 8) 

 
...very comprehensive work is being carried out globally towards Industry 4.0. In 

order to survive and compete, we also need to develop a vision and goals towards 

Industry 4.0. It is one of the areas open to development in our country. It is a 

process that depends primarily on human resources. (Decision-makers 1, 2, 

and 12) 

 

Based on the views of the decision-makers regarding Industry 4.0 and its 

technologies, although the decision-makers are familiar with the terms they worry 

about the necessity for taking tactical and strategical attempts in order not to lag behind 

the competitors. Furthermore, in line with the research question of this study that is 

whether the Industry 4.0 technologies play a role in creating a sustainable working 

environment, decision-makers also delivered their perspectives on both sustainability 

and Industry 4.0 technologies. 

 

Lights-out manufacturing as a reflection of Industry 4.0 and smart factories will 

bring various advantages however the question of what will happen to blue 

collars is yet agitative and intriguing. (Decision-maker 5) 

 
The development of new job disciplines is particularly necessary for this area. 

(Decision-maker 6) 

 
It is one of the most important issues for both our country and our world. In the 

medium and long term, digitalization in production will have a high impact on 

sustainability. (Decision-maker 3) 
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Profitability alone does not enable companies to achieve their future goals, for 

this, studies on the combination of sustainability and Industry 4.0 technologies 

and applications must be carried out. (Decision-maker 1) 

 
It is an important process of change for the whole world to standardize, improve 

and adapt their services and production processes to the needs of this century 

and to do this with a joint effort. Applying the concept and practices of change 

management, which are used for the changes that occur in the internal and 

external processes of the companies from time to time, is required however, for 

such big alteration governments should play the key role and support 

organizations throughout this change process. (Decision-maker 7) 

 
I think it is important to use Industry 4.0 technologies in our production processes 

for the spread and advancement of digitalization and technology. It is an exciting 

process to be able to devote more time to work with added value for myself and 

to be able to do routine and non-value-added work by robots. (Decision-maker 

2) 

 
Companies have turned to sustainability and Industry 4.0 technologies and 

practices in order to reduce the risks of fulfilling their environmental and social 

responsibilities beyond increasing their efficiency and profitability. Companies 

can only make a difference when profitability, efficiency, productivity, continuous 

improvement activities are integrated with sustainability and Industry 4.0 

technologies and practices. (Decision-maker 11) 

 
Sustainability is one of the most important issues for both our country and our 

world. In the medium and long term, digitalization in production will have a high 

impact on environmental, social, and economic sustainability. (Decision-maker 

9) 

 
…all companies should develop applications on the way to digitization and 

sustainability as quickly as possible however economic concerns regarding the 

implementation of these technologies. (Decision-maker 4) 

 

Overall, it can be deduced from the expressions of the decision-makers that 

although Industry 4.0 technologies are deemed to effectuate a blend of various 

opportunities on the way to enrich the sustainability pillars there are some concerns 

and drawbacks regarding the adaptation process. 
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CONCLUSION 

 

Throughout the first three industrial revolutions, productivity accelerated in the 

light of developments such as the steam engine, electricity, and digital technology 

however, the Industry 4.0 paradigm is rather a complex and widely-discussed set of 

systems incorporating various technologies such as CPSs, smart factories, autonomous 

robots, simulation, system integration, IoT, cloud computing, additive manufacturing, 

augmented reality, big data analytics. Furthermore, Industry 4.0 creates faster, more 

flexible, more efficient production processes and low-cost industrial value, enhances 

high-quality customized products, productivity, revenue growth, and competitiveness, 

optimizes decision-making processes, provides with effective and efficient use of 

resources, and alters conventional production systems into fully integrated and 

automated systems (Almada-Lobo, 2015; Kusmin, 2018; Wichmann et al., 2019, 

Strandhagen et al., 2017; Agostini and Filippini, 2019). 

