DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

REAL-TIME INTELLIGENT JOURNEY
PLANNER

by
Feristah DALKILIC

June, 2015
iZMiR

REAL-TIME INTELLIGENT JOURNEY
PLANNER

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering

by
Feristah DALKILIC

June, 2015
iZMiR

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “REAL-TIME INTELLIGENT JOURNEY
PLANNER” completed by FERISTAH DALKILIC under supervision of PROF.
DR. ALP KUT and we certify that in our opinion it is fully adequate, in scope and in
quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Alp KUT

Supervisor
o
s
~ Asst. Prof. Dr.\Derya BIRANT Asst. Prof. Dr-Reyat YILMAZ
Thesis Committee Member Thesis Committee Member
' Prof. Dr. Ahmet Faik KASLI Assoc. Prof. Dr. Aybars UGUR
Examining Committee Member Examining Committee Member

/J—'—"'\

—
Prof. Dr. Ayse OKUR
Director
Graduate School of Natural and Applied Sciences

ACKNOWLEDGMENTS

I would like to express my utmost gratitude and sincere thanks to my advisor,
Prof. Dr. Alp KUT, for his strong support, valuable insights, patience, and
encouragement during this study. It was a great privilege for me to work with him.

| extend my thanks to the members of my committee, Assistant Professor Dr.
Derya BIRANT and Assistant Professor Dr. Reyat YILMAZ for their contribution to
this study and sharing their ideas during development and writing of this thesis.

I would also thank to Sercan KOKHAN, for sharing her knowledge with me and
for her support during the development of the applications.

In addition, | would like to acknowledge the equipment support from the Dokuz
Eylul University Scientific Research Projects (Bilimsel Arastirma Projeleri, BAP)
Coordination Unit under project number 201190 for this thesis.

| would like to express my special gratitude to my husband Gokhan DALKILIC
for his support and patience during preparation of this thesis. Finally, I thank my
whole family. All of your support and love throughout my life have brought me to
this achievement. My little daughter Ela, your presence gives me the strength to work
harder.

Feristah DALKILIC

REAL-TIME INTELLIGENT JOURNEY PLANNER

ABSTRACT

Planning a journey by integrating information from diverse sources can be very
complicated. A user friendly and informative journey planner system can simplify

the journey plan by assisting people in making better use of public transportation.

In scope of this thesis, a service-oriented and inter-model Intelligent Journey
Planner System has been developed to assist travelers for planning their journey.
Izmir has been selected as the pilot city to operate the system primarily. A WCF web
service acting as a path finding engine and a windows service application collecting
contemporary transportation data from related sources and transforming it into the
GTFS format has been presented. In addition to these services, applications for
Mobile Web and Desktop Web portals, Android, iPhone, and Windows Phone
platforms have been implemented to provide wide range of usage at anytime and
anywhere. Weather forecast, traffic-road condition, and approximate taxi fare
services have been intended to be shared with the users. Informing the passengers
about important points, social and cultural activities located on travel routes is an

innovation performed.

This thesis also introduces the Gradual Path Finding Algorithm that produces
alternative journeys according to the user’s choice. Modified versions of Dijkstra’s
algorithm have been used in several stages of the algorithm to reduce search space
and run time. In spite of the fact that visited edge counts are increasing over the
upper stages of the algorithm, the reduction on search space has been observed as

varying percentages from 1.32 to 77.39 in consecutive stages of the algorithm.

Keywords: Google transit feed specification, intelligent transportation systems,

journey planning, shortest path problem

GERCEK ZAMANLI AKILLI SEYAHAT PLANLAMA SISTEMIi

(0Y/

Farkli kaynaklardan bilgi toplayarak seyahat planlamak c¢ok karmasik bir iglem
olabilmektedir. Kullanict dostu bir ara ylize sahip bilgilendirici bir seyahat planlama
sistemi, kisilere toplu tasimay1 en iyi sekilde kullanabilmeleri konusunda yardime1

olarak seyahat planlama isini basitlestirebilir.

Bu tez kapsaminda, toplu tasimay1 kullanacak yolculara seyahatlerini planlamalari
konusunda yardimci olmak {izere, servis tabanli ve ¢ok modlu bir Akilli Seyahat
Planlama Sistemi gelistirilmistir. Sistem ilk olarak pilot sehir olarak segilen Izmir
icin kullanima sunulmustur. Yol bulma motoru olarak gorev goren bir WCF web
servisi ve ilgili kaynaklardan giincel ulasim verilerini toplayarak bu verileri GTFS
formatina doniistiiren bir Windows servis uygulamasi gelistirilmistir. Bu servislere
ek olarak, sistemin her zaman ve her yerden kullanilabilmesini saglamak amaciyla
Mobil Web, Web, Android, iPhone, ve Windows Phone platformlarinda ¢alisacak
uygulamalar gelistirilmistir. Hava durumu, trafik ve yol durumu, ortalama taksi tutari
gibi bilgilerin kullanicilar ile paylasilmas1 hedeflenmistir. Yolculari, seyahat rotasi
tizerinde yer alan Onemli nokta, sosyal ve kiiltiirel aktiviteler hakkinda

bilgilendirmek bir yeniliktir.

Bu tezde ayrica, kullanicinin se¢imleri dogrultusunda seyahat alternatifleri iireten
Kademeli Giizergdh Hesaplama Algoritmasi tanitilmistir. Bu algoritmanin farkli
kademelerinde, arama uzaymni daraltmak ve calisma siiresini kisaltmak amaciyla
Dijkstra algoritmasi degistirilerek kullanilmistir. Kademe ilerledik¢e ag lizerinde
gezilen diiglim sayisinin artmasina ragmen, arama uzayt yiuzde 1,32°den 77,39’a

degisen oranlara indirgenmistir.

Anahtar kelimeler: Google ulasim besleme tanimlamasi, akilli ulasim sistemleri,

seyahat planlama, en kisa yol problemi

CONTENTS

Page

THESIS EXAMINATION RESULT FORMooviiiiiiiieieecee e ii
ACKNOWLEDGEMENTS ..ottt i
AB ST RA T . e e e e arree e v
07/ TR v
LIST OF FIGURES ..ottt iX
LIST OF TABLES ..ottt Xii
CHAPTER ONE — INTRODUCTIONcootiiiiieineiee e 1
1.1 OVEIVIBW ..ttt ettt b e bttt bbbttt ne e 1
1.2 Izmir Transportation INfrastruCturecccooeieeie i 2
1.3 MOTIVALION 1.ttt ettt 3
1.4 AIM OF THIS TNESISeeviiiiiiite it 3
1.5 ThesiS OrganizZatioN............cceeieieeiueiieie e eee s se e s re e sreereenes 4
CHAPTER TWO — RELATED WORKS ..ottt 6
2.1 OVEIVIEBW ...ttt ettt ettt bbbt seene e e et eneas 6
2.2 Grapn TREOIY ..o 6
2.3 Shortest Path Problem ..o 7
2.4 MUIti-MOdal ROUTINGcvoiviiiiiiiiiiieee s 9
2.5 MUlti-Criteria ROULING........coiiiiiiiiiese e 10
2.6 Timetable INfOrmation..........cccoveiiiieiiee e 10
2.6.1 Time-Expanded MOdEl..........ccoooiiiiiiiie e 11

2.6.2 Time-Dependent MOdelcccoooiiiiiiiiiiie e 11

2.7 Speed-Up TECANIGUESccueiiieieieiesie e 12
2.8 Reference Data Models for Public Transport..........ccccoovieieneiinenieieeen, 15
2.8.1 General Transit Feed SpecifiCationcccovvieiiiiienisesseeees 17

2.8.2 GTFS-Conversion APPHCationcccceevveiieiiiieiie e 20

Vi

2.8.3 BT RS TRAIIME. ..ottt 21

2.9 Existing Journey Planner SYSTEMScccceviiiriininieie s, 22
CHAPTER THREE - INTELLIGENT JOURNEY PLANNER SYSTEM....... 24
3.1 OVEBIVIBW ..ttt sttt sttt be e be et esneenreeneeenes 24
3.2 SYSEM ATCNITECIUIE ...ttt 24
3.3 Database DESIONc.veveieiiitiiiieieeiiei ettt 26
34 APPIICALIONS ... 29
3.4.1 Mobile APPIICALIONS........ccuiiiiiieieie e 30

3.4.2 Webh APPIICALIONoviiiiiiiiiiieee e 42
CHAPTER FOUR —SERVICES. ...ttt 46
O O Y= o - USSR 46
4.2 UPAALE SEIVICEoeuiieiiie ettt bbbt 48
4.2.1 Updating Transportation INfOrmationcccccevereneiencnnnisicees 49
4.2.2 Determination of Neighbor STOPScccoovviiiiiiieie e 50

4.2.3 Determination of Accessible Transfer Centersc.ccocvvvvivvivnierinnnene, 51

4.2.4 Route Planning Preprocess Between All Transfer Center Pairs 52

4.3 Journey Planner Webh SErVICEccceiveiiiieciece e 53
4.3.1 SErvice MEethOQS........ccoiviiiieieieee e 54

4.3.2 Testing the WED SEIVICEcccocoviiieiieiecece e 56
CHAPTER FIVE — GRADUAL PATH FINDING ALGORITHMcccouenee. 60
5.1 OVEIVIEBW ..ttt ettt st e b et b e et e eneenreas 60
5.2 Representation of the Transportation Graphccccceceevivevieiiiccie e 60
5.3 Gradual Path Finding Algorithm..........ccccoveiiiiii i 63
5.3.1 FINdINg DIreCt ROULESc.vviiiieiiieiieecie et 67

5.3.2 Finding Routes Containing One Transferccccoevvve i, 67

Vii

5.3.3 Finding Routes Containing TWO Transferscccccevvvveieevesieveeseene 69

5.3.4 Finding Routes by Using Transfer Centers...........ccocevcvvveveeiescieseesnene 72

5.3.5 Finding Routes Containing N Transfers.........ccccoocvvveveiienieeie e 73

5.3.6 Calculation of the Departure TIMESccoceieierereienesesee e 75

5.3.7 Filtering the ARErNAtIVES.cccoiiiiiiiiiieee e 76
CHAPTER SIX — EXPERIMENTATIONS ..ot 78
6.1 EVAlUALION IMBASUIESeeeveiiiieiiieieeiee ettt sneeeeaneennees 78
0.2 TESE DALASEL ... ccteeiieieiie et 78
6.3 SEAICN SPACE ..ottt 80
6.4 Experimental RESUILS..........coiiiiiiiee e 83
CHAPTER SEVEN — CONCLUSION.......ccceiitititcreeeeeere e 86
% A o o] 111 o] o USSR 86
7.2 FULUIE WOTKS ...ttt aneenne s 88
REFERENGCES. ...ttt bbbt 89

viii

LIST OF FIGURES

Page

Figure 2.1 Sample text file from a GTFS feed.........ccccooevveviiieie e, 18
Figure 2.2 UML Diagram of the General Transit Feed Specification. 19
Figure 2.3 Generated agency and stop files in GTFS format............ccccoovvviiniennnn 20
Figure 2.4 GTFS validation results for Izmir feed.cccocvevenieniiiiie e, 20
Figure 3.1 System arChiteCUIe.ccviieiieie e 25
Figure 3.2 Three-tier architeCture.cccevieie i 26
Figure 3.3 Entity-relationship diagram. ... 28
Figure 3.3 Entity-relationship diagram (continued)...........cccceveieiiieninieneseee 29
Figure 3.4 Determination of the origin and destination points in (a) i0S, (b) Android,
(c) Windows Phone, (d) Mobile WeD...........cccccooviiiiieviicceece e 31

Figure 3.5 Determination of the journey parameters in (a) iOS, (b) Android, (c)
Windows Phone, (d) Mobile Web. ..., 32

Figure 3.6 Summarized route list in (a) i0S, (b) Android, (c) Windows Phone, (d)
MODIIE WED. ..o 33

Figure 3.7 Route details in (a) i0S, (b) Android, (c) Windows Phone, (d) Mobile
LT SRRSO 34

Figure 3.8 Display of the selected route on the map in (a) i0OS, (b) Android, (c)
Windows Phone, (d) Mobile Web. ..o 35

Figure 3.9 Point of interest lists in (a) i0OS, (b) Android, (c) Windows Phone, (d)
MODIIE WED. ..o 36

Figure 3.10 Event center list in (a) i0S, (b) Android, (c) Windows Phone, (d) Mobile
WVBD . o 37

Figure 3.11 Estimated distance and taxi fare in (a) iOS, (b) Android, (c) Windows
Phone, (d) Mobile WED. ..o 38

Figure 3.12 Current weather conditions in (a) iOS, (b) Android, (c) Windows Phone.
... 39

Figure 3.13 Road condition in (a) 10S, (b) Android, (c) Windows Phone. 40
Figure 3.14 Traffic status in (a) iOS, (b) Android, (c) Windows Phone.................... 41
Figure 3.15 Journey parameter SeleCtion Page.cccovererireeiieiiene e 42
Figure 3.16 Alternative Paths. ... 43

Figure 3.17 ROULE detailS.ooveiiiiiieece e 43

Figure 3.18 Representation of a path on the map..........c.ccocvvvvieieniniee 44
Figure 3.19 Representation of the event centers and POI on the map.c............ 44
Figure 3.20 Nearest places 0f eVent list.ccccveviiieiieii e, 45
Figure 3.21 Event list of selected event CENter.coccovvevieienieene e, 45
Figure 4.1 IJPS Data Collection and Integration TOOL..........cccceveiiieniiiiniiicie 48
Figure 4.2 Update Service WOrk fIOW.cccoooiiiiiiiii e, 49
Figure 4.3 Distance ranges in determination of neighborhood.cccceeiinnen. 51
Figure 4.4 Transfer CENters iN 1ZMIr.........ccoiviiiiiii e 51
Figure 4.5 Path finding between two transfer CeNnters.ccoovvereieniienisiciee 52
Figure 4.6 Development environment of Journey Planner Web Service................... 54
Figure 4.7 WCF Test CHeNt WiNAOW.ccccveiiiieiiic e 56
Figure 4.8 Windows application developed to test Journey Planner Web Service.... 57
Figure 4.9 Display of results gathered from the Journey Planner Web Service. 58
Figure 5.1 Illustration of a transportation graph.ccccccovveiiiciicic e, 60
Figure 5.2 Izmir transportation graph.cccceeeeveiiiie i 61
Figure 5.3 Classes designed to construct transportation graph.c.ccoceevvevviennene 62
Figure 5.4 Transportation graph with stop and transition objects.............c.ccccvvvvenenn. 62
Figure 5.5 Pseudo code of Dijkstra's algorithm. ... 64
Figure 5.6 Stages of Gradual Path Finding Algorithm.c.cccceoviiiiiiiiiceceee, 65
Figure 5.7 Classes designed to hold routes.ccveveieeie e, 66
Figure 5.8 Illustration of the routes containing one transfer.ccoccovvvvviiniennenn 67

Figure 5.9 Pseudo code of the modified Dijkstra's Algorithm for the routes that
CONLAIN ONE trANSTEL. ..ot e 68
Figure 5.10 Illustration of the routes containing two transfers.cccocveveieenen, 70
Figure 5.11 Pseudo code of the modified Dijkstra's Algorithm for the routes that
CONLAIN TWO TrANSTEIS. ... i 70

Figure 5.11 Pseudo code of the modified Dijkstra's Algorithm for the routes that

contain two transfers (continued). ... 71
Figure 5.12 Sample path between two stops through one transfer center.................. 72
Figure 5.13 Sample path between two stops through two transfer centers................ 73

Figure 5.14 Pseudo code of the modified Dijkstra's Algorithm for routes containing n

EFANSTEIS. oot 74
Figure 5.15 Illustration of sample departure time calculationcccccvevveieennenn, 76
Figure 6.1 Example tuples of the test data.cccccvevevieiicic s, 79
Figure 6.2 First and last stops of the available bus (red), train (green), metro

(yellow) and ferry (BIU€) TINES.ccveiveeiieiee e 79
Figure 6.3 A visualization of the search space for Stage 2.cccccevvvievieieiienenn, 81
Figure 6.4 A visualization of the search space for Stage 3.cccccevvvievicieieenenn, 81
Figure 6.5 A visualization of the search space for Stage 4.ccocvceriiieniiiiniicnnenn, 82
Figure 6.6 A visualization of the search space for Stage 5.cccoceveviiiniiiiiiicnenn 82
Figure 6.7 Percentages of executed queries for all stages.........c.cccevveveveevieicieenenn, 84
Figure 6.8 Average runtimes for all Stages.ccccevvveveiieii e, 84
Figure 6.9 Average result counts for all Stages.ccoovvviirieieii i 85

Xi

LIST OF TABLES

Page
Table 2.1 The shortest path produced by pure Dijkstra’s algorithm...............c.ccene..n. 9
Table 2.2 Required and optional files of a GTFS feed.ccccevevviiviiiiiccicen, 17
Table 4.1 Query types according to the origin and destination parameters. 55

Table 6.1 Visited edge counts for the modified and Pure Dijkstra’s algorithms....... 80
Table 6.2 Average runtime and result counts for stages of the Gradual Path Finding
N [To 4 1] OSSR 83

Xii

CHAPTER ONE
INTRODUCTION

1.1 Overview

A journey planner (or trip planner) is a specialized electronic search engine that
finds one or more suggested journeys between an origin and a destination. Origin and
destination may be specified as geospatial coordinates, Points of Interest, or
stops/stations names. Journey planners have been widely used in the travel industry
since the 1970s. Early journey planning engines were typically developed as part of
the booking systems. As computing resources became more widely available,
journey planning engines were developed to run on personal computers and mobile

devices.

A Road Route Planner is a journey planner specialized for road network whereas
a Public Transport Journey Planner is specialized for journeys on Public Transport.
Unimodel Journey Planners cover a single mode of transport while Intermodal

Journey Planners cover many transport modes for a combined journey.

We have modeled our system to test for Izmir. Izmir has a population of over 4
million, and each year approximately 200,000 of tourists visit Izmir (Turkish
Statistical Institute, 2013). Most travelers in Izmir prefer public transportation
because of the increasing traffic congestion and fuel costs. There are four types of
public transportation modes available in 1zmir, all with different operation schedules.
These are bus, train, metro and ferry, and new transportation modes like tram are
going to be added in the near future. At present, four different public transportation
companies are in operation in lzmir. Route and timetable information of these
services are available on their web sites, but there is no information about the
connection of other forms of transportation. It is not easy to integrate information
from diverse sources to plan a journey. A user friendly and informative journey
planner system was needed to assist people in making better use of public

transportation. In scope of this thesis, a service-oriented and intermodal Intelligent

Journey Planner System (IJPS) has been developed to assist travelers for planning
their journey. 1JPS supplies information about urban transportation for domestic and

foreign visitors.

Dijkstra's algorithm forms the basis of modern journey planner search algorithms
and provides an optimal solution to simple searches. Search engine of the IJPS is
designed as a web service and can be used by variable platforms and devices. A five
stages path finding algorithm the Gradual Path Finding Algorithm has been
developed in scope of this thesis. Modified versions of Dijkstra’s algorithm are used
in several stages of the algorithm.

IJPS advices alternatives routes, transfer details, departure and arrival times
according to user preferred criteria for any origin—destination point. The system
provides optimal route choices according to multiple criteria like preferred mode,
maximum distance to walk, least changes, shortest travelling time, or lowest fare.
IJPS runs on different kinds of platforms to provide wide range of usage at anytime
and anywhere. Mobile Web and Desktop Web portals, kiosks, Android, iPhone, and
Windows Phone based mobile applications are available in both English and Turkish.
Weather forecast, traffic and road condition, approximate taxi fare, activity centers
and events on the route are other informative details produced by the system. Despite
similar developments in other world cities, Izmir has a complex public transport
system, especially in terms of bus transportation. IJPS is a flexible system which can
include other public transportation modes and can be adapted to any other city.

1.2 Izmir Transportation Infrastructure

Izmir is Turkey's third largest city and has four existing public transport
companies which are listed below:
e ESHOT operates a total of 319 bus lines according to the numbers of June
2014. There are approximately 6700 bus stops in Izmir.
e Izmir Metro Inc. operates the Izmir metro that has approximately 20 km of
lines and 17 stations. In the coming years, four different metro lines are

expected to be in service.

e IZBAN Inc. operates the rail system consisting of 80 km of lines and 32
stations. Six new stations are going to be added to system in the near future.
e |ZDENIZ operates the maritime transport by 8 stations, 22 passenger ships and

3 ferries.

In addition to the existing services, tram is expected to attend public transport in

the near future.

1.3 Motivation

The motivation for writing this thesis rests on four pillars:

e There are various alternative sources of transportation and selecting the most
appropriate route is getting complicated. A system that assists people in
making better use of public transportation is a necessity.

e Route finding problem in a complex multi-model network is one of the most
studied areas and still needs to be improved.

e In many countries and cities, journey planning systems are available. But
there was no such a service in Izmir.

e In order to create a more social and intellectual community, citizens should

be aware of the social activities and events in the city.

1.4 Aim of This Thesis

One of the purposes of this thesis is the making the passengers aware of the travel
options available, provide alternative ways that are appropriate for the passengers’
choices, and assist them to complete the journey successfully. So that, passengers can

minimize the cost of their journeys, and save travel time which is an economic value.

In this study, we wish to reduce dependence on the car and encourage greater use
of public transport. Another purpose is to reduce noise and carbon dioxide emissions,

and avoid traffic jump and congestion by promoting passengers to public transport.

One of the other intentions in this thesis is to inform the passengers about
important points (hospital, pharmacy, public institutions, etc.), car parks and events
(concerts, exhibitions, etc.) located on travel routes. Thus, passengers will be
promoted of the social and cultural activities carried out in the city. Also, another
objective of this study is to increase the use of technology anywhere anytime in the
public by especially supporting mobile platforms.

The main contribution of this thesis is to introduce a new route planning algorithm
named “Gradual Path Finding Algorithm”. We have provided a web service that uses
the route planning algorithm and we have developed web and mobile applications to
serve web service to the end-users. We aim to produce results in an acceptable

response time for the users.

1.5 Thesis Organization

The thesis consists of seven chapters. In this chapter, we have stated what we are
trying to accomplish, what is our motivation and aim of the thesis, and our

contribution to the field. The rest of the thesis is organized as follows.

Chapter 2 presents a literature survey on shortest path problems, timetable
information and the common approaches that model timetable information, speed-up

techniques, reference data models and examples of existing journey planner systems.

Chapter 3 explains system architecture and database design of the IJPS.
Developed applications which include the web application, mobile web application
and native applications for mobile operating systems are explained by giving some

sample screens.

Chapter 4 presents two main services - The Update Service and The Journey
Planner Web Service and other auxiliary services have been developed in scope of
this thesis.

In chapter 5, we have mentioned about our route planning algorithm named

“Gradual Path Finding Algorithm” and its implementation details.

The experimental results and performance overview of 1JPS are given in Chapter

Finally, we have presented the conclusions and future directions of the thesis in
Chapter 7.

CHAPTER TWO
RELATED WORKS

2.1 Overview

This chapter starts with the graph theory explanation for best understanding of the
following sections. In section 2.3, shortest path problems and the proposed solutions
to these problems are presented. Multi-model routing and multi-criteria routing are

described in the next sections.

Timetable information and the common approaches that model timetable
information in public transportation systems are explained and existing speed-up

techniques aiming faster query times are described.

Reference data models representing the stops, routes and timetables of the public
transportation are introduced in Section 2.8. GTFS and GTFS-realtime specification
are described in more detail. Finally, this chapter ends with some examples of

existing journey planner systems.

2.2 Graph Theory

A graph is generally referred to as G, and consists of a set of nodes (vertices) V
and a set of edges (arcs) E € V x V. The number of nodes is denoted by n and the

number of edges by m respectively.
A graph can be defined as undirected, directed, or mixed. In directed graphs, an
edge has the form (u, v), where u, v € V are ordered distinct nodes whereas in

undirected graph, the direction of the edges is not important.

We call two nodes u, v € V connected, if there exists a path from u to v or v to u.

If this is true for all pairs of nodes u, v € V, we call the whole graph connected.

A path P is a sequence Vv, €1, Vo, €, ..., &, V+1) Of nodes and edges such that for

every i (1 <i <j) the edge e; connects v; and Vv.1). A path is called as shortest path
from the source s to the target t, if the path starts with the node s and ends up with the

node t and has the smallest length among all the paths from s to t at time 7.

|P| denotes the number of edges along the path. The length of a path P is the sum
of its edge weights along the path and is denoted by

j-1

len(P) =)" f(v; + iy (2.1)

The distance between two nodes u, v € V, written by dist(u, v, t), for a given
departure time 1, is the minimal length of all the paths P from u to v. There might be
more than one minimal path from u to v. A minimal path P between two nodes u and

v at time 7 is called shortest path from u to v.

2.3 Shortest Path Problem

Computing shortest paths in a graph is used in many real-world applications like
route planning, timetable information, or scheduling in transportation networks.
Shortest path algorithms differ depending on source and target node. Single-Source
Shortest Path Problem finds shortest path from the given source node to all other
nodes. All-Pairs Shortest Path Problem determines the shortest paths between all
pairs of vertices. The K Shortest Path Problem which is studied in this project finds

best K paths in order of increasing cost.

Single-Source Shortest Path Problem finds shortest paths from a source node s to
T =V, where V is the set of all nodes in the graph. Dijkstra's algorithm solves the
single-source shortest path problem (Dijkstra, 1959). If edge weights are negative,
Bellman—Ford algorithm solves the problem (Bellman, 1958). A* search algorithm
solves for single pair shortest path using heuristics to try to speed up the search
(Hart, Nilsson, & Raphael, 1968). It is an extension of Dijkstra's algorithm.

Many-To-Many Shortest Path Problem is a generalization of the Shortest Path

Problem. Instead of one source node s and one target node t, we are given a set of
source nodes S € V and a set of target nodes T < V. We then ask for a shortest path
Ps: for each pair (s, t) € SxT. In multi-modal routing, the Earliest Arrival Problem

will actually transform to this version of the problem.

All-Pairs Shortest Path Problem finds shortest paths between every pair of
nodes where both S and T are the complete node set V of the graph. Floyd—-Warshall
algorithm solves all pair’s shortest paths (Floyd, 1962; Warshall 1962). The
algorithm finds the lengths of the shortest paths between all pairs of nodes, but it
does not return details of the paths. Johnson's algorithm solves all pairs shortest paths
problem between all pairs of nodes in a sparse directed graph (Johnson, 1977). It
allows some of the edge weights to be negative numbers, but no negative-weight
cycles may exist. Computing shortest paths for all pairs of nodes tends to be very
expensive both regarding memory consumption and execution time. Hence, this is

not a viable approach.

The K-Shortest Path Problem is a generalization of the Shortest Path Problem.
The algorithm not only finds the shortest path, but also K — 1 other paths in order of
increasing cost. Yen’s algorithm is one of the fundamental works dealing with K-
Shortest Path Problem (Yen, 1971). It uses the Dijkstra’s algorithm or any other
shortest path algorithm to find the best path, and then proceeds to find K — 1
deviations of the best path. Hundreds of researches which are offering new solutions
exist (Hoffman & Pavley, 1959; Lawler, 1972; Katoh, Ibaraki, & Mine, 1982).
Also some comparative studies have been made (Brander & Sinclair, 1995;
Hadjiconstantinou & Christofides, 1999; Martins & Pascoal, 2003).

Each of these versions of the Shortest Path Problem can be solved by Dijkstra’s
algorithm, possibly requiring repeated execution. The algorithm can be augmented to
work with time-dependent networks and even further to multi-modal networks. In
this study, Earliest Arrival Problem is reduced to the Many-To-Many Shortest Path
Problem. Modified versions of Dijkstra’s algorithm are applied to multi-model transit

graph repeatedly to obtain k-shortest-path in ascending transfer count order.

2.4 Multi-Modal Routing

In multi-model routing, unlike unimodel routing there are more than one
transportation modes for traveling thus more than one transportation network. After
combining the graphs, the resulting network is a multi-modal network. While
planning routes in such a combined network, some constraints as switching the mode
of transportation frequently or unacceptable transfer counts must be considered. For
instance, Table 2.1 shows the result path produced by pure Dijkstra’s algorithm for a
query from origin stop ‘10036-Konak’ to destination stop ‘40120-Tinaztepe Kampiis
Son Durak’. The path consists of 23 stops and 12 different lines, thus 11 transfers are
required to complete the journey. Producing such an undesired path should be

avoided.

Table 2.1 The shortest path produced by pure Dijkstra’s algorithm

Step | Stop Id | Stop Name Line No | Line Name

1 10036 | Konak 72 | Iscievleri-Konak

2 10023 | Bahribaba Alt 7 | Sahilevleri-Konak

3 10015 | Bahribaba 152 | Gaziemir-Konak

4 10241 | Kiz Yurdu 43 | Yapicioglu-Konak

5 12061 | Esref Pasa 23 | Uzundere-Konak

6 12063 | Yaghaneler 90 | Gaziemir- Halkapinar Metro
7 10617 | Elka 870 | Hifzissihha- Tinaztepe

8 11873 | Koprii 870 | Hifzissihha- Tinaztepe

9 40001 | Nato 576 | Tmaztepe- Halkapinar Metro
10 41177 | Sirinyer Aktarma 36 | Buca-Giimriik

11 40199 | Kosu Yolu 36 | Buca-Giimriik

12 40201 | Istasyon 36 | Buca-Giimriik

13 40207 | Vali Rahmi Bey 36 | Buca-Giimriik

14 40209 | Sehitler Parki 36 | Buca-Giimriik

15 40733 | Buca Devlet Hastanesi 36 | Buca-Giimriik

16 40735 | Cevik Bir 36 | Buca-Gumriik

17 40737 | Buca Saglik Ocagi 36 | Buca-Giimriik

18 40739 | Buca Ugkuyular Meydan 604 | Sebze Hali-Ayakkabicilar Sitesi
19 40079 | Hasan Aga Bahgesi 176 | Ufuk Mahallesi- Demircikoy
20 40067 | Eski Mezarlik 176 | Ufuk Mahallesi- Demircikoy
21 40069 | Fabrika 176 | Ufuk Mahallesi- Demircikoy
22 40071 | Begos 671 | Narlidere- Tinaztepe

23 40120 | Tinaztepe Kampiis Son Durak

2.5 Multi-Criteria Routing

When we are planning a journey from s to t, the first goal coming to mind, is
minimizing the travel time. Sometimes, the fastest route is not the best route in
transportation networks. A passenger may prefer a travel with longer time or longer
distance to a travel with less transfers or cheaper cost. Combination of several
criteria is even more complicated. Using multiple criteria for optimization in route
planning is called multi-criteria search. None of the high-performance approaches
developed in the last years can be applied on a multi-criteria routing easily (Muller—
Hannemann & Schnee 2007; Pyrga, Schulz, Wagner, & Zaroliagis 2008; Disser,
Miiller-Hannemann, & Schnee 2008). In this study, a gradual multi-criteria search
approach is developed by concentrating to find k-shortest-paths ordered by

increasing number of transfers.

2.6 Timetable Information

A timetable consists of data concerning: stops or stations, vehicles (busses, trains,
or ferries, etc), transfer stations, departure and arrival times of vehicles at stops
stations, and traffic days. More formally, we are given a set of vehicles A4, a set of
stops B, and a set of elementary connections C whose elements c are 5-tuples of the
formc = (4,51, 52, tq, ta). An elementary connection ¢ means a vehicle A leaves

stop S; at time t;, and the immediately next stop of vehicle A is stop S, at time t,,.