Factors that constitute the ground of the Industry 4.0 manufacturing paradigm 

such as artificial intelligence-based, self-optimizing, configuring, constantly 

interacting industrial robots and machines, smart factories and system integration 

ensuring automation and digitalization across the value chains with real-time data 

flow, cyber-physical systems, and internet of things provide the basis for more 

productive, flexible, high quality, versatile, safer and collaborative working 

ecosystems (Martín et al., 2017). Accordingly, while Industry 4.0 applications 

overcome challenges such as global competition, volatile markets, declining product 

life cycles, desire for high quality, and customized products it also provides 

opportunities such as industrial value creation, productivity, revenue growth, and 

competitiveness at low costs (Ardito et al., 2019). Moreover, Industry 4.0 technologies 

and applications also improve living standards for future generations, take steps 

towards depletion of non-renewable resources, elimination of environmental problems 

such as climate change, loss of biodiversity, carbon footprint, energy and water 

consumption per capita, waste and pollution. That is to say, keeping in mind creation 

of a sustainable industrial value in social, environmental, and economic dimensions is 

of great importance for today's business environments Industry 4.0 technologies are 
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assumed to have significant effects within the scope of creating opportunities for 

sustainability (Nagasawa et al., 2017). 

Regarding the social sustainability aspect of Industry 4.0, thanks to 

technologies such as smart production infrastructures and advanced machine learning 

through human-machine interfaces, new job profiles are anticipated to emerge, such 

as robot engineering, network development engineering, big data specialist, data 

security analyst, artificial intelligence and machine learning specialists so industrial 

workplaces are expected to transform into innovative workplaces in which brainpower 

is used instead of muscle power. In addition, dangerous and/or repetitive, monotonous 

tasks within production, maintenance, logistics operations are thought to be taken from 

the employees and left to robots and robotic systems which in turn will increase social 

welfare, eliminate human-induced error margins, increase quality and flexibility, 

reduce physical fatigue, reduce working times, and accelerate decision-making 

processes (Prause, 2015; Cohen et al., 2019). 

In the environmental dimension of sustainability, factors such as the constantly 

accelerating population growth, the intensification of global industrialization with high 

production levels and excessive consumption, climate change, global warming, and 

environmental degradation of ecosystems were shown as the starting point of the 

study. Industry 4.0 and the technologies it brings are expected to lead to factors such 

as increasing transparency and traceability in both demand and processes, intelligent 

planning of processes, thus reducing energy and material consumption. Moreover, 

with the use of smart factories, cloud computing, the internet of things, and system 

integration immediate interventions for such indicators as greenhouse gas emissions, 

wastes, environmental pollution, and excessive resource consumption can be acted 

upon, managed, and controlled effectively (Valdez et al., 2015; Posada et al., 2015; 

Burritt and Christ, 2016).  

As for the economic sustainability dimension of Industry 4.0, technological 

developments in manufacturing have played and been continuing to play a vital role 

in supporting economic growth and generating financial benefits for decades. The 

sustainable factories of the future lay the foundations for industrial growth and 

economic and social well-being. New technologies that emerged with Industry 4.0, 

enabling faster and cheaper R&D processes, such as simulation, simultaneous 
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engineering, or rapid prototyping, can radically drive down product time to market, 

and being the first supplier in the market with a new product can provide businesses 

with a competitive advantage. In addition, the technologies such as smart production 

brought by Industry 4.0 can provide efficiency, flexibility, reliability, transparency, 

traceability of processes, optimization of quality problems and resource use, 

minimization of waste, and early detection of errors, increase a company's 

competitiveness and drive down its costs (de Man and Strandhagen, 2017). 

Considering the studies carried out within the systematic literature review, 

although there has been a deep interest in the concepts of Industry 4.0 and 

sustainability globally, these paradigms has been conceptually discussed in the 

literature and there was no definitive consensus on the reflection of this new 

manufacturing paradigm into sustainability within the applicability framework. 

Therefore, it was seen that there were deficiencies in the analysis and applications 

related to this study area in the literature. Moreover, these concepts have not been 

adequately assessed within both conceptual and applicability frameworks in Turkey. 

That is to say, there were limited resources both in the application and theoretical 

aspects in Turkey regarding the combination of this manufacturing approach and 

sustainability pillars. Thus, this thesis aimed to contribute to the literature in this 

context by eliminating the application and analysis deficiencies regarding social, 

environmental, and economic sustainability benefits which were thought to be realized 

by the integration of Industry 4.0 technologies in the literature. This thesis also differed 

from the theoretical studies in the literature as it deals with all three dimensions of 

sustainability together. Within the scope of this thesis, it was planned to determine 

which Industry 4.0 technologies contribute to the social, environmental, and economic 

dimensions of sustainability by sorting and selecting the Industry 4.0 technologies that 

best meet the determined sustainability sub-criteria. In order to achieve this goal, firstly 

a focus group study was done for specifying the criteria and alternatives that were used 

in the analysis with the help of brainstorming and mind mapping techniques and 

finalized after the feedbacks of some academics with various backgrounds. 