Static timetable data describes the state a transportation network is supposed to be
in any time t while real-time transit data describes the state a transportation network
is currently in. The current real-time state of a transit network can be described with
vehicle’s actual GPS positions.

A real-time journey planner produces routes considering vehicle delays,
cancellation or route changes because of an accident or construction. Real-time data
is rarely available and almost never network-complete. There are a few

transportation agencies that provide GPS positions of their vehicles.

10

There are two common approaches that model timetable information in public
transportation systems as shortest-path problems in weighted graphs. These are time-
expanded and time-dependent models. Both the time-expanded and the time-

dependent models transform static schedule data into a directed graph G = (V, E).

2.6.1 Time-Expanded Model

In the time-expanded approach, every event at a station, e.g., the departure of a
train is modeled as a node in the graph. The simplified version of the earliest arrival

problem has been studied on time-expanded graphs.

Schulz, Wagner, and Weihe (2000) explicitly use the time-expanded approach to
model a simplified version of the earliest arrival problem as a shortest path problem
in a static graph, and solve the problem optimally. An extension of the time-
expanded approach incorporating train transfers and an extensive experimental study
focused on multi-criteria problems is presented by Muller-Hannemann and Weihe
(2001). Muller-Hannemann, Schnee and Weihe (2002) focus on more realistic and
complex real-world scenarios for timetable information, in particular with respect to
space limitations. Bi-criteria problems are presented and an experimental comparison
with the time-dependent approach is conducted by Pyrga, Schulz, Wagner and
Zaroliagis (2004, 2008). Multi-criteria optimization in the time-expanded graph by a
labeling approach is extensively investigated by Muller—-Hannemann and Schnee
(2007).

2.6.2 Time-Dependent Model

In the time-dependent approach, each v € V models a station and each e = (u, v) €
E; u, v € V models possible non-stop connections between two nodes. The lengths
on the edges are modeled by introducing special cost functions that respect the travel

and waiting time and assigned “on-the-fly”.
Orda and Rom (1990, 1991) thoroughly investigated the complexity of time-
dependent shortest path problems and gave efficient algorithms for special cases.

Nachtigal (1995) used the time-dependent approach with a label correcting method to

11

calculate the transit function for all starting times with one path search procedure.

Comparing the time-expanded and time-dependent approach by Brodal and Jacob
(2004), the time-dependent approach is better than the time-expanded one when the
simplified version of the earliest-arrival problem is considered. Also, Pyrga et al.
(2004, 2008) have discussed time-expanded and time-dependent models for several
kinds of single-criterion and bi-criteria optimization problems on timetable
information systems. They have shown that, for the simplified earliest-arrival
problem, the time-dependent approach is clearly superior to the time-expanded
approach.

2.7 Speed-Up Techniques

Speedup techniques have made enormous progress in the last years. Several
speed-up techniques have been developed aiming faster query times for many
realistic data sets. These techniques pre-compute and store additional information on
shortest paths, which is used in the on-line phase to reduce the running time for
solving a shortest-path query. Delling, Sanders, Schultes, and Wagner (2009) have
given an overview of these techniques. In general, two approaches exist on how to

accelerate s-t queries: goal-directed and hierarchical approaches.

Bidirectional Search, is a natural approach that a second search is started
backwards, from the target to the source. The algorithm terminates as soon as some
node has been settled from both directions. Experiments of Pohl (1969) showed that
search space can be reduced by a factor of 2. Many advanced speed-up techniques
use bidirectional search.

A commonly used speedup approach is the Goal-Directed Search, also referred to
as the Ax algorithm or the method of potentials, introduced originally by Hart,
Nilsson and Raphael (1968). In goal-directed search, the given edge weights are
modified to favor edges leading towards the target node. With graphs from timetable
information, a speed-up in running time of a factor of roughly 1.5 is reported by
Schulz, Wagner, and Weihe (2000).

12

The ALT algorithm (A* with Landmarks) is a combination of A*-search with the
improvement of using Landmarks and the Triangle inequality (Goldberg &
Harrelson, 2005; Goldberg, & Werneck, 2005). A small number of nodes, called
landmarks are selected and distances between each landmark A and each node v, d(v,
A) and d(4, v) are pre-computed. For nodes s and t, the triangle inequality yields for
each landmark A two lower bounds d(4, t)—d(4, s) < d(s, t) and d(s,)—d(t, 1) < d(s,
t). The maximum of these lower bounds is used during an A* search.

The Arc-Flag approach is another goal-directed speed-up technique and a
generalization of a partition-based arc labeling approach. The basic idea of the arc-
flag method using a simple rectangular geographic partition has been suggested by
Lauther (2004). The arc-flag approach divides the graph into regions and gathers
information for each arc on whether this arc is on a shortest path in a given region.
For each arc, this information is stored in a vector. The vector contains a flag for
each region of the graph, indicating whether this arc is on a shortest path in that
particular region. Arc-flags are used in the Dijkstra computation to avoid exploring
unnecessary paths and achieve an average speed-up of 64 on a typical European road

map.

Another speed-up technique, the Hierarchical Method requires a preprocessing
step at which the input graph G = (V, E) is enriched with additional edges
representing shortest paths between certain nodes. The additional edges can be seen
as “bridges” or “short-cuts” for Dijkstra’s algorithm. Mainly two methods have been
developed to create such a hierarchy, the Multi-Level Approach (Schulz, Wagner &
Zaroliagis, 2002; Holzer, 2003; Holzer, Schulz & Wagner, 2006; Delling, Holzer,
Miiller, Schulz & Wagner, 2006) and Highway Hierarchies (Sanders & Schultes,
2005, 2006). In Multi-Level Approach, there are three different types of edges being
added to the graph: upward edges, going from a node that is not selected at one level
to the node selected at that level, downward edges, going from selected to non-
selected nodes, and level edges, passing between selected nodes at one level. The
weight of such an edge is assigned as the length of a shortest path between the end-
nodes. Depending on the given query, only a small fraction of these edges has to be

13

considered to find a shortest path. Using this technique, speed-up factors of more
than 3.5 were observed for road map and public-transport graphs (Holzer, 2003).
Timetable information queries could be improved by a factor of 11 (Schulz, Wagner,
& Zaroliagis, 2002). These technigques have been combined in many studies (Schulz,
Wagner, & Weihe, 2000; Holzer, Schulz, Wagner, & Willhalm, 2006; Bauer et al.,
2010).

All developed techniques so far work only either in road or railway networks.
There are fewer studies in multi-modal route planning. Mendelzon and Wood (1995)
have introduced the Label Constrained Shortest Paths Problem (LCSPP) that
restricts modal transfers. In this approach, edges are labeled, and the sequence of
edge labels must be element of a formal language for any feasible path. Barrett et al.
(2008) have conducted an experimental study of this approach, including basic goal-
directed techniques.

Access-Node Routing (ANR) is an efficient multi-modal speedup technique that
has been proposed by Delling, Pajor, and Wagner (2009). It skips the road network
during queries by pre-computing distances from every road node to all its relevant
access points of the public transportation network. It has the fastest query times of all
the previous multi-modal techniques which are in the order of milliseconds.
However, the preprocessing phase predetermines the modal constraints that can be
used for queries. Also, it cannot compute short-range queries and requires a separate
algorithm to handle them correctly.

Kirchler, Liberti, Pajor, and Calvo (2011) have introduced another approach
called SDALT that adapts ALT by pre-computing different node potentials depending
on the mode of transport. It has fast preprocessing, but both preprocessing space and
query times are high, and it also cannot handle arbitrary modal restrictions as query

input.

Dibbelt, Pajor, and Wagner (2012) have developed User-Constrained Contraction

Hierarchies (UCCH) that is a multi-modal speedup technique based on Contraction

14

Hierarchies. In this technique, preprocessing works by heuristically ordering the
nodes of the graph by an importance value.

2.8 Reference Data Models for Public Transport

The development of Journey Planning engines has showed a rapid progress by the
development of the data standards such as TRANSMODEL and General Transit Feed
Specification (GTFES) for representing the stops, routes and timetables of the network.

TRANSMODEL is the Reference Data Model for Public Transport including the
database schema for network description, versioning, vehicle-driver scheduling,
personnel disposition, operations monitoring and control, passenger information, fare
collection and management (The European Reference Data Model for Public
Transport, 2001). It has been fundamental to the development of a number of data

models and European Standards including:

e TransXChange standard in the UK for bus timetables,

e The IFOPT (ldentification of Fixed Objects in Public Transport) standard for
identifying fixed, transport-related objects,

e The National Public Tansport Access Nodes (NaPTAN) database is a UK
nationwide system for uniquely identifying all the points of access to public
transport in the UK,

e Service Interface for Real Time Information (SIRI) is an XML protocol to allow
distributed computers to exchange real-time information about public transport

services and vehicles.

During the last years, the GTFS has become the most popular format to describe
static schedule data of transit networks (General Transit Feed Specification
Reference, 2007). GTFS was developed by Google and Portland TriMet transit
agency in 2005, and originally known as the Google Transit Feed Specification.
Google opened the feed for general use in 2007 and the GTFS format name was
changed to the General Transit Feed Specification to represent its use in many

different applications outside of Google products in 2010.

15

Both official and user-generated feeds are available for many transit agencies
around the world. According to the data from the GTFS Data Exchange, there are

909 transit agencies providing GTFS Data by the numbers of June, 2015.

GTFS models schedules, provides polylines (“shapes”) for single or multiple trips,
integrates multiple trips into a single route and holds many other attributes like

wheelchair-accessibility, route colors or fare information.

The data models use different terminology when defining the same objects.
Differences between the terminologies can be a source of confusion when converting
from one format to another. Open Transit group proposes a transport vocabulary that

consists of the following ingredient (The Open Transport Vocabulary, 2014).

e stop_point: A stop_point is the location where a vehicle can stop.

e stop_area: A stop_area is a collection of stop_points. Generally there are at
least two stop_points per stop_area, one per direction of a line.

e link: This object links two stop _points together (named origin and
destination). It is the walkable part of a journey.

e journey pattern: A journey pattern is an ordered list of stop_points. Two
vehicles that serve exactly the same stop_points in exactly the same order
belong to the same journey_pattern.

e journey: A journey is a single run of a vehicle along a journey_pattern.

e route: A route is a collection of journey patterns that match the same
commercial direction.

e line: A line is a collection of routes.

e stop_time: A stop_time represents the time when a vehicle is planned to
arrive and to leave a stop_point.

e vehicle: A vehicle is an object which can take one or more people from one
place to another.

e agency: An agency maintains one or several modes for certain areas.

e mode: A mode is a type of transport.

16

2.8.1 General Transit Feed Specification

A GTFS feed consists of six required and seven optional CSV-files. Table 2.2

shows a complete list of all files cited from the GTFS reference (General Transit

Feed Specification Reference, 2007). All files in a GTFS are saved as comma-

delimited text. The first line of each file contains field names. Each subsection of the

Field Definitions section corresponds to one of the files in a transit feed and lists the

field names used in that file.

Table 2.2 Required and optional files of a GTFS feed.

File Name Required Defines
acency ixt J One or more transit agencies that provide the data
gency. in this feed.
stops.ixt J Individual locations where vehicles pick up or drop
off passengers.
Transit routes. A route is a group of trips that are
routes.txt \ . : ; :
displayed to riders as a single service.
. Trips for each route. A trip is a sequence of two or
trips.txt \ o
more stops that occurs at specific time.
. The exact station sequence for each trip. Each
stop_times.txt \ : : :
station has an arrival and a departure time.
calendar.txt \ Holds weekly service times referenced by trips.txt.

calendar_dates.txt

fare_attributes.txt

fare_rules.txt

shapes.txt

frequencies.txt

transfers.txt

feed_info.txt

Exceptions for the service IDs defined in the
calendar.txt file.

Fare information for a transit organization's routes.
Rules for applying fare information for a transit

organization's routes.

Representation of geographical polylines that
describe the exact route a vehicle takes.

Headway (time between trips) for routes with
variable frequency of service.

Rules for making connections at transfer points
between routes.

Additional information about the feed itself,
including publisher, version, and expiration
information.

17

In a GTFS feed all field names are case-sensitive. Field values cannot contain
tabs, carriage returns or new lines. Field values that contain quotation marks or
commas are enclosed within quotation marks. In addition, each quotation mark in the
field value is preceded with a quotation mark. Field values cannot contain HTML
tags, comments or escape sequences. Each line ends with a CRLF or LF line break
character.

A GTFS feed viewed in a file explorer is shown in Figure 2.1 with the text
contents of a stops.txt file supplied by the Transilien transport agency operating in

France.

| stops.txt - Notepad -'. 4 e

File Edit Format View Help

stop_id, stop_name,stop_desc,stop_lat,stop_lon,zone_id,stop_url,location_type,parent_station
StopArea:DUA8731351, "BEAUVAIS", ,49.426202,2.088507,,,1,
StopArea:DUA8744895, "BEAUVAIS TILLE AEROPORT",,49.459464,2.110794,,,1,
StopArea:DUA8754573, "BONNEVAL", ,48.186437,1.386245,,,1,
StopArea:DUA8754575, "CHATEAUDUN", ,48.073407,1.338435,,,1,
StopArea:DUA8727611, "CHANTILLY GOUVIEUX",,49.187334,2.45952,,,1,
StopArea:DUA8727210, "VINEUIL SAINT-FIRMIN",,49.21639,2.491135,,,1,
StopArea:DUA8727211, "COURTEUIL",,49.200838,2.538913,,,1,
StopArea:DUA8727166,"SENLIS", ,49.20916,2.589123,,,1,
StopArea:DUA8768100, "CORBEIL ESSONNES",,48.613834,2.472987,,,1,
StopArea:DUA8768160, "ESSONNES ROBINSON",,48.605658,2.46376,,,1,
StopArea:DUA8768161, "VILLABE",,48.593116,2.460933,,,1,
StopArea:DUA8768162,"LE PLESSIS CHENET",,48.573808,2.479469,,,1,
StopArea:DUA8799063,"La Justice",,48.563341,2.495933,,,1,
StopArea:DUA8768163, "LE COUDRAY MONTCEAUX",,48.566281,2.49256,,,1,
StopArea:DUA8754570, "VOVES", ,48.274632,1.621499,,,1,
StopArea:DUA8754565, "AUNEAU", ,48.445254,1.779584,,,1,
||StopArea:DUA8754552, "DOURDAN", ,48.533588,2.008998,,,1,

m »

Figure 2.1 Sample text file from a GTFS feed.

Figure 2.2 gives a complete UML diagram describing the relationship between
files and their attributes of the General Transit Feed Specification (UML Diagram of
the General Transit Feed Specification, 2007).

After an agency creates a GTFS feed and shares it with the public, it is able to be
accessed by many different types of applications such as trip planning, timetable
creation, data visualization, planning analysis, that are based on GTFS data. An
overview of these different types of applications is provided by Antrim and Barbeau
(2013).

18

Standing on a common data format makes an application able to work in all transit

systems for which open transit data has been released and the common data is

available to any developer to use. In scope of this thesis, an application has been

developed to transform the Izmir transportation data into GTFS format and to load

any GTFS feed into our database. This application will be explained in the next

section by giving a sample GTFS feed which is generated for Izmir. Also, validation

results will be mentioned to demonstrate accuracy of the generated feeds.

stop

stop_id[1]
stop_code[0..1)]
stop_name[1]
stop_desc(0..1]

stoptime

trip_id[1]
arrival_time[1]
departure_time[1]

fare_attribute

fare_id[1]
price[1]
currency_type[1]

I 1

fare_rule

fare_id[1]
route_id([0..1]
origin_id[0..1]
destination_id[0..1]
contains_id[0..1]

0..1
1
route
route_id([1]
agency_id[0..1]

route_short_name[1]
route_long_name[1]

5" route_desc(0..1)

1 1 stop_id[1] payment_method(1]
z:gp_:;{[lllj stop_sequence(1] transfers[1]
zm-ﬁ!"d[g 1] stop_headsign(0..1] transfer_duration[0..1]
stop_url[0...1] pickup_type[0..1]
locafion_type[0..1] drop_off_type(0..1]
= lipsUal shape_dist_traveled[0..1]
parent_station[0..1]
3 0.
agency
agency_id[0..1]
1 agency_name[1]
agency_url[1]
agency_timezone[1]
iransfer agency_lang[0..1]
from_stop_id[1] agency_phone([0..1]
to_stop_id[1]
transfer_type(1]
min_transfer_time[0..1]
1
shape
shape_id[1]
shape_pt_lat[1] 0.x e
shape_pt_lon[1]
shape_pt_sequence[1]
shape_dist_traveled[0..1]
0..* 1 lend 1
calendar_dates |€————— calendar
service_id[1] service_id[1]
date[1] monday(1]
exception_type[1] tuesday[1]

wednesday[1]
thursday[1]
friday[1]
saturday[1]
sunday[1]
start_date[1]
end_date[1]

ﬁ\» shape_id[0..1]

Figure 2.2 UML Diagram of the General Transit Feed Specification.

19

route_type[0..1]
route_url[0..1]
route_color(0..1]
route_text_color[0..1]

trip

* route_id(1]

service_id[1]
trip_id[1]
trip_headsign[0..1]
trip_short_name([0..1]
direction_id[0..1]
block_id[0..1]

0.1

frequency

trip_id[1]
start_time[1]
end_time[1]
headway_secs([1]

2.8.2 GTFS-Conversion Application

In scope of this thesis, an application has been developed to transform the lzmir
transportation data into GTFS format and to load any GTFS feed into our database.
Six required feeds; agency, stops, routes, trips, stop_times, and calendar have been
generated for Izmir. Figure 2.3 shows the agency.txt which has been generated by

our application.

| agency.txt - Notepad =NEl X
[File Edit Format View Help |
agency_id,agency_name,agency_url,agency_timezone,agency_lang -

ESHOT,ESHOT GENEL MUDURLUGU,http://www.eshot.gov.tr,Europe/Istanbul,TR
IZBAN,IZBAN A.S.,http://www.izban.com.tr,Europe/Istanbul,TR

IZMIR METRO,IZMIR METRO A.S. . http://www.izmirmetro.com.tr,Europe/Istanbul,TR
IZDENIZ,IZDENIZ A.S.,http://www.izdeniz.com.tr,Europe/Istanbul,TR| a

m

Figure 2.3 Generated agency and stop files in GTFS format.

There is an open source tool available for testing feeds in the GTFS format to
verify whether the feed data files match the specifications. We used the feedvalidator
tool to ensure that our conversion task completed successfully. GTFS validation

results for I1zmir feeds are given in Figure 2.4.

[FeedValidator: izmir = Feristany [IS =

¢ [filey//DyJUPS/GTES/izmir/FeedValidator%20%20izmir.html
M Inbox [DEU Mail Ed Facebook 4 eksi By GT % MAP [Sozluk [HURRIYET

5
n

ntvm

GTFS validation results for feed:
D:\DERSLER\DOKTORA\IIPS\GTFS\izmir
FeedValidator extension used: None

Asencies: ESHOT GENEL MUDURLUGU, [ZMIR METRO A.S., IZDENIZ A.S., IZBAN A.S.
Routes: 319
Stops: 6727
Trips: 54564
Shapes: 0
Effective: January 01, 2015 to December 31, 2015

During the upcoming service dates Wed Mar 18 to Sat May 16:

Average trips per date: 26796
Most trips on a date: 27593, on 43 service dates (Wed Mar 18, Thu Mar 19, Fri Mar 20, ...)
Least trips on a date: 23221, on 8 service dates (Sun Mar 22, Sun Mar 29, Sun Apr 05, ...)

Generated by FeedValidator version 1.2.15 on March 18, 2015 at 11:56 PM GTB Standard Time.

Figure 2.4 GTFS validation results for 1zmir feed.

There is no validation error, but some warnings exist. These regular warnings can

be exemplified as followings:

20

e Stop Too Far From Parent Station: Konak (ID 10037) is too far from its parent
station Konak (Bahribaba) (ID TRANSFER_CENTER_12) : 127.97 meters.

e Stops Too Close: The stops "Sasal Kopri" (ID 11105) and "Sasal Kopri" (ID
11110) are 0.00m apart and probably represent the same location.

e Too Fast Travel: High speed travel detected in trip T13-204-1100-1: Serbest
Bolge 2 to Otogar. 12507 meters in 420 seconds (107 km/h).

2.8.3 GTFS-realtime

Since August 2011, the GTFS specification is being extended by a real-time
transit data feed (GTFS-realtime Reference, 2011). GTFS-realtime currently

provides support for three types of information:

e Trip updates: delays, cancellations, changed routes,

e Service alerts: stop moved, unforeseen events affecting a station, route or the
entire network,

e Vehicle positions: information about the vehicles including location and

congestion level.

Updates of each type are provided in a separate feed. Feeds are served via HTTP
and updated frequently. Trip updates represent fluctuations in the timetable. These
updates would give a predicted arrival or departure for stops along the route. Trip
updates can also provide more complex scenarios where trips are canceled, added to

the schedule or even re-routed.

Service alerts represent higher level problems with a particular entity and are
generally in the form of a textual description of the disruption. They could represent
problems with stations, lines and the whole network. A service alert usually consists

of some text which describes the problem and URLs for more information.
Vehicle position represents a few basic pieces of information about a particular
vehicle on the network. Most important are the latitude and longitude the vehicle is at

and the other fields bearing, odometer and speed are optional.

21

2.9 Existing Journey Planner Systems

Many uni-model journey planner systems are available all over the world today.
The main focus of this study, multi-model journey planners, can be exemplified by

the following systems.

OpenTripPlanner (OTP) is an open source platform for multi-modal and multi-
agency journey planning. It follows a client-server model, providing several map-
based web interfaces as well as a REST API for use by third-party applications
(Open Trip Planner, 2009). OTP relies on open data standards including GTFS for
transit and OpenStreetMap for street networks. OTP deployments now exist around
the world and OTP is also the routing engine behind several popular smartphone

applications.

Google Transit is a public transportation planning tool that combines the latest
agency data on Google Maps (Google Transit, 2011). Live Transit Updates is a
service providing real-time transit updates to users of Google Maps and Google
Maps for mobile. These updates include live departure and arrival times to transit

stations, as well as service alerts.

Bristol City Council is a good example of a multi-modal information service,
which supports modes like walk, cycle, bus, rail and drive. User can right click on
the interactive map to select start and end points, and use alert system to find out if
journey could be delayed. JourneyOn is being served by Brighton & Hove City
Council. This planner compares rail, buses, driving, walking and cycling. Traveline
is another service that provides journey planning information about public transport
services as buses, coaches, trains, ferries, trams, metro and underground throughout
England, Wales and Scotland. Transport Direct was built upon Traveline for Great
Britain and stands out as an example of integrated multi-modal information provision
at national level. This service allows users to save their favorite journeys and travel
preferences. The service also provides for mobile Internet access, WAP and SMS.
TfL Journey Planner is another important multi-modal information service for

London. This service includes walk, bus and tube journey stages. Journey planning,

22

travel news, timetables and color maps are available via mobile platforms with real-

time travel alerts.

The Public Transport Enquiry System (PTES) for Hong Kong is a multi-model
journey planner, providing bilingual (English and Chinese) information in the form
of interactive maps and text, as well as real-time derivation of optimal travelling
routes for users in terms of multiple criteria. trafiken.nu compares public transport,
car, bike, walk and combinations for each individual journey search in Stockholm.
0OV9292 has provided travel information on public transport in Netherlands for
almost 20 years. ResRobot supplies information for all types of transport covering the
whole Sweden. Journey.fi for planning trips across Finland and reittiopas.fi for the

Finnish capital and surrounding areas are the journey planners using IPJ by Logica.

Metropolitan Atlanta Rapid Transit Authority (MARTA) presents a journey
planner called Five Points for their train and bus services. Deutsche Bahn is the
German national railway company using the DB Bahn - journey planner of Hacon.
Public Transport Victoria was established in April 2012 with the aim of improving
public transport in Victoria. Transport Info provides public transport information to
plan an efficient and successful journey in New South Wales.

At the beginning of this study, there was no available journey planner system for
Izmir. Two different systems have been released by the current year. The first one
Trafi is servicing in five countries including Turkey, Lithuania, Latvia, Estonia and
Brazil. Istanbul, Ankara, Izmir and Bursa are the Turkish cities which are served by
Trafi. The other system Buradan Oraya is in use for Istanbul, Ankara, and lzmir.
These two systems have Android, iOS, and Web applications. As seen in the
examples, journey planner systems are actively in use in many countries of the

world. New applications are becoming available day by day.

23

CHAPTER THREE
INTELLIGENT JOURNEY PLANNER SYSTEM

3.1 Overview

This chapter explains system architecture of the developed system: Intelligent
Journey Planner System (1JPS). Database design will also be handled in this section.
Finally, developed applications including the web application, mobile web
application and native applications for mobile operating systems will be explained by

giving some sample screens.

3.2 System Architecture

IJPS stands on a service oriented architecture. The Journey Planner Web Service
runs on a web server acts as a routing engine for clients. This web service can be
thought as the core of the whole system. There are also some auxiliary services to
provide necessary on-the-fly data as shown in Figure 3.1.

Another system component Database Server can serve as Oracle server or
MSSQL server. Daily actual data are collected and stored in this server by Update
Service. Web, kiosk and mobile web applications are published on another Web

Server.

Web Client was developed to be compatible with all common web browsers.
Kiosk clients are designed to locate at strategic location for passengers like transfer
centers. Their interfaces are the modified version of the web client interfaces to

facilitate the use of touch.

Mobile clients are operating native applications for Android, iPhone, and
Windows Mobile platforms. These applications are designed suitable with both smart
phones and tablets. Mobile web client application was formed especially for other

mobile platforms like Blackberry, Symbian etc. which don’t have native applications.

24

Bus
Information

Fireiwall
Rall E
Information Backup
Server Web Server

Mobile Users

=

‘:j’) Wzor:
Ferry : Kiosk
Information

Update
Service

Journey Planner
Web Service

\ Web Service

n Server

Database
Server

Currency Weather Road Condition Acthlty
Web Service Web Service Web Service Web Service Web ‘ ervice
A
v

\A;

Road Condition Culture and Art City
Information Information Information

v
<3 &3
S E g

Figure 3.1 System architecture.

The system has been developed based on the three-tier architecture in which
presentation, application processing, and data management functions are physically
separated as illustrated in Figure 3.2. The three-tier architecture is intended to allow
any of the three tiers to be upgraded or replaced independently in response to

changes in requirements or technology.

Presentation tier includes the front-end applications such as web application and
mobile applications. In Application tier, business logic is applied by the web
services by performing detailed processing. Data tier includes the database servers
and the database management system software that manages and provides access to

the data.

Windows Communication Foundation protocol provides communication between

application and presentation layer while SQL and Oracle protocols and components

25

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Windows_Communication_Foundation

allow for communications with data tier and the applications. Separate tiers run on

separate physical servers as database server, web service server and web server.

Presentation Tier —
M« SRS
Web Application Moblle Apphcatlons

Application Tier

update Journey Planner Currency Weather Road Condition Actwrty

Service Web Service Web Service Web Service Web Service Web Service Web Servrce
bt g g g E g g

Btrs Rail Ferry Road Condition Culture and Art City
Information Information Information Information Information Informatlon

Figure 3.2 Three-tier architecture.

3.3 Database Design

SQL Server Management System is used as the default database management
system. Data tables related with the transportation information have been designed in
accordance with GTFS format explained in Chapter 2.8.1. When creating the data
tables, a data table name convention has been followed. Project description is located
at the beginning of the table names (Example: IJPS_ for Intelligent Journey Planner
System). The second descriptor is the 3-character extension indicating the content-
type of the table. These extensions and the tables they logically grouped are listed

below.

e ADM (Administration): Administrators, AdminTransactions, Pages,
Permissions, Roles

e GEN (General): Counties, EducationalStatus, Languages

e LOG: Exceptions

e POl (Point of Interest): POI, POICategories, POISubCategories,
POITranslation, StopPOl

26

e PTH (Path): TransferCenterPaths, TransferCenterPathDetails

e STT (Status): WeatherStatus, WeatherStatuslcons

e TRN (Transportation): AccessibleTransferCenters, Calendar,
CalendarDayTypes, DepartureTimes, Routes, Shapes, SpecialFareRoutes,
Stops, StopTimeDistance, Tariffs, TaxiTariffs, TransferCenters,
TransferCenterStops, Trips

e TST: Test

e USR (User): Journeys, Queries, Users, UserTransactions

As mentioned before, there are four types of public transportation modes and each
has several lines. All types of lines are kept in “IJPS_TRN_Routes” table with their
id, name and vehicle type. Stops are stored in “IJPS_TRN_Stops” table according to
their id, name, longitude, latitude, and vehicle type. Distances between sequential
stops are also available in “IJPS_TRN_ StopTimeDistance” table. Almost all lines
are round-trip. Sequential list of stops for each line are kept in another data table
“IJPS_TRN_ Trips” according to their directions.

Transportation system in Izmir is actually insufficientin terms of rail and
underground. Maritime transport is also restricted because of the distributed
population on geographical area. Therefore, transportation by bus holds an important
place in Izmir. Almost all the rail, underground and ferry stations are formed as
transfer centers which contain first stops of several bus lines to transfer passengers to
their neighborhood. These transfer centers and their stops are stored in “IJPS_TRN_

TransferCenters” and “IJPS_TRN_ TransferCenterStops” data tables, respectively.

Time scheduling is changing at summer/winter time only. Three different
timetables are constituted for weekdays, Saturday and Sunday in “IJPS TRN
CalendarDayTypes” table. Departure times for each line in two directions organized

according to these timetables are kept in the table “IJPS_TRN_ DepartureTimes”.

In Izmir, Kentkart, a contactless smart card is used for pricing at all types of

transportation. Balance loaded on card decreases according to user type (discounted

27

for students, and free for senior citizen). The prices for some long-distance lines are
doubled. These lines and prices are kept in “IJPS_TRN _ SpecialFareRoutes”.

DJPS TRN_StopTimeDistance * [IJPS_TRN_Shapes * DJPS PTH_TransferPathDetails * [P DJPS PTH_TransferPaths
% Shapeld % Shapeld % PathDetailld % Pathld
QriginStopld % [Order] Pathld QriginStopld
DestinationStopld CoorX SubPathld OriginRouteld
StartTimeld Coory QriginStopld QriginRouteDirectionld
EndTimeld DestinationStopld DestinationStopld
Distance Routeld DestinationRouteld
Time LIPS_TRN_VehicleTypes * [Directionld DestinationRouteDirectionld
StartTime § VehicleTypelD VehicleTypeld TransferCount
EndTime VehicleType StopCount StopCount

TotalDistance
g g % TotalTime

ServiceCount
IJPS TRN_ Stops * erviceCoun

PathTypeld

% Stopld .
LIPS_TRN_Tariffs * .
ParentStopld ¢ Taritfld TransferWalkEsxist
Name Name LJPS_TRN_Routes * OriginWalkExist
CoorX Y % Routeld DestinationWalkExist
e RouteMo SubPathCount
CoorY VehicleTypeld
Countyld Name TotalWalkDistance
ty! CalendarDayTypeld Service:
Zoneld Calendarld erviceCount MiddleOriginRouteld
VehicleTypeld o - VehicleTypeld MiddleOriginRouteDirectionld
escription
NeighborStops ¥ 5 MiddleDestinationRouteld
Routes [qL MiddleDestinationRouteDirectionld
% % LIPS_TRN_SpecialFareRoutes *
LJPS_TRN_Calendar * ¢ Routeld
LJPS_TRN_AccessibleTransferCenters % Calendarld Mame
Stopld Name
UnusedVehicleTypeld .
LIPS_TRN_DepartureTimes *
TransferCenterld
% DepartureTimeld
Distance Routdd
ou
TransferCount DJPS TRN_CalendarDayTypes *)
% DayTypeld DepartureTime
% Mame Directionld
Description Calendarld
IJPS_TRN_TransferCenters DepartureOrder
% TransferCenterld
Name
" = = .
LJPS_TRN_Trips LJPS_TRN_TaxiTariffs
g — Stopld % TaxiTariffld
LJPS_TRN_TransferCenterStops * Routeld Year
% TransferCenterld [Order] StartingPrice
% Stopld Directionld KmPrice
Shapeld RecordDate

Figure 3.3 Entity-relationship diagram.