Thereafter designating the proposed model owing to the complex nature of 

technology selection decisions, the MCDM process was employed. In the proposed 

model, as there are relationships and ties among main criteria and sub-criteria and in 
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an attempt to eliminate ambiguity and vagueness derived from the qualitative 

evaluations of the decision-makers the fuzzy DEMATEL method was used in the 

weighting process of the criteria to obtain accurate results with fuzzy set theory. As 

for the ranking and selection process of the alternatives, the fuzzy TOPSIS method 

was utilized as this method enables the evaluation of all sub-criteria to determine the 

most suitable and feasible alternative solution, proceeds directly on the data set without 

requiring a numerical conversion, and also calculates both the negative and positive 

distances to the solution. Overall, an integrated or mixed-method consisting of fuzzy 

DEMATEL and fuzzy TOPSIS was used to solve the proposed research problem. This 

integrated methodology was applied with the convenience and purposive sampling 

constituting fifteen decision-makers from various sectors include metal production, 

petrochemical, textile, automotive, and food, where the importance of Industry 4.0 and 

sustainability purports have been appreciated and in an effort to reveal if there were 

any differences of Industry 4.0 technologies on a sectoral basis in creating a sustainable 

production ecosystem as it is known, the requirements might vary from sector to 

sector.  

According to the results of the fuzzy DEMATEL used for weighting the main 

and sub-criteria, the metal production sector regarded environmental sustainability as 

the most important sustainability dimension, and enhancing workplace safety is the 

most important criterion while the least important one is cost reductions. For the 

automotive sector, environmental sustainability is slightly more significant than the 

other sustainability pillars and the least important criterion is process optimization and 

the most important one is workplace safety. Based on the data gathered from the 

decision-makers working in the petrochemical industry, it was implied that the most 

critical sustainability dimension was social and improvement in the working standards 

and conditions and increase in social welfare were the most important criteria though 

the transparency and monitoring in production, flexibility in production, and delivery 

and lead time reductions are the least important ones. Textile sector’s data showed that 

the most significant sustainability dimension was the economic and improvement in 

the working standards and conditions was the most significant and quality control and 

assurance was the least significant criterion. Lastly, for the food sector, social 

sustainability was the most crucial sustainability dimension, and demand for a 
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qualified workforce was the leading criterion whereas flexibility in production can be 

considered as the least important criterion. 

These results show that overall, social and environmental sustainability were 

given the most importance under the umbrella of sustainability. This is a confounding 

however a favorable situation for the fırms located in Turkey as they ordinarily 

struggle with economic concerns and neglect the social and environmental issues.  

Furthermore, enhancing workplace safety along with working standards and 

conditions were considered to be among the most important criteria as out of five, four 

sectors opted for these criteria.  

Based on the results of the sub-criteria weights fuzzy TOPSIS was applied for 

ranking and selecting the alternatives. For the metal production, petrochemical, and 

textile sector smart factory appeared to be the alternative that best meets the social, 

economic, and environmental sustainability criteria. Furthermore, for the metal 

production sector, autonomous robots can be also the second potential alternative. This 

might be because of the elimination of hazardous tasks such as welding, extrusion, and 

casting within the production processes, thus enhancing workplace safety. Moreover, 

the application of autonomous robots in the metal sector provides flexibility, reduced 

labor costs and waste, resource efficiency, and improved quality of products, thus 

leading to the creation of a sustainable working environment. 

As for the automotive sector, the best possible alternative was augmented 

reality that was followed by the smart factory. The reasons for selecting augmented 

reality among the other technology alternatives lie behind the idea of augmented reality 

offers various benefits especially in assembly, maintenance, diagnostics, inspection, 

and after-sales operations. Moreover, with the augmented reality applications, the 

visibility of information, improvements in safety, efficiency, ergonomics aspects, and 

designing of customized products could be provided (Boboc et al., 2020; Himperich, 

2007). Therefore, as the firm operating in the automotive sector produces customized 

products for both logistics and defence industries and offers after-sales services 

augmented reality could provide a sustainable working environment for its operations. 