Data table “IJPS_POI POI” holds named places to select journey origins and
destinations. This includes all points of interests (POIs) like popular tourist
sightseeing, shopping places, hospitals, schools and all kinds of government offices

with their coordinates.
Preprocessed paths between all transfer centers are recorded in “IJPS PTH

TransferCenterPaths” and “IJPS_ PTH _ TransferCenterPathDetails” tables in detail.
All application specific data tables which are grouped as “ADM”, “USR”, and

28

“GEN” can be seen in entity-relationship diagrams given in Figure 3.3. 319 lines,
6708 stops, 74,434 departures are recorded currently in the database.

LJPS_POI_POISubCategories LJPS_STT_WeatherStatus * DJPS_STT WeatherStatuslcons * LJPS_ADM_AdminTransactions *
% POISubCategoryld WeatherStatusld =Em | WeatherStatuslconld % AdminTransactionld
MName Date Description Adminld
POICategoryld MinTemperature IconPath TransactionCade
MaxTemperature Description
Humidity Date
Wind Ip
- LPS_USR_Journeys *
LIPS_POL_POICategorics Pressure - R OUITEY
UserJourneyld
% PQICategoryld Countyld
Userd
Name WeatherStatuslconld
Qrigin
Destination DJPS_ ADM_Administrators *
% . % Administratorld
9 JourneyDescription
MName
[t - Parameters
LIPS_POI POl LIPS_GEN_Counties * Sumsme
% POOd % Countyld UserName
Categoryld Name Password
SubCategoryld i
LPS_USR_Queries * Roleld
Countyld 2 Quenld Ishctive
ame Userld RecordDate
CoorX JPS USR Users *
Qrigin
Coor¥ % Userld
Destination
Name
R Date ql!)
Surname L
Birthear Parameters 1P ADM Rotes -
e ¥ _Roles
LIPS_POI_StopPOI Sex ¢ Roleld
% Stepld EducationalStatusld
RoleName
% POId Countyld
= *
Distance EMail Lo UPS_USR_Usngransactlnns
u % UserTransactionld d?
Userld
Password
AllowStati TransactionCode UPS ADM P N
R owStatistics ermissions
LIPS POI POITranslation * Description ==
N IsLocked Permissionld
% POITranslationld Date
i Roleld
PO IsActive I o
RecordDate Pageld
Languageld
LastLogln WritePermissicn
Name
LJP5_LOG_Exceptions
Logld =
s‘L % Date UPS_ADM Pages *
UUPS_GEN Languages * UPS GEN EducationalStatus * PageUr % Pageld
% Languageld % EducationalStatusld Description Name
Name MName Sessionlnfo Description

Figure 3.3 Entity-relationship diagram (continued)

3.4 Applications

IJPS consists of Mobile Web and Desktop Web portals, Android, iPhone, and
Windows Phone based mobile applications operating in both English and Turkish.

The design of the pages is simple and common Ul elements are used to feel users
more comfortable. Flow of the usage is not so much different from available journey
planner systems to feel user familiar with the system and able to get things done
more quickly. Pre-chosen fields reduce the burden on the user. We avoid

unnecessary elements and are clear in the language on labels and in messaging.

29

3.4.1 Mobile Applications

Specific applications have been developed for iOS, Android and Windows Phone
mobile operating systems to use system anywhere and at any time effectively. In
addition to these mobile applications, a mobile web application is available for other

mobile platforms which are not commonly used.

I0S Mobile Application has been developed by using Objective-C programming
language and XCode software development environment in MacOSX operating
system. WCF method outputs (Soap Service) were read with NSXMLParser. The
MKMapView class is used for presenting map data in the application. It provides
support for displaying map data, managing user interactions, and hosting custom

content.

While developing the Android Mobile Application, the Eclipse platform, Android
Software Development Kit and the Java programming language have been used.
KSoap2 library which is a Java package that makes establishing the connections
easier to WCF method output (Soap Service), has been included into project. The
values are taken from the web service properly through this library. Google maps are

used to display paths in the Android Mobile Application.

Windows Phone 8 Mobile Application has been developed in Windows 8
operating system by using Windows Phone 8 SDK, Visual Studio 2012 development
environment, and C# language. Necessary data is provided by WCF service methods.
Windows Phone 8 SDK Map Control provides the Bing maps for route displaying.

Application that runs on mobile Web environments has been developed with the
Visual Studio 2010 development environment and C # language. The WCF service

methods are used in this application, too.

Properties of the applications will be explained in this section by using sample
screenshots. Sub figures A, B, C and D belong to iOS, Android, Windows Phone and
Mobile Web applications respectively, in Figure 3.4 to Figure 3.14.

30

=

Nereden >
ASANCON
Noroye >
Sanrioadba AN
Gunler Fuzanes >
Harekot Saatier 1200 »
Yirime Vil gem s ate 3
(@) (b)

Ekran gériintiilerine kaydediliyor.

Seyahat Planlayici TEST

Onemli Nokta Harita

Nereye

Onemli Nokta

@ Onemli Noktadan

O Duraktan

O Haritadan

(d)

Figure 3.4 Determination of the origin and destination points in (a) iOS, (b) Android, (¢) Windows
Phone, (d) Mobile Web.

As seen in Figure 3.4, origin and destination points are determined at the
beginning of the journey plan. When determining the origin and destination points,
three different methods are used. These methods are making a selection from a pool
of defined POIs, making selection from stop or station names and marking the

location on the map.

31

Another parameter is the transportation modes that could be used for the user. At
present, bus, ferry, subway and train options are available. By default, all options are
selected. Elimination of unwanted ones is expected from the user. The next
parameter is the desire to walk between transfers and maximum acceptable walking
distance. By default, walking is checked as accepted and the maximum walking
distance is considered to be 500 m (see Figure 3.5).

Takal Gondar

(@) (b)

il H
A TEST

Nereden : Konak Vapur Iskelesi
Nereye : Bimeks Gigli Kipa

Hareket Giinii : m
Hareket Saati : m m
Arag: Otobils

Metro

Seyahat Planlayici TEST

~

Hareket Saati

Banliyd
Vapur

O var ® Yok

ralama:

Giizergah Listele

Taksi Tutar

v
v
[v
[v
&
@
[5

(d)

Figure 3.5 Determination of the journey parameters in (a) iOS, (b) Android, (c) Windows Phone,
(d) Mobile Web.

32

The last parameter is the selection of sorting criteria for the results. Three criteria
are available currently. These are least transfer, fastest and cheapest. Least transfer
option is selected by default. After taking origin point, destination point and journey
parameters from the user, this information are transmitted to the Journey Planner
Web Service. The results returned from the service are presented to the user in
summary as given in Figure 3.6. Summarized information consists of used lines’

icons, departure times and average travel time.

A wom A
16:30 16:53 00:23

£ sm £
16:30 16:57 00:27

£ mom £
16:30 16:59 00:29

£ em £
16:30 17:00 00:30

X mem £
16:30 17:20 00:50

(@) (b)

il H

Seyahat Planlayici TEST Nereye : Bimeks Gigli Kipa

Alternatifler

Hareket Vans Ort.Sure
1 16:54 17:02 00:07 Detay

ERTE

2 16:54 17:05 00:1 Detay
-~

o)

3 1654 17:05 00:1 Detay

F=%

ort. Baglangig-Bitig Saati ve Sure
1- 09:58-10:41 0042 Detay
£ Q)% 595 %

2- 09:56-10:42 00:46 Detay

Q%221 %

3- 09:52-10:44 00:51 Detay

% 802 & 595 £

4- 09:58-10:45 00:46 Detay

EX o EACTOES

5- 09:58-10:45 00:46 Detay

£Q % 229 %

4 16:57 17:07 00:10 Detay

£=%

5 16:54 17:08 00:13 Detay

£ =%

6. - 16:58 17.08 00:09 Detay

% =%

7 17:00 17:09 00:08 Detay

6- 09:52-10:49 0057 Detay
% 802/ 445 &
7- 09:58-10:50 0051
' 2@y % a0 %
8- 09:58-10:53 00:54
B ¢ ERCELIES
9- 09:52-10:56 01:03
|| # 802 447 %

10- 09:58 -10:56 00:58

%021 % 221 %

(d)

Figure 3.6 Summarized route list in (a) i0OS, (b) Android, (c) Windows Phone, (d) Mobile Web.

33

Displayed result count can vary depending on the query. For example, when the
system produces 5 routes which are direct or has one transfer, the results with two
transfers are not required to produce. If Journey Planner Web Service produces more
than 10 results, according to the preferred sorting criteria top ten of the results are

returned by the Journey Planner Web Service.

=
B s I S LIV
N b bvy s Tavwl —————

— e RAAON ML

Nerden

Nereyn
Yiruvs

Batviteta A2

Matirk Kither Metese

"W

Otoa

BOUTTLRANCE HALKAPIMAN METRO

AMatird Kotur Mese
Laeniah Gar
WIS WML Y

Crine
Lsontor Our

Naeanish Qar
105749

(b)

il H

Seyahat Planlayici TEST

Detay

f ylriime

Baslangig Baslangig
Bitis Bahribaba
Ort.Sure 00:02

-~

%y otobis
484-YESILBAGLAR - KONAK
Basglangig Bahribaba
Bitis Kavaflar
Hareket 16:57 17:17 17:37
Ort.Stre 00:02

f ylrime

Baslangig Kavaflar

Bitis Bitis

Ort.Sure. 00:03

A TEST

Nereden : Konak Vapur Iskelesi

Nel g

Guzergah Detay!
Baslangig-Konak
Hareket Saati : 09:58
Ort. Siire : 00:02

-Bostanl - Konak
Konak-Bostanh

Hareket Saati : 10:00 10:30 11:00

Ort. Stre : 00:18

Bostanhi-Bostanli iskele
Hareket Saati : 10:18
Ort. Siire : 00:01

595-HAVA USSU LOJ. - BOSTANLI

ISKELE
Bostanl iskele-Karya

Hareket Saati : 10:20 11:00 11:45

Ort. Stre : 00:11

Karya-Bitis
Hareket Saati : 10:30
Ort. Siire : 00:10

Haritada Goster

Onemli Noktalar

Etkinlik Merkezleri

(©) (d)

Figure 3.7 Route details in (a) iOS, (b) Android, (c) Windows Phone, (d) Mobile Web.

34

User can select a route and view the detailed information of the route as
exemplified in Figure 3.7. Detailed information includes start and end stops,
transportation mode, line number and name, departure times and the average travel

time for each sub route. Route details can be sent by e-mail.

ta
et by L)
m‘“‘l. umw . l . ol Meckasior, Onemd hoktaler
Onemil Noktatar 1 . i
Kahramanlar Park:
:P';
o
y w
L
s ,
ool \
b - = QQ
Yako Onerrd) Noktalar Yk Friintih Markor? ! 9

Nereden : Konak Vapur Iskelesi
Nereye : Bimeks Gigli Ki
Giize te:

sine Geri Git

Alsanca
Stad:

Harita verileri ©2014 Basar.

(©) (d)

soft, Google Kullanim Sartlari

Figure 3.8 Display of the selected route on the map in (a) iOS, (b) Android, (c) Windows Phone, (d)
Mobile Web.

Currently selected route can be displayed on the map as screenshots shown in
Figure 3.8. Each stop forming the route is marked on the map; transfer stops are also

35

highlighted. According to user's demand, the event centers and points of interest on
the route can be marked on the map. Name tags appear on the map by clicking on

stop, event center or important point icons.

Epuipasa Pazwyw| N
Kemer Plaza AVM >
Kitapsan Keabeyvi Alsance N
Ktapsan aabew Konak ’
K e

orink »

Piting Cenler >

Rormu| Kitabevi Koook Mae

?
Tuknosa Alsances N
Tokroaa Kanmeath »
Tokocns YEM 5

@

A TEST

Onemli Noktalar

Gigli - Gigli Kipa AVM
Konak - Kemer Plaza AVM
Konak - Konak Pier
Konak - Mimar Kemalettin Moda Merkezi
Konak - Piring Center
Konak - YKM
Konak - Dr. E. Hayri Ustlindag Kadin Hast. Dogum Hastanesi
Konak - izmir Egitim Dis Hastanesi
Konak - Ozel Hayat Hastan
Konak - Ozel Karatag Muse
Gigli - Ozel Kent Hastanesi
Konak - Ozel Konak Hastanesi
Menemen - Atatiirk Meydani
Konak - Gakabey Meydani
Kemalpaga - Agik Otopark
Kemalpasa - Agik Otopark
Selcuk - Belediye Otoparki
Konak - IBB Konak Gok Katli Otopark
Konak - Katli Otopark
Karabaglar - Otopark
Konak - 95 Taksi
Konak - Anafartalar Taksi
Konak - Bayramyeri Taksi
Konak - Egrefpaga Taksi
Konak - Kavaflar Taksi
Konak - Konak Adliye Taksi

¥ Konak - Konak Dogum Hastanesi Taksi
Konak - Konak iskele Taksi

| Konak - Mezarlikbasi Yenigiin

Konak - Topgu Taksi

) Ty

(d)

Figure 3.9 Point of interest lists in (a) i0S, (b) Android, (c) Windows Phone, (d) Mobile Web.

Important points like marketplace, shopping centers, places of worship, hospitals,
parking etc. located on the route are given as a list to the user, as in Figure 3.9. The
aim is notifying the user about the places that he/she may need along the route.

36

Another list presented to the user includes cultural centers such as museums, and
exhibitions, and event centers such as cinema, theater and concert near to the route.
As seen in Figure 3.10, when the user selects a center from the list, the events close
to the date and time of the journey are displayed. With this function, the people are
informed about events that are taking place in the city, and they are intended to
greater participation to social and cultural activities.

Cinernasmmum Komak Pl

Resirn Hoyvol Muzew

Ege Urv. Ataduek Kitte Mockez!

(b)

il H+
A TEST
Seyahat Planlayici TEST m

Yakin Etkinlik Merkezleri Etkinlik Merkezleri

Ege Unv. Atatiirk Kiiltir Merkezi
Izmir Kiltir Sanat ve Egitim Vakfi

: 1o o
Tel: 232 482 00 90 izmir Kaltdr Sanat ve Egitim Vakfi

www.iksev.org/index.php

Mithatpasa Caddesi No: 138 Karatas - Konak
etkinlikler > >

Ismet Inonu Sanat Merkezi

Tel: Gige: 497 10 76

Kulturpark Fuar Alani Lozan Kapisi Mimar Sinan Mh
etkinlikler >>
Karaca Sinemasi
Tel: +9 0232 4458713
www.karacasinemasi.com
Necati Bey Bul. 1379 Sok. No:55/B Sevgi Yolu Alsanci
etkinlikler >>
Ege Unv. Atatlrk Kultir Merkezi
Tel: 0232 4838520
www.ege.edu.tr
Mithatpasa Cad.
etkinlikler >>
Sabanci Kultar Saray:
Tel: 0232 446 06 64
Mithatpasa Cad No:112
etkinlikler > >

Yasar Egitimwe Kultir Vakfi

©

37

Cinemaximum Konak Pier

Resim Heykel Mizesi

Figure 3.10 Event center list in (a) iOS, (b) Android, (c) Windows Phone, (d) Mobile Web.