Apart from the smart factory, system integration was regarded as a second 

preference for both the petrochemical industry and the textile sector. Having the 

management, control, and integration within the organization operations including 
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production, R&D, marketing, purchasing, sourcing, product design and development, 

scheduling, warehousing, delivery and transportation, after-sales services, reverse 

logistics as well as across the entire supply chains ensure a reliable and visible working 

environment, flexibility, real-time inventory control, cost-effectiveness, and 

transparency, (Zhou and Zhou, 2015), thus providing a sustainable working 

environment for their operations. 

Lastly, for the food sector, big data analytics seemed to be the most important 

Industry 4.0 technology alternative when taking sustainability criteria into 

consideration. Surrounded by a wide range of distributors, vendors, and customers, the 

firm functioning in the food sector can collect operational logs, feedback data, and 

social network data and analyze them through big data analytics. By doing so, the firm 

can have opportunities such as understanding its customers’ shopping habits and 

behaviors and hence increasing customer satisfaction. Moreover, the firm can flexibly 

change its order priorities, monitor, and control its production performance and 

processes, improve its logistics routes, and optimize its operations with effective 

decision-making processes (Wang et al., 2018; Belhadi et al., 2019), thus leading to a 

sustainable working environment for its operations. 

In order to validate and reinforce the fuzzy TOPSIS method results for the 

ranking and selection of alternatives, another MCDM that is Multi-Attribute Utility 

Theory (MAUT) was employed and the fuzzy version of this method was preferred. 

As a result, the fuzzy MAUT outputs regarding the ranking and selection of the 

alternatives were consistent with the results of the fuzzy TOPSIS. 

Overall it can be deduced that decision-makers from each sector had made their 

preferences based on their sectors requirements and needs. Smart factory alternative 

obtained the highest score compared to other alternatives, considering it was the best 

alternative in creating a sustainable working environment as three sectors out of five 

ranked the smart factory the highest. In fact, the smart factory can be perceived as a 

reflection of Industry 4.0 as a whole as it consists of a bunch of technologies including 

CPSs, data handling, information technologies, human-machine interaction, IoT, and 

cloud systems.  Therefore, it is possible with the smart factories to ensure visibility 

and transparency of manufacturing operations, having real-time information thus 

achieving on-time delivery, resource utilization, energy efficiency, reduction in costs, 
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customer satisfaction, enhanced output quality as well as flexibility (Radziwon et al., 

2014; Mabkhot et al., 2018; Strozzi et al., 2017).  

As a result, using mixed-method consisting of fuzzy DEMATEL and fuzzy 

TOPSIS has brought a scientific approach to the solution of a technology decision 

problem based on sustainability criteria as well as contributed to the literature with the 

outputs. 

Furthermore, coping with increasingly personalized demands of customers and 

shortened product life cycles while seeking out answers to problems such as a chain 

of high costs ranging from design to logistics, manufacturing in a more economical, 

faster, and higher quality manner forces organizations to embrace and adapt to 

innovative solutions brought by Industry 4.0 technologies, and undergo radical 

changes within business processes to keep up with these changes, from the top 

management level to the bottom level. However, as the in-depth interviews and results 

of the open-ended questions suggested organizations operating in Turkey have 

remained in the shadow of Industry 2.0 and Industry 3.0 applications regardless of 

their sizes and organizational structures. Furthermore, most organizations in Turkey 

have a lack of comprehending Industry 4.0 and accompanying technologies as well as 

the sustainability dimensions. Therefore, the results of the study have practical and 

managerial implications and particularly were intended to set an example to 

organizations that might go through Industry 4.0 transformation process and are 

interested in creating a sustainable working environment as well as seeing these 

concepts as a necessity in today's globally competitive environment. That is to say, 

implications of the study are aimed to use as a road map that could be benefitted by 

the Ministry of Industry and Technology, Small and Medium Industry Development 

Organization, R&D and Innovation directional institutions as well as organisations 

located in Turkey planning to go through an adaptation and/or a transformation process 

to Industry 4.0 but having some concerns regarding the social, economic and 

environmental impacts of these technologies. Moreover, it is also planned to contribute 

to the literature with the academic outcomes of this research, which covers Industry 

4.0 and all three dimensions of sustainability. 

The findings of this study have several limitations. First, this study was carried 

out within organizations located in Turkey which restricts the representativeness of the 
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sample even though the use of various sectors elicits fructuous ground for the research 

of revealing the differences in the selection of Industry 4.0 technology alternatives. 

Secondly, with the purposive sampling procedure, a focus was only given to the 

experts in the field and this may lead to a failure to grab the insights and experiences 

of other sectors and for future research suggestions including other sectors like 

logistics, construction, and agriculture would enhance the breadth and generalizability 

of the existing results. Moreover, apart from the expert perspectives on the topic of 

interest, other working groups like blue-collar employees can be also interviewed as 

there is an ongoing debate regarding the emergence of job definitions and the fear of 

losing occupations with the Industry 4.0 technologies. Hence, hence these issues can 

be treated under social sustainability. Additionally, since the organizations functioning 

in Turkey are still struggling between Industry 2.0 and Industry 3.0, this study should 

be replicated in countries and/or organizations that have already applied Industry 4.0 

applications and technologies within their manufacturing environments to reveal the 

effectiveness of these applications and technologies in creating a sustainable working 

environment.
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Appendix 1. Questionnaire Form 

 

 

 

 

SÜRDÜRÜLEBİLİRLİK BOYUTLARI DEĞERLENDİRME FORMU 

 

Sayın Katılımcı, 

İşletmenin kurumsal sürdürülebilirlik kapsamında süreçlerine dahil ettiği sosyal, çevresel ve ekonomik sürdürülebilirlik 

boyutlarında yer alan kriterlerin birbirleri üzerindeki etkilerini saptamak amacıyla yapılan bu ankete katılmanız, araştırmada doğru bilgiler 

elde etme bakımından son derece önemlidir. Elde edilecek bilgiler, GİZLİ tutulacak olup; sadece bilimsel amaçlarla kullanılacaktır. Talep 

etmeniz durumunda çalışmanın çıktıları sizlere de gönderilecektir. İşbirliğiniz ve katkılarınız için teşekkür eder, saygılar sunarız. 

Doç.Dr. Aşkın Özdağoğlu 

Araş. Gör. Elif Çirkin 
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Ölçek 

 

Sayısal Değer Sözel İfade 

0 Etkisiz 

1 Çok Az Etkili 

2 Az Etkili 

3 Orta Etkili 

4 Fazla Etkili 

5 Çok Fazla Etkili 

 

Kriter ağırlıklarını belirlemek amacıyla kriterlerin birbirleri üzerindeki etkileri yukarıdaki tabloda verilen ölçek yardımı ile tespit 

edilmektedir. Yukarıda yer alan ölçek kullanılarak doldurulmuş olan örnek matris aşağıda gösterilmiştir.  

 

Örnek Uygulama 

 

 Kriter 1 Kriter 2 Kriter 3 

Kriter 1 0 3 4 

Kriter 2 2 0 2 

Kriter 3 1 1 0 

 

Örnek uygulamadaki değerleri açıklamak gerekirse, kriter 1 satırı ile kriter 2 sütununun kesiştiği hücrede yer alan 3 değeri 

kriter 1’in kriter2 üzerinde orta düzeyde etkili olduğunu ifade etmektedir. Kriter 2 satırı ile kriter 1 sütununun kesişimindeki 2 
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değeri ise kriter 2’nin kriter 1 üzerinde az etkisi olduğunu göstermektedir. Kriter 1 satırı ile kriter 3 sütununun kesiştiği hücrede 

yer alan 4 değeri kriter 1’in kriter 3 üzerinde çok fazla etkisi olduğunu ifade etmektedir. 

Aşağıda yer alan kriterlerin önem derecelerini belirlemek üzere, yukarıdaki açıklamalı örneğe göre aşağıdaki matrisleri 

doldurmanızı rica ederiz.  