The distance and taxi fare between selected origin and destination points are
presented to the user for guidance purposes only as in Figure 3.11. Estimated taxi
fare is calculated by using current exchange rate data and the taxi tariffs, and
displayed in four different currencies consisting Tl, Euro, Gbp, and Usd. These

prices are only estimated fares and actual fares vary depending on traffic, weather
and other unforeseen conditions.

(b)

A TEST

Nereden : Konak Vapur Iskelesi
Nereye : Bimeks Cigli Kipa

Hareket Giinii : m
Hareket Saati : m : m

Arag: Otobils
Metro

12,992 km

2798 1

14,01 usd
10,38 eur
Banliyd
&2 vapur

8,74 gbp

O var ® ok

swatama:

Guzergah Listele

20,78 km - 53,91 tl
24,87 usd
19,21 eur
15,22 gbp

Taksi Tutar

(c) (d)

Figure 3.11 Estimated distance and taxi fare in (a) iOS, (b) Android, (c) Windows Phone, (d) Mobile
Web.

38

Weather condition is an important factor that affects the user's preferences. User
can change the preferred modes of transportation or can prefer less transfer according
to the weather condition. Therefore, informing the user about weather is helpful
when determining the user's query parameters. By selecting a district from the list,

weather information about that district can be displayed as shown in Figure 3.12.

Hava Durumu

-

o
2B E0 2013 monim 17

0
.!Dn Vi 28

@) (b)

©

Figure 3.12 Current weather conditions in (a) iOS, (b) Android, (c) Windows Phone.

39

In addition to all these features, an informative window is available about the road
conditions. All the ongoing road construction and infrastructure works can be listed
on the basis of the districts. This information is also generated from municipal

sources and always up to date.

1006700 Ho00
2005 10070000 00
KANAL BAGLANTISI
3
L o 318

AORNOVA

(@) (b)

Seyahat Plandaya

00
Calytsa KANAL BAGLANTTS:

Figure 3.13 Road condition in (a) iOS, (b) Android, (c) Windows Phone.

Another important feature is information about the traffic status. There is no

available service to provide real-time traffic status for Izmir currently. Construction

40

of Live Camera View system by Municipality of lzmir is in progress on various
points of the city to monitor live traffic status. Currently, statistical traffic
information provided by the KENTKART Company is used to inform users. Traffic
forecasting based on the statistics informs traffic status of each sub path weather

heavy or not (see Figure 3.14).

Tartik Durumu

Ve (Bt V-

B e l

-

Do

Figure 3.14 Traffic status in (a) iOS, (b) Android, (¢) Windows Phone.

41

3.4.2 Web Application

Web application module of IJPS has been developed in the Visual Studio 2010
development environment and coded with the C# language. WCF service methods
are used in this application, too. Web interfaces have been designed in accordance

with all common web browsers.

In addition to the functions available in the mobile application, user can create an
account and log in to the system from the web application. A registered user is able
to save his queries and view them later. User transactions can be used for statistical
purposes by the user's permission. Also, users can transmit their opinions and
suggestions from the contact page.

The necessary pages for the management operations have also been developed.
Management operations include displaying and reporting user queries, monitoring
exceptions, and other administrative settings.

submit New Login

Membership pages will be usable aRer test

Figure 3.15 Journey parameter selection page.

42

After determination of the journey parameters (see Figure 3.15), paths produced
by the web service according to these parameters are presented as shown in Figure

3.16. User can select a route and view the detailed information as exemplified in
Figure 3.17.

Figure 3.16 Alternative paths.

Figure 3.17 Route details.

43

The selected path can be displayed on the map as screenshots shown in Figure
3.18. Each stop of the path is marked on the map, transfer stops are also highlighted.

The event centers and points of interest around the selected path can be marked on

the map, too as seen in Figure 3.19.

Figure 3.18 Representation of a path on the map.

Figure 3.19 Representation of the event centers and POI on the map.

44

Important points, cultural centers such as museums, and exhibition centers, and

event centers such as cinema, theater and auditorium near to the path are listed as

seen in Figure 3.20. User can display the events that will take place in a center as in
Figure 3.21.

Figure 3.20 Nearest places of event list.

™
Opera
November 12 - 14, 2014 / 20.00

in Oylesine Bir Dinleti

Figure 3.21 Event list of selected event center.

45

CHAPTER FOUR
SERVICES

4.1 Overview

A distributed application built with Web services is a service-oriented application.
ASP.NET Web Services (ASMX) has been available for building Web services since
NET was first released. Then, Microsoft introduced the new service model Windows
Communication Foundation (WCF) (What Is Windows Communication
Foundation, 2014). WCF provides a number of benefits over ASP.NET Web

Services, including:

e Support for sending messages using not only HTTP, but also TCP and other
network protocols.

e The ability to switch message protocols with minimal effort.

e Support for hosting services on hosts other than a Web server.

e Built-in support for the latest Web service standards and the ability to easily
support new ones.

e Support for security, transactions and reliability.

e Support for sending messages using formats other than SOAP, such as
Representational State Transfer (REST).

Therefore, WCF services are very practical approaches looking at the current

business trends.

WCF services are developed as interface, operations, and data contracts. The
contract specifies the methods clients can call, any arguments the methods take and
any values the methods return. The ServiceContract attribute identifies the interface
as a service contract. To expose a method to clients, the OperationContract attribute

is used.

46

Another type of contracts is the DataContract. Clients and services exchange data
using XML messages. The WCF runtime uses the Data Contract Serializer to
serialize (convert to XML) and deserialize (convert from XML) data. This serializer
has the ability to work with basic .NET types such as strings, integers, DateTime, etc.
However, it does not have the built-in ability to work with classes and other complex
types. To make a class serializable, a data contract can be created by adding the
DataContract attribute to the class definition and by adding the DataMember

attribute to each member of the class which is wanted to be serialized.

A Windows service is a computer program that operates in the background and
does not have a user interface. It must conform to the interface rules and protocols of
the Service Control Manager; the component responsible for managing Windows

services (Services, 2014).

Windows Services can execute even when no user is logged on to the system.
They can be configured to start when the operating system is started and run in the
background as long as Windows is running. Alternatively, they can be started

manually or by an event.

A service can be registered to be started or stopped when a trigger event occurs.
This eliminates the need for services to start when the system starts, or for services to
poll or actively wait for an event; a service can start when it is needed, instead of
starting automatically whether or not there is work to do. These types of services are
intended to provide core operating system features such as Web serving, event
logging, file serving, printing or error reporting. Not all services are developed by

Microsoft. Some applications and drivers install their own services.

In scope of this thesis, two main services and some auxiliary services have been
developed. The Update Service has been developed as a windows service
application. The Journey Planner Web Service and other auxiliary services have been
developed as WCF web services mentioned above. These services will be explained

in the following sections.

47

4.2 Update Service

Update service is a windows service application that runs automatically on the
database server every night. This service collects actual data from transportations
agencies and integrates them in the local database. After updating data, some
preprocessing tasks are taken to fasten on-the-fly processing of user queries. Update
service operates in the background and does not have a user interface. A windows
form application has been developed to test the update service (see Figure 4.1). This

application provides monitoring of process log and current status of the operation.

95! UPS Data Collection and Entegration Tool E@&

STAGE 1

METHO’ / ‘ Eg
E@* .- @ Pl

PROCESS LOG

l Retrieving actual data from the related sources into temp data tables l

STAGE 2

| Determine neighbor stops, POI stops and stop lines

STAGE 3

l Determine the accessible transfer centers ‘

STAGE 4

Route planning between all transfer center pairs
e 202

STAGE 5

I Replace the temp data tables with the persistent tables I

Figure 4.1 IJPS Data Collection and Integration Tool.

Service process starts with the creation of the temporary tables that contain the
data to be updated. Current data is retrieved from related sources, verified and stored
into the temporary tables. Then, neighbor stops calculation is performed on
temporary stops table. After that, transfer centers that can be accessible by up to two

transfers are calculated for each stop. Paths between each transfer center pair, which

48

contain no transfer or one transfer are calculated and stored into the related tables
with path details. Finally, temporary data tables are replaced with the persistent ones.

General workflow of the Update Service can be seen in Figure 4.2.

Retrieving actual data from the related sources into temp data tables

Determination of neighbor stops

Determination of accessible transfer centers

Route planning preprocess between all transfer center pairs

Replacing the temp data tables with the persistent tables

Figure 4.2 Update Service work flow.

The total processing time of local service takes about 50 minutes on the database
server. The persistent data tables are not affected by the update operations until the

end of process and system keeps running consistently.

4.2.1 Updating Transportation Information

Transportation data is very changeable. New lines can be added, some current
lines can be removed or routes can be changed by the time. New stops can be added
to the current lines or some of them can be canceled. Even their locations or names
can be changed. As the same way, time tables of different types of vehicles change
independently. Thus, updating line, route and time table information periodically

from related resources is a necessity.

Bus, metro, train and ferry information and time tables are retrieved from
databases of ESHOT, METRO, IZBAN and {ZDENIZ respectively. Update process

49

starts at midnight. Firstly, all retrieved data is written into temporary data tables and
at the end of the operation, these tables are replaced with the persistent tables.
Agencies store transportation data in their own formats. All retrieved data are
integrated in a common format and stored in related data tables in accordance with
GTFS.

4.2.2 Determination of Neighbor Stops

In transportation graph, stops are connected with edges labeled with their common
lines. For example, two sequential stops of a bus line are connected with a directed
edge which is labeled with the line id. When planning an intermodal journey, it is a
realistic assumption not having a vehicle available everywhere along the journey. To
be able to make point to point queries in a transit network, some sort of foot-edges
are required, so any stage of the journey can be covered by foot or passengers may
walk along the stops while transferring between two different lines. Foot-edges are
also providing to link each of the transportation networks (bus, train, metro, ferry

etc.) into the resulting multi-modal network G.

Two stops u and v are labeled as neighbor stops by adding foot-edges between
them, if the road segment is available to pedestrians and dist(u,v) is less than
maximum walking distance. The m-nearest-neighbors of a stop are computed using
the Euclidean distance metric. If two stops u and v are determined as neighbor stops,
then (u,v) € E and (v,u) € E. Neighborhood determination for all stops is practiced

just after the update of transit data.

Train, metro and ferry stations are located further away from other stops when
compared to the bus stops. Because of this reason, all of the bus stops in 500 m range
of any train, metro or ferry stations are labeled as a neighbor.

Bus stops are close to the other bus stops compared by other stations (ferry, train,
and metro). Sometimes 100 m is sufficient for determination of neighbor bus stops.
Distance is increased up to 250 m when any neighbor bus stop could not be found in
100 m range, as can be seen in Figure 4.3. A stop is neighbor of a station as long as

50

the station is neighbor of the stop. If a stop in a transfer center is labeled as a

neighbor, all other stops placed in that transfer center are also labeled as neighbors

500 m =~

Figure 4.3 Distance ranges in determination of neighborhood.

4.2.3 Determination of Accessible Transfer Centers

The main transportation lines are train, metro and ferry in 1zmir. Passengers, who
use these lines, can transfer to a bus line to access their neighborhood. Currently,

there are 20 transfer centers located mostly around train, metro and ferry stations.
Distribution of these centers is shown in Figure 4.4.

NI Ay

Figure 4.4 Transfer centers in Izmir.

51

According to the new transportation logic implemented since June 2014 in Izmir,
a passenger who travels between two remote points, likely visits one or more of these
transfer centers. Our path finding algorithm uses this logic at a stage of route
calculation. Thus, determination of accessible transfer centers for each stop, is a
preprocess runs after the update of the transportation data. An accessible transfer
center for a stop means, at least one path which has up to two transfers, exists from
the stop to that transfer center. Under these conditions, there is no stop which does
not have an accessible transfer center in Izmir. This logic can be adapted to any
transportation network by determining transfer centers automatically considering
transportation infrastructure. Also, parent stations in GTFS format may cover

transfer centers.

4.2.4 Route Planning Preprocess Between All Transfer Center Pairs

When we examine routes between any two transfer centers in Izmir, it can clearly
be seen that, at least one route which has zero or one transfer, exists between them.
Path finding preprocess, calculates and records the available path between transfer

centers, to use them while planning the journey for user queries.

Transfer Center t; Transfer Center ¢;

4 N)

g AN _J

Figure 4.5 Path finding between two transfer centers.

Each transfer center is formed by one or more stops. The maximum stop count in
a transfer center is currently 34, in Izmir. If we refer the transportation graph as G

that consists of a set of transfer centers T and each transfer center has a set of stops S,

52

asetof paths P € s, € t; X s, € tj for every i and j (i #j and t;, t; € T) calculated
and stored into a database table. p € P is a path which has no transfer or only one

transfer. The illustration of this calculation is shown in Figure 4.5.

Path finding preprocess between transfer centers takes about 30 minutes on the
database server. Approximately 25800 paths are stored into the database.

4.3 Journey Planner Web Service

This service is a WCF web service and forms the core of the system. Each type of
the clients uses this service for path finding and some other methods. The main
method is the route finding method which takes the source and destination points and
the user preferences as parameters and returns the calculated routes ordered by
preferred criteria. This method is an implementation of the Gradual Path Finding

Algorithm which will be explained in Chapter 5 in detail.

The other methods are for retrieving POl and stop names according to the user
specified text, finding closed stops according to the given coordinate or named place,
calculation of the taxi toll, determination of POIs and social activities around a route
etc.

When the service is started, some frequently used data is loaded into the memory
statically. Timetables, line-stop list, stop and line information, transfer centers and
their stops, preprocessed routes between transfer centers and POIs are stored in static
data structures. Loading this data takes place at the start of the web service only once
in a day. All requests are answered using this data from memory without database

queries.

Journey Planner Web Service has been developed with Visual Studio 2010
development environment and C# language. All the methods which are exposed to
clients have been labeled by OperationContract attribute as shown in Figure 4.6.
DataContract attribute has been added to the class definitions and DataMember

53

attribute has been added to each member of the class which is wanted to be

” JourneyPlannerService - Microsoft Visual Studio Quick Launch (Ctrl+Q) A - O X
EILE EDIT VIEW PROJECT BUID DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
Q- B - W P GoogleChrome ~ Debug -~ A _ B&IME % % N =
-
Servi(el SVC.CS ~ Solution Explorer v B x g
*0 JourneyPlannerService IServicel ~|® RouteFindingAccordingToQueryType(string origin, string destination, bt 4 e-eudm 3
- o
#lusin + &
h € D —: Search Solution Explorer (Ctrl+s) P~
=Inamespace JourneyPlannerService & Solution JourneyPlannerService' (1 pro
{ 4 [JourneyPlannerService
/[NOTE: You can use the "Rename” command poi the "Refactor™ menu to change the interface name "IServic b % Properties
[ServiceContract] p = References
= public interface IServicel & App Data
{ b o IServicel.cs

[OperationContract]
List<Path> RouteFindingAccordingToQueryType(string origin, string destination,
bool bus, bool ferry, bool train, bool metro, bool walk,
int maxWalkDistance, string date, string time, short preferedSortld, short queryTypeld);

€ Line.cs

< QracleDataAccess.cs
€ Parameters.cs

¢ PathDetail.cs

€ POIDetail.cs

< PriorityQueue.cs

b
b
b
2
[OperationContract] b
2
b ® Servicelsvc
2
b
2
b
2
b
2

List<Path> TestRouteFindingAccordingToQueryType();

[OperationContract]
List<POICategory> GetPOICategories();

< SortingPreferences.cs
© SglDataAccess.cs

& Stop.cs

© StopNode.cs

< Transition.cs

[OperationContract]
ResultPOIs GetPOIByName(string name, int languageId, int lineCount, int pageNumber);

€ UlHelper.cs
© VehicleType.cs
b 8 Web.config

[OperationContract]
List<POI> GetPOIByStops(string stoplist, int languageld);

[OperationContract]
List<POI> GetPOIByStopsAndCategories(string stopList, string categorylList, int languageld);

[OperationContract]
List<POI> GetPOIByStopsAndSubcategories(string stopList, string subCategoryList, int languageld);

[OperationContract]

ResultStops GetStopsByMame(string stopMame, int lineCount, int pageNumber); =M< »
100% =~ 4 > Solution Explorer | Team Explorer
Error List
Ready nl Col 1 Ch1l INS

Figure 4.6 Development environment of Journey Planner Web Service.