 

A Sosyal Sürdürülebilirlik 

A1 İş Yeri Güvenliğinin Sağlanması 

A2 Çalışma Standartlarının ve Koşullarının İyileştirilmesi (Çalışma saatleri vb. gibi) 

A3 Yeni İş Tanımlarının Ortaya Çıkması (Robot mühendisliği, ağ geliştirme mühendisliği, büyük veri uzmanlığı, veri güvenliği analistliği vb. gibi) 

A4 Nitelikli İş Gücü İhtiyacının Oluşması (Kas/emek yoğundan zihin yoğun işlere doğru yönelim) 

A5 İşçi ve İşverenin Sosyal Refahının Artırılması 

 

B Ekonomik Sürdürülebilirlik 

B1 Karlılık Oranının Artırılması 

B2 Maliyetlerin Azaltılması (Operasyonel, işçilik, bakım maliyetleri vb. gibi) 

B3 Üretimde Verimlilik Sağlanması 

B4 Üretimde Esneklik Sağlanması 

B5 Üretimde Kalite Kontrol ve Güvencenin Artırılması (Hata paylarının azaltılması, fire, atık vb. azaltılması gibi) 

B6 Üretim, Sipariş ve Teslimat Sürelerinin Kısaltılması 

B7 Rekabet Edilebilirliğin Artırılması 

B8 Üretimde Şeffaflık ve İzlenebilirlik Sağlanması 

B9 Süreç Optimizasyonu Sağlanması (Sürekli iyileştirme, yalın üretim, kaizen vb. gibi) 

B10 Üretimde Standardizasyon Sağlanması 
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C Çevresel Sürdürülebilirlik 

C1 Yenilenebilir Enerji Kaynaklarının Kullanımının Artırılması 

C2 Çevresel Kirlilik Önleme, Yönetim ve Kontrol (Hava, su, toprak, gürültü vb.) 

C3 Geri Kazanım, Geri Dönüşüm ve Yeniden Kullanım Oranlarının Artırılması (Atık Yönetimi) 

C4 Sera Gazı Salınımlarının Azaltılması (Karbon ayak izi azaltılması, Sera Gazları: C02, Metan vb. gibi atmosferde ısı tutma özelliğine sahip 

bileşiklerdir.) 

C5 Kaynak ve Enerji Kullanımında Verimlilik Sağlanması 

C6 Yeşil İnovatif Stratejilerin Geliştirilmesi 

 

 

1. KRİTERLER ARASINDAKİ İLİŞKİNİN BELİRLENMESİNE DAİR MATRİSLER 

 

ANA KRİTERLER 
Sosyal 

Sürdürülebilirlik 

Ekonomik 

Sürdürülebilirlik 

Çevresel 

Sürdürülebilirlik 

Sosyal Sürdürülebilirlik 0   

Ekonomik Sürdürülebilirlik  0  

Çevresel Sürdürülebilirlik   0 
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SOSYAL 

SÜRDÜRÜLEBİLİRLİK  

ALT KRİTERLERİ 

İş Yeri Güvenliği 

Sağlanması 

Çalışma 

Standartlarının ve 

Koşullarının 

İyileştirilmesi 

Yeni İş Tanımlarının 

Ortaya Çıkması 

Nitelikli İş Gücü 

İhtiyacının Oluşması 

İşçi ve İşverenin Sosyal 

Refahının Artırılması 

İş Yeri Güvenliği Sağlanması 

0     

Çalışma Standartlarının ve 

Koşullarının İyileştirilmesi 

 0    

Yeni İş Tanımlarının Ortaya 

Çıkması 

  0   

Nitelikli İş Gücü İhtiyacının 

Oluşması 

   0  

İşçi ve İşverenin Sosyal 

Refahının Artırılması 

    0 
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EKONOMİK 

SÜRDÜRÜLEBİLİRLİK 

ALT KRİTERLERİ 

Karlılık 

Oranının 

Artırılması 

Maliyetlerin 

Azaltılması 

Üretimde 

Verimlilik 

Sağlanması 

Üretimde 

Esneklik 

Sağlanması 

Üretimde 

Kalite 

Kontrol ve 

Güvencenin 

Artırılması 

Üretim, 

Sipariş ve 

Teslimat 

Sürelerinin 

Kısaltılması 

Rekabet 

Edilebilirliğin 

Artırılması 

Üretimde 

Şeffaflık ve 

İzlenebilirlik 

Sağlanması 

Süreç 

Optimizasyonu 

Sağlanması 

Üretimde 

Standardizasyon 

Sağlanması 

Karlılık Oranının 

Artırılması 

0          

Maliyetlerin Azaltılması  0         

Üretimde Verimlilik 

Sağlanması 

  0        

Üretimde Esneklik 

Sağlanması 

   0       

Üretimde Kalite Kontrol 

ve Güvencenin Artırılması 

     0      

Üretim, Sipariş ve 

Teslimat Sürelerinin 

Kısaltılması 

     0     

Rekabet Edilebilirliğin 

Artırılması 

      0    

Üretimde Şeffaflık ve 

İzlenebilirlik Sağlanması 

       0   

Süreç Optimizasyonu 

Sağlanması 

        0  

Üretimde 

Standardizasyon 

Sağlanması 

         0 

 

 



174 

 

ÇEVRESEL  

SÜRDÜRÜLEBİLİRLİK ALT 

KRİTERLERİ 

Yenilenebilir Enerji 

Kaynaklarının 

Kullanımının 

Artırılması 

Çevresel 

Kirlilik 

Önleme, 

Yönetim ve 

Kontrol 

Geri Kazanım, Geri 

Dönüşüm ve Yeniden 

Kullanım Oranlarının 

Artırılması 

Sera Gazı 

Salınımlarının 

Azaltılması 

Kaynak ve Enerji 

Kullanımında 

Verimlilik 

Sağlanması 

Yeşil İnovatif 

Stratejilerin 

Geliştirilmesi 

Yenilenebilir Enerji 

Kaynaklarının Kullanımının 

Artırılması 

0      

Çevresel Kirlilik Önleme, Yönetim 

ve Kontrol 

 0     

Geri Kazanım, Geri Dönüşüm ve 

Yeniden Kullanım Oranlarının 

Artırılması 

  0    

Sera Gazı Salınımlarının 

Azaltılması 

   0   

Kaynak ve Enerji Kullanımında 

Verimlilik Sağlanması 

    0  

Yeşil İnovatif Stratejilerin 

Geliştirilmesi 

     0 
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ENDÜSTRİ 4.0 TEKNOLOJİLERİ ALTERNATİFLERİ DEĞERLENDİRME FORMU 

 

 

Sayın Katılımcı, 

İşletmenin kurumsal sürdürülebilirlik kapsamında süreçlerine dahil ettiği sosyal, çevresel ve ekonomik sürdürülebilirlik kriterlerini 

en iyi karşılayan Endüstri 4.0 teknoloji alternatiflerini saptamak amacıyla yapılan bu ankete katılmanız, araştırmada doğru bilgiler elde 

etme bakımından son derece önemlidir. Elde edilecek bilgiler, GİZLİ tutulacak olup; sadece bilimsel amaçlarla kullanılacaktır. Talep 

etmeniz durumunda hazırlanacak çalışmanın çıktıları sizlere de gönderilecektir. İşbirliğiniz ve katkılarınız için teşekkür eder, saygılar 

sunarız. 

           Doç. Dr. Aşkın Özdağoğlu 

Araş. Gör. Elif Çirkin 

Soruları cevaplamadan önce her bir gruptaki alternatifleri belirlenen kriterlere göre en önemliden en önemsize doğru sıralayınız. 

Ardından aşağıdaki örnekleri dikkate alarak soruları cevaplayınız.  
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Ölçek 

 

Sözel ifade Değer  

Alternatif kritere göre çok kötü seviyede 1 

Alternatif kritere göre kötü seviyede 2 

Alternatif kritere göre kötü-orta arası seviyede 3 

Alternatif kritere göre orta seviyede 4 

Alternatif kritere göre iyi-orta arası seviyede 5 

Alternatif kritere göre iyi seviyede 6 

Alternatif kritere göre çok iyi seviyede 7 

 

 

Bu tabloya göre örnek değerlendirme aşağıda verilmiştir.  

 

Örnek Uygulama 

 

 

 

 

 

 

Alternatif Kriter 1 

A1 4 

A2 6 

A3 7 
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Tabloyu açıklamak gerekirse, A1 kodlu Alternatif K1 kodlu kritere göre orta yeterlilik seviyesindedir. A2 kodlu Alternatif K1 

kodlu kritere göre iyi seviyededir. A3 kodlu Alternatif K1 kodlu kritere göre çok iyi seviyededir.  