4.3.1 Service Methods

Several methods have been implemented within Journey Planner Web Service. A
few of them are exposed to the clients. The rest of them are the inner methods
composed of implementation of business logic. The most important method is the
route finding method which takes the origin and destination points and the user
preferences as parameters and returns the calculated routes ordered by preferred
criteria. This method calculates the routes by using the Gradual Path Finding

Algorithm.

The route finding method takes 12 parameters whose values are gathered from the

user. These parameters are listed below:

54

e Origin and Destination: These parameters are the string values in one of the
three types of location identifier. Origin and Destination values can be a POl id,
“” separated geographical coordinates (Example:
27.0353609432423|38.3929550089826) or “.” separated stop ids (Example:
13016 or 10002.10005.10006.10007).

e Bus, ferry, train, metro, walk: These parameters specify whether to use the
related type of transportation for journey planning.

e Max Walk Distance: It gives the maximum distance that a user can walk from
the origin to first stop, from last stop to destination or between transfer points.
This variable takes a value between 0 and 500 m.

e Date and Time: These values specify the desired date and time to begin the
journey. Currently, date represents only day of the journey. It takes a numeric
value from 1 to 7 corresponding Monday to Sunday.

e Prefered Sort Id: It can take three different values from 1 to 3 where 1 for least
transfer, 2 for fastest and 3 for cheapest.

e Query Type Id: It is a numeric value which is used to identify the types of the
origin and destination parameters. Table 4.1 represents the values that this

parameter can take according to the type of the origin and destination point.

Table 4.1 Query types according to the origin and destination parameters.

Query Type Id | Origin Destination
1 POI POI
2 POI Stop
3 POI Location
4 Stop Stop
5 Stop POI
6 Stop Location
7 Location Location
8 Location POI
9 Location Stop

55

Route finding method has a return type of List<path>. This list contains up to 10

results.

The other methods are for retrieving POl and stop names according to the user
specified text, finding the closed stops according to the given coordinate or named
place, calculation of taxi prices, determination of POIs and social activities around a

route etc.

4.3.2 Testing the Web Service

The quickest and easiest way to test service methods is to use the WCF Test
Client application. The WCF Test Client displays the service and its methods
(service operations). To call a service, it must be hosted. When F5 is pressed, the
WCF Service Host application starts and hosts the service.

By double clicking a method, the Request section pane that contains the requested
parameters and the Response section pane appear as given in Figure 4.7. By clicking
Invoke button, the service method is invoked and response message is returned by

the service.

B WCF Test Client] (S e
File Tools Help
= My Service Projects RouteFindingAccordingToQuery Type |
E|--E_® http:/flocalhost62632/Servicel.sve
=2 1Senice1 (BasicHtpBinding_IServiceT) Request
D RouteFmdingAFcordmgToOueryTypeO Name Value Type
® TestRouteFindingAccordingToQueryTyp . I System.St
@ GetPOICategories() ongn (nult) ystem-=tring
© GetPOIByName() destination (nully System String
@ GetPOIByStops() bus False System.Boolean
~@ GetPOIByStopsAndCategories() ferry False System Boolean
@ GetPOIByStopsAndSubcategories() train False System Boolean
0 GetStopsByNameOI metro False System Boolean
@ GetTaxiTollByLocation() K Fal Systom Boal
-@ GetTaxiTollByStops() wa ase ystem.Boolean
-0 Config File maxWalkDistance 0 System Int32
date (null) System.String
time: (nully System String
preferedSortld 0 System.Int16
queryTypeld 0 System_Int16
B [7] start & new proxy Invoke:
Name Value Type
] I b ||| Formatted | XML
Service added successfully.

Figure 4.7 WCF Test Client window.

56

When developing Journey Planner Web Service, testing it with the WCF Test
Client was not sufficient and effective. Using a graphical user interface simplifies the
test procedure to send parameters. Also a visual user interface simplifies the
understanding of the results. For these reasons, a windows form application has been
developed to be used in developing process of the service. The application has been
developed with Visual Studio 2010 development environment and C# language. This
application was used for invocation of the service and representation of the results
that were returned by the service. After the development of the web application, the

task of testing has inherited to this web application from the windows application.

mg . DPS:. lNTELL\GENTJOURNE‘{ PLANNER SYSTEM == \ﬂ =

;i@

Origin

ll *) By Location

L8] o

| 38417166

27.127283| | >> 10001-Bahribaba

Q) By Name
havalimani

Destination
® By Location
38.376628

27.191623| | >> 40088-Begos -

O} By Name
goztepe

Stop ID Stop Name

Stop ID Stop Name
113015 \ Havalimani Dig Hatlar Gidis | 10292 Goztepe Stadi
[13016 Havalimani Dig Hatlar Gelis 50672 Goztepe
50673 Goztepe

100046
[1000315

Goztepe
Goztepe

11

41

Vehicle Types

[v] Train g
i

[¥] Metro a

. &

[Vl Ferry v

[¥] walk A

Sorting Criteria

[) Lowest Fare

Max Walk Distance
Between Transfers

Departure Time

Date Pazartesi v

Time 12:00:00 B~

Plan Journey !/’

Figure 4.8 Windows application developed to test Journey Planner Web Service.

Figure 4.8 shows the Windows application developed to test Journey Planner Web
Service. It has all the necessary interface components for gathering the journey
parameters from the user. Origin and destination points can be determined by

57

indicating the coordinates or typing the name of an important point or a stop. Usage
of bus, ferry, train, metro or walk, maximum distance to walk, date and time to start

journey, preferred sorting criteria are the other expected information to be filled by

the user.
Path 1: 202 D - 0 G
Path 2: 0 G - 200023 D - 0_G - 200031 G
Path 3: 0 G - 200023 D - -8 G - 20121 D - -1 G
Path 4: 200 D - 20921 G - -2 G - 200031 G
Path 5: 0 G - 200023 D - -2 G - 24901 G - -2 G - 200031 G
Path 6: 200 D - 20271 G - -17_G - 200031 _G
Path 7: 200 D - -2 G - 20351 G - -1 G - 200031 G
Path 8: 0 G - 200023 D - -2 G - 22851 G - 0_G - 200031 _G
Path 9: 200 D - 28871 G - 0 G - 200031 G
Path 10: 200 D - 21521 G - 0_G - 200031 G
Path 1
Sub Path 1
Id: O
Vehicle Id: 1
Vehicle: Bus
Line Id: 202
Line: 202-CUMHURIYET MEYDANI - HAVAALANI
Line Direction: D
Origin Stop Id: 13016
Origin Stop Name: Havalimani Dis Hatlar Gelis
Destination Stop Id: 10198
Destination Stop Name: Vali Konagi
Stop Count: 16
Time: 00:33
Distance: 20,58687km
Departure Times: 12:00 13:00 14:00
Sub Path 2
Id: 1
Vehicle Id: O
Vehicle: -
Line Id: O
Line: Walk

Line Direction: G

Origin Stop
Origin Stop
Destination
Destination
Stop Count:
Time: 00:05
Distance:

Total Distance:

Total Time:

Total Stop Count:

0,
Departure Times:

Id: 10198

Name: Vali Konadi

Stop Id: 1000315

Stop Name: Destination
1

4627119km
12:33

21,04959
00:38
17

Transfer Count: 0

Walk Count:

Total Walk Distance:
Total Walk Time:

Total Cost:

Departure Time:
Arrival Time:

1

0,4627119
00:05

1

12:00

12:38

Figure 4.9 Display of results gathered from the Journey Planner Web Service.

58

The test application outputs the results retrieved from the service to a text
document. Summary of the results is given at the beginning of the document and the
remaining part of the document consists of detailed results. Each path has one or
more sub paths. A sub path has several properties as vehicle type, line information,
origin and destination stops, stop count, travel time and distance, and departure
times. Total distance, time and stop count, transfer count, walk count, total walk
distance and time, total cost, departure and arrival times are the other features owned
by each path. Figure 4.9 gives a sample display of the results gathered from the
Journey Planner Web Service.

59

CHAPTER FIVE
GRADUAL PATH FINDING ALGORITHM

5.1 Overview

In scope of this thesis, we developed the Gradual Path Finding Algorithm (GPFA)
that produces alternative journeys by using the goal-directed speed-up technique. The
search is directed toward the target to obtain fewer transfer counts. Modified versions
of Dijkstra’s algorithm have been used in several stages of the algorithm. Detailed
implementation of GPFA will be explained in this chapter. First, our transportation

graph representation will be mentioned.
5.2 Representation of the Transportation Graph

In this study, each stop (bus, train, metro, ferry) is represented as a node and a line
connecting two consecutive stops in a certain direction is represented as a directed
edge to form a transportation graph. This graph is a directed graph as illustrated in
Figure 5.1.

Egg&:}‘s‘l e s Q s6

Figure 5.1 Illustration of a transportation graph.

Transportation graph differs from a traditional graph by having multiple edges
between any node pair. Each edge corresponds to different vehicles traveling
between two stops. Also, if two stops are in walking range, these two stops are

connected to each other with edges which are labeled as foot.
Foot edges connect the two nodes in two-ways. These edges are also used to

combine different vehicle graphs to obtain a complete transport network.

Transferring between different lines occurs by the help of foot edges.

60

The edge weights of vehicle edges are represented as average travel time to cover
the specified road segment. The average travel time is computed by using statistical
travel time of the road segment at time t. These statistics have been gathered from
KENTKART Company which operates the contactless cards in all modes of public
transportation in Izmir. The edge weights of the foot edges are computed by taking
the geographical length of the road segment and assuming an average walking speed

s of a pedestrian as 6 km/h.

Whole transportation graph of Izmir can be seen in Figure 5.2. Direction of edges
could not be specified because of the scale of drawing. As can be seen, node density
increases in city center and remote districts are connected to the center by several

transportation lines.

Figure 5.2 Izmir transportation graph.

Transportation graph has been implemented with two main classes: the Stop and

Transition classes which are given in Figure 5.3. Stops are associated with transitions

61

by InboundTransitions and OutboundTransitions lists. Transitions are associated
with stops by FromStop and ToStop references.

(Stop A
Class
= Fields
@ AccessibleTransferCenterDistances Hashtable P
@, AccessibleTransferCenters List<string>[,] | Transition A
@ InboundTransitions SortedList fes
@, Lines List<string>
= Fields
%, NeighborStopDistances List<double=
@, NeighborStops List<string > %, Direction string
@, OutboundTransitions SortedList @, Distance double
@, Stopld string <., FromStop Stop
@. StopName string @, Lineld string
@, VehicleTypeld short @, Time double
@, Xcoordinate double %, ToStop Stop
%, Ycoordinate double ®, VehicleType int
. \ y

Figure 5.3 Classes designed to construct transportation graph.

Each stop object corresponds to a node and each transition object corresponds to
an edge in a transportation graph. Multiple transitions can start and end in a stop as

exemplified in Figure 5.4.

Transition

Lineld: 104 (BUCA-KONAK)
Direction: Incoming
FromStop: 10036

ToStop: 10117

Distance: 0.959 km

Time: 00:02:20

=

Stop Transition Stop

Stopld: 10036 Lineld: 285 (EVKA-1 KONAK) StopId: 10117

StopName: Konak Direction: Incoming StopName: Hisardnii
VehicleTypeld: 1 - Bus FromStop: 10036 WVehicleTypeld: 1 - Bus
Lines: 104, 285 ToStop: 10117 Lines: 8, 35, 104, 285
NeighborStops: 10018, 10019 Distance: 0.959 km NeighborStops: 10061, 10063
Xcoordinate: 27.12726 Time: 00:02:20 Xcoordinate: 27.1323
Yeoordinate: 38 41643 Ycoordinate: 3§.4224

Figure 5.4 Transportation graph with stop and transition objects.

62

Static transportation data which forms the transportation graph is loaded into the
memory once to use during query execution. For each individual query, a new
projection graph is constructed by using static graph without any database queries.
The nodes of this graph have an id reference of corresponding stop object and extra
variables like minimumDistance and previousNode related with the implementation
of Dijksta’s Algorithm.

5.3 Gradual Path Finding Algorithm

Finding all possible paths between any two nodes in a graph with large number of
nodes is a classic example of problems in the field of computational complexity
theory. These type of problems require very large numbers of computations and
memory. Real-world implementations of journey planning algorithms involve a
tradeoff of computational resource between accuracy and completeness of the
answer, and speed of the results. Instead of finding all paths, dealing with just best k

path is the preferred technique in general.

In the k shortest paths problem, given a positive integer k>1, we are required to
find the k shortest paths from source node to destination node. In this study, we used
Dijkstra's algorithm for finding k shortest paths between any pair of nodes in directed
transportation graph with non-negative edge weights. Average travel time between
two consecutive nodes is used as edge weight. Pseudo code of Dijkstra’s algorithm is
given in Figure 5.5. The algorithm starts with a priority queue that contains only one
node, and inserts new nodes as they are discovered. Process continues with the
following steps:

e Step 1. Assign to every node a tentative distance value.

e Step 2. Set the initial node as current. Mark all other nodes unvisited.

e Step 3. For the current node, consider all of its unvisited neighbors and calculate
their tentative distances. Compare the newly calculated tentative distance to the
current assigned value and assign the smaller one.

e Step 4. When all of the neighbors of the current node are considered, mark the

current node as visited and remove it from the unvisited set.

63

e Step 5. If the destination node has been marked visited or if the smallest tentative
distance among the nodes in the unvisited set is infinity then stop. The algorithm
has finished.

e Step 6. Otherwise, select the unvisited node that is marked with the smallest

tentative distance, set it as the new "current node", and go back to Step 3.

Data: A weighted graph G = (V, E), s € V .and T € V.
Result: Shortest paths from s to all t € T.

for each vertex v in Graph:
dist[v] := infinity;
previous[v] := undefined;
end for

dist[source] := 0;
Q := the set of all nodes in Graph;

while Q is not empty:
u := vertex in Q with smallest distance in dist[];
remove u from Q;
if dist[u] = infinity:
break;
end if

for each neighbor v of u:
dist v := dist[u] + dist between(u, v);
if dist v < dist[v]:
dist[v] := dist v;
previous([v] := u ;
decrease-key v in Q;
end if
end for
end while

S empty sequence

u target

while previous|[u] is defined:
insert u at the beginning of S
u := previous[u]

end while ;

Figure 5.5 Pseudo code of Dijkstra's algorithm.

According to the transportation experts’ opinion, paths with less transfer are
almost always preferred by passengers. We developed the Gradual Path Finding
Algorithm that produces path primarily with less transfer and then according to other
selected criteria. The Gradual Path Finding Algorithm depends on a goal-directed
speed-up technique that directs the search toward the target t by preferring edges that
reach to t with fewer transfer counts and by excluding edges that cannot possibly
belong to a shortest path to t.

64

Path finding operation is completed in at most five stages. If necessary amount of
paths to achieve k-shortest paths could not be found, operation is preceded by the
next stage. Then, the stages for departure time calculation of produced paths, filtering
and ordering of the results are presented. Stages of Gradual Path Finding Algorithm
are given in Figure 5.6. Modified versions of Dijkstra algorithm are used in path
determination stages that contain one transfer, two transfers and n transfers (more
than two transfers). Detailed implementation of these modified versions will be

explained in the next sections.

Stage 1 - Finding direct routes (containing no transfer)

Stage 2 - Finding routes containing one transfer

Stage 3 - Finding routes containing two transfers

Stage 4 - Finding routes by transfer centers

Stage 5 - Finding routes containing n transfers

Stage 6 - Calculation of departure times

Figure 5.6 Stages of Gradual Path Finding Algorithm.