 

Buna göre alternatifleri tüm kriterlere göre değerlendiriniz.  

 

2. ALTERNATİFLER VE KRİTERLER ARASINDAKİ İLİŞKİLERİN BELİRLENMESİNE DAİR MATRİSLER 

 

Endüstri 4.0 Teknoloji 

Alternatifleri 

İş Yeri 

Güvenliği 

Sağlanması 

Çalışma Standartlarının ve Koşullarının 

İyileştirilmesi 

Yeni İş Tanımlarının Ortaya 

Çıkması 

Nitelikli İş Gücü İhtiyacının 

Oluşması 

İşçi ve İşverenin Sosyal 

Refahının Artırılması 

Eklemeli Üretim      

Artırılmış Gerçeklik      

Otonom Robotlar      

Büyük Veri Analitiği      

Bulut Bilişim      

Siber Fiziksel Sistemler      

Nesnelerin İnterneti      

Sistem Entegrasyonu       

Simülasyon      

Akıllı Fabrikalar      
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Endüstri 4.0 

Teknoloji 

Alternatifleri 

Karlılık 

Oranının 

Artırılması 

Maliyetlerin 

Azaltılması 

Üretimde 

Verimlilik 

Sağlanması 

Üretimde 

Esneklik 

Sağlanması 

Üretimde 

Kalite 

Kontrol ve 

Güvencenin 

Artırılması 

Üretim, 

Sipariş ve 

Teslimat 

Sürelerinin 

Kısaltılması 

Rekabet 

Edilebilirliğin 

Artırılması 

Üretimde 

Şeffaflık ve 

İzlenebilirlik 

Sağlanması 

Süreç 

Optimizasyonu 

Sağlanması 

Üretimde 

Standardizasyon 

Sağlanması 

Eklemeli Üretim           

Artırılmış Gerçeklik           

Otonom Robotlar           

Büyük Veri Analitiği           

Bulut Bilişim           

Siber Fiziksel 

Sistemler 

          

Nesnelerin İnterneti           

Sistem Entegrasyonu            

Simülasyon           

Akıllı Fabrikalar           
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Endüstri 4.0 Teknoloji 

Alternatifleri 

Yenilenebilir 

Enerji 

Kaynaklarının 

Kullanımının 

Artırılması 

Çevresel Kirlilik 

Önleme, Yönetim ve 

Kontrol 

Geri Kazanım, Geri 

Dönüşüm ve Yeniden 

Kullanım Oranlarının 

Artırılması 

Sera Gazı 

Salınımlarının 

Azaltılması 

Kaynak ve Enerji 

Kullanımında 

Verimlilik Sağlanması 

Yeşil İnovatif Stratejilerin 

Geliştirilmesi 

Eklemeli Üretim       

Artırılmış Gerçeklik       

Otonom Robotlar       

Büyük Veri Analitiği       

Bulut Bilişim       

Siber Fiziksel Sistemler       

Nesnelerin İnterneti       

Sistem Entegrasyonu        

Simülasyon       

Akıllı Fabrikalar       
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3. KATILIMCIYA YÖNELİK SORULAR  

 

1. İşletme büyüklüğü: 

2. Çalışan sayısı: 

3. İşletmedeki Göreviniz: 

4. Kaç yıldır bu görevi yapmaktasınız?  

5. Kaç yıldır şirketinizin bünyesinde sürdürülebilirlik kapsamında çalışmalar yapılmaktadır? 

6. Kaç yıldır şirketinizin bünyesinde Endüstri 4.0 kapsamında çalışmalar yapılmaktadır? 

7. Şirketinizde kurumsal sürdürülebilirliğe yönelik bir departman / birim / yönetici var mı? 

8. Şirketinizde Endüstri 4.0 teknoloji ve uygulamalarına yönelik bir departman / birim / yönetici var mı? 

9. Sürdürülebilirlik ile ilgili genel olarak düşünceleriniz ve öngörüleriniz nelerdir?  

10. Endüstri 4.0 teknoloji ve uygulamaları ile ilgili genel olarak düşünceleriniz ve öngörüleriniz nelerdir? 
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Appendix 2. Mind Map 

 