Before starting path finding process, origin stops Sp and destination stops Sp must
be determined. User can determine them by one of the three ways listed below.

e By stop name: An autocomplete list appears when the user types name of origin
and destination stops. Selected stop name can correspond to more than one stop
located closely. All of the stops with selected name and their neighbor stops
become origin stops or destination stops as well.

e By location: When user determines a location by using GPS or map, stops near
to that location are calculated by increasing the range until obtaining necessary
count of stops. Currently used range values are 150, 250, 400, 500, 750, 1000

meters and these range values are preferred by ESHOT.

65

e By POI: An autocomplete list appears when user types POl name. We obtain a

location by the selection of a POl and origin and destination stops are

determined as the selection of stops by location.

After determination of origin and destination stops, we may have multiple origin
stops and multiple destination stops. We reduce our problem to single source shortest

path problem by running algorithm for each origin stop to all destination stops.

Stop objects in other words nodes in graph have InboundTransitions and
OutboundTransitions lists that have been mentioned before. Origin Lines List is
obtained by using outbound transitions of origin stops and Destination Lines List is
obtained by using inbound transitions of destination stops. In the next sections we
will call origin stop list as Sp, destination stop list as Sp, origin lines list as Lo, and
destination lines list as Lp. Obtained routes are kept in Path objects. Path objects

have properties to store route details as can be seen in Figure 5.7. Each path object

has a SubPaths list to hold each part of a route.

| Path

Class

= Fields

Pathld : int

TotalDistance : float

TotalTime: string

WalkCount : int

TotalWalkDistance : float
TotalWalkTime : string

StopCount:int

TransferCount : int

DepartureTime : string

& ArrivalTime : string

Cost: float

SubPaths : List<SubPath>

Class

*

e rerrerrerrererrerrererrerREeREE

" SubPath

= Fields

SubPathld : int

Pathld : int

OriginStopld : string
DestinationStopld : string
Lineld : string

LineDirection : char
VehicleTypeld : int
TotalDistance : float
TotalTime : string
DepartureTimes : List<string>
DepartureTimesStr : string
StopCount : int
OriginStopName : string
DestinationStopName : string
LineName : string
VehicleTypeName : string

Figure 5.7 Classes designed to hold routes.

66

5.3.1 Finding Direct Routes

Direct paths which have no transfer are calculated by using origin lines list Lo,
and destination lines list Lp. For aline |, if | € Lo and | € Lp then we can say | is a
line that reaches to the destination from source with no transfer. A Path obtained in
this stage has only one SubPath which contains line I.

Each line that forms a direct path is stored in the used-line list Ly to prevent using
it in calculation of the paths containing transfer. Direct paths are obtained by using

static data without any database queries.
5.3.2 Finding Routes Containing One Transfer

In this stage of the algorithm, the aim is to find a path which starts with an origin
line and ends up in a destination line. Origin and destination lines must be connected

in a transfer stop or a walk must exist between two lines.

S1 |1 S3 |2 Sy

T W 5

S1 |1 |2 S2

e -

4

Figure 5.8 Illustration of the routes containing one transfer.

This stage of the algorithm runs once for each origin line. A modified version of
the Dijkstra's Algorithm is developed to obtain paths starting with an origin line and
ending up in a destination line. The algorithm allows starting with an origin line,
transferring to a destination line and arriving to a destination stop with this line as
illustrated in Figure 5.8. The rules are:

e l1ELg IhELp,

o I3, &Ly,

e S E So, Sp € Sp, and Sz, S4 €& So’ Sp.

67

for each node n in Graph:
-n.dist := infinity;
-n.previous := undefined;
end for

source.dist := 0;
Q := Priority queue according to distance;
enqueue source into Q;

while Q is not empty:
-u := node in Q with smallest distance
-remove u from Q;

—-for each outbound edge e of node u:

--v := node reachable from u with edge e;
--e.weight := infinity;

--if e.Line not in Ly:

---if u.previous != null:

----prev_e := edge used for reaching to u
----if prev_e.Line in Lp:

————— if e.Line = prev e.Line:

—————— e.weight := time of e;

—————— if e reaches a destination stop:

——————— e.weight := time of e;

—————— else if e.Line = prev_e.Line:
——————— e.weight:= time of e + transition cost;
—————— end if

————— else if e is foot-edge:

—————— e.weight := time of e + walk cost;
————— end 1if

----end if

-—--else // u.previous = null:

----if e.Line is 1:

————— e.weight := time of e;

--—-end if

---end if

--end if

-end for

—-for each outbound edge e of node u:
--v := node reachable from u with edge e;
--dist v := u.dist + e.weight;

--if dist v < v.dist:

---dequeue v from Q with key v.dist;
---v.dist := dist v;

---v.previous := u;

---enqueue v into Q with key wv.dist;
--end if

-end for

end while

S := empty sequence

u := target

while u.previous is defined:
-insert u at the beginning of S
-u := u.previous

end while

Figure 5.9 Pseudo code of the modified Dijkstra's Algorithm for the routes that contain one transfer.

68

In this new algorithm, each node (stop) has a weight vector with the size of its
outbound line count. Opposite of a traditional graph, in our approach weight values
of edges are not known at the beginning of the process. Weight values are assigned
during the run of the algorithm according to the rules. Weights of the edges which do
not meet these requirements stay infinity. Minimum cost path that corresponds the
rules is obtained as a result and returned as a Path object. Pseudo code of the

algorithm is given in Figure 5.9.

This algorithm runs once for each start line . Two cost values transition cost and
walk cost are used in the algorithm. Transition cost is used to find paths with fewer
stops when walk cost is used to find paths with less walk. After finding a path with
one transfer, new paths are generated by replacing second line I, with its parallel
lines. Parallel line means, a line which passes from both |,’s first stop and last stop in
the produced path. Then parallel lines are added to the used-line list Ly, too. If
necessary count of path could not be found yet, algorithm runs for |, again to find an
alternative path without using I, and its parallel lines. This process continues until

producing k paths or a path with one transfer could not be found anymore.
5.3.3 Finding Routes Containing Two Transfers

If necessary count of paths (k paths) could not be found in the first two stages,
process continues with finding routes containing two transfers. At the beginning of
this stage, Previous Destination Line List Lp is constructed with the lines intersect
with a destination line at a stop directly or with a walk. The algorithm finds paths
which start with an origin line, continue with a previous destination line and end with
a destination line. Arbitrary lines can be connected at a transfer stop or a walk could

exist between two lines as illustrated in Figure 5.10. The rules are:

o LpﬂLo:(bandeﬂLD:(Z).
e l1ELg bELpIl3ELp,
e Iy, 12 13¢ Ly,

e S € So, S, € Sp, and ss, S4, S5, S ¢ So, Sp.

69

|1 S3 |2 S4 |3 Sy

N

'y
i
i

S |1 S3 Sy |2 S5 |3

»
L4

o
El
1

L
J,
=)
1
y

N
L4

S1 I1

S2
81 h S3 I, Sy S ls S
S2

mﬁm 2 m Ay B

o

Figure 5.10 Ilustration of the routes containing two transfers.

In this version of Dijkstra's Algorithm, each node has a transfer count property in
addition to distance property. Transfer count property is used to hold transfer count
of the minimum cost path of each node. Pseudo code of algorithm can be seen in
Figure 5.11.

After finding a path with two transfers, new paths are generated by replacing
second line I, with its parallel lines and then by replacing third line 15 with its parallel
lines. Then Iy, I3 and their parallel lines are added used-line list. If necessary count of
path could not be found yet, algorithm runs for |; again to find an alternative path
without using lines which are in used-line list. This process continues until producing

k paths or a path with two transfers could not be found anymore.

for each node n in Graph:
-n.dist := infinity;

-n.trCnt := 0; // Transfer Count
-n.previous := undefined;

end for

source.dist := 0;
Q := Priority queue according to distance;
enqueue source into Q;

Figure 5.11 Pseudo code of the modified Dijkstra's Algorithm for the routes that contain two transfers.

70

while Q is not empty:

-u := node in Q with smallest distance;

-remove u from Q;

-for each outbound edge e of node u:

--v := node reachable from u with edge e;

--e.weight := infinity;

--if e.Line not in Ly:

---if u.previous != null:

----prev_e := edge used for reaching to u;

--—-if e is a line:

————— if u.trCnt = 2 and e.Line = prev _e.Line:

—————— e.weight := time of e;

————— else if u.trCnt = 1 and e.Line != prev e.Line and e.Line in Lp:
—————— e.weight := time of e;

————— else if u.trCnt = 1 and e.Line = prev e.Line:

—————— e.weight := time of e;

————— else if u.trCnt = 0 and e.Line != prev e.Line and e.Line in Lp:
—————— e.weight := time of e;

————— else if u.trCnt = 0 and e.Line = prev _e.Line:

—————— e.weight := time of e;

-——-else // e is a foot-edge

————— if u.trCnt = 0 and prev e is a line:
—————— e.weight := time of e;

————— else if u.trCnt = 1 and prev e is a line:
—————— e.weight := time of e;

————— else e.weight:= infinity;

--—-end if

-—-else // u.previous = null:

--—-if e.Line is 1:

————— e.weight := time of e;

--—-end if

---end if

--end if

-end for

—-for each outbound edge e of node u:

--v := node reachable from u with edge e;
--prev_e := edge used for reaching to u;
--dist v := u.dist + e.weight;

--if dist v < v.dist:

---dequeue v from Q with key v.dist;

===y ,Clgt = clist Vg

---v.previous := u;

-——v.trCnt := u.trCnt;

---if e.Line != prev e.Line:

-——— v.trCnt := u.trCnt + 1;

---end if

---enqueue v into Q with key dist v;
--end if

-end for

end while

S := empty sequence;

u := target;

while u.previous is defined:
-insert u at the beginning of S;
-u := u.previous;

end while

Figure 5.11 Pseudo code of the modified Dijkstra's Algorithm for the routes that contain two transfers
(continued).

71

5.3.4 Finding Routes by Using Transfer Centers

If necessary count of paths which contain zero, one or two transfers could not be
found between source and destination stops, paths with more than two transfers must
be searched. Thanks to the traffic infrastructure in Izmir that a person making a trip
between two distant points likely will be visiting a transfer center. At this stage, the
aim is finding paths that contain more than two transfers and pass from at least one

transfer center.

Determination of accessible transfer centers for all stops and path finding
preprocess between each transfer center are the tasks accomplished by update service

as mentioned before.

Path finding process using transfer centers can be occurring in two cases. In the
first case, origin and destination stops have common accessible transfer centers. In
this case, paths with zero and one transfer are calculated between origin stop and
common transfer center firstly. If there is no path found, then paths with two
transfers are calculated. The same process is done between common transfer center
and destination stop. It does not be forgotten that a passenger can reach a transfer
center with maximum two transfers from any stop. P is the set of the paths found
between origin and transfer center and P, is the set of the paths found between
transfer center and destination as shown in Figure 5.12. Result set P is obtained with

cross production of P, and P,, wherep € P and p c P1x P».

Common Transfer
Center

By, P P, -
= =] =
-

Figure 5.12 Sample path between two stops through one transfer center.

Source Destination

In the second case covers the origin stops and destination stops that do not have
any common transfer center. Paths with zero and one transfer are calculated between

origin stop and their accessible transfer center T, and paths with two transfers are

72

calculated if necessary. The same is done for transfer center T, and destination stops.
Paths between two transfer centers are calculated and stored into the database by
Update Service. P, is the set of the paths found between origin and transfer center Ty,
P, is the paths between transfer center T, and transfer center T, stored in the database,
and Ps is the set of the paths found between transfer center T, and destination as
shown in Figure 5.13. In this case, result set P is obtained by cross production of P,

P,and P; where p € P and p € P1x Pyx Ps.
Source Transfer Center T, Transfer Center T, Destination

— P1 P, P3 —
> g i~ t
- -

Figure 5.13 Sample path between two stops through two transfer centers.

During cross production, if the destination stop of P, is different from the start
stop of P,, a walk is inserted between them. On the other hand, if last line of P is the

same as the first line of P,, then these two parts are combined.

5.3.5 Finding Routes Containing N Transfers

In the first three stages, paths having up to two transfers are obtained. In the
previous stage paths through at least one transfer center were obtained and these
paths could be containing more than two transfers. If k paths could not be produced
yet, another modified version of Dijkstra's Algorithm is used to find minimum cost
paths. The paths produced in this stage have more than two transfers. This modified
algorithm is given in Figure 5.14. Some constants are used to change behavior of the
algorithm. TransferCost is the constant value added onto the edge weight at each line
change. If the transferred line is not in the destination-line list Lp however in the
previous-destination-line list Lp, then coefficientl is added to the edge weight. If the
transferred line is neither in Lp nor in Lp, then coefficient2 is added onto edge
weight. coefficient2 > coefficientl and these values are determined according to the
edge weights in graph. WalkCost is added onto the weights of the foot-edges, so path

consisting less walk also has less cost.

73

for each node n in Graph:
-n.dist := infinity;
-n.previous := undefined;
end for

Q := Priority queue according to distance;
for each source stop s in Sg:

-s.dist := 0;

-enqueue s into Q;

end for

while Q is not empty:

-u := node in Q with smallest distance;

-remove u from Q;

-for each outbound edge e of node u:

--v := node reachable from u with edge e;
--e.weight := infinity;

--if e.Line not in Ly:

---if u.previous != null:

-—---prev_e := edge used for reaching to u
----if e is a line:

————— if e.Line != prev e.Line:

—————— if e.Line in Lp:

——————— e.weight := time of e + transferCost;
—————— else if e.Line in Lp:

——————— e.weight := time of e + trCost + coeffl;
—————— else e.weight := time of e + trCost + coeff2;

————— else // e.Line = prev_e.Line
—————— e.weight := time of e;

----else if e is foot-edge:

————— e.weight := time of e + walk cost;
----end if

-—--else // u.previous = null:
----e.weight := time of e;

---end if

--end if

-end for

—-for each outbound edge e of node u:
--v := node reachable from u with edge e;
--dist v := u.dist + e.weight;

--if dist v < v.dist:

---dequeue v from Q with key v.dist;
---v.dist := dist v;

---v.previous := u;

---decrease-key v in Q;

---enqueue v into Q with key dist v;
--end if

-end for
end while

S := empty sequence;

u := target;

while u.previous is defined:
-insert u at the beginning of S;
-u := u.previous;

end while;

Figure 5.14 Pseudo code of the modified Dijkstra's Algorithm for routes containing n transfers.

74

5.3.6 Calculation of the Departure Times

After we obtained k paths at the end of the first five stages, the stage of departure
time calculation begins. System offers three departure times for each route according
to the journey start time. Calculation of the departure times is illustrated in Figure
5.15. This example route has one transfer and starts with Line A and ends up with
Line B. If we suppose journey start time is determined as 10:30 by the user,

departure times are calculated as explained in below:

o If the user selected origin is not the first stop of Line A, leaving time of the
vehicle from the initial stop is calculated by going back, stop by stop. Average
travel time between each arbitrary stop pair is subtracted from the journey start
time. Average travel times are obtained from statistics according to the selected

time of day.

The time to leave from the initial stop of Line A, is obtained as 10:18:12 to be in
origin at 10:30.

o First three departure times after the time to leave initial stop are determined

and arrival times to origin are calculated for these three departures.

10:28:00, 10:40:00 and 10:52:00 are determined as departure times from initial
stop, and arrival times to origin for these three departures are obtained as 10:39:48,
10:51:48 and 11:04:01, respectively.

o Progress is advanced by starting from the origin and forwarding stop by stop
until arriving to the transfer stop. Average travel time between each arbitrary

stop pair is added to the origin’s first departure time.

A vehicle that is leaving from the origin at 10:39:48, arrives to the transfer stop at
10:46:14.

75

If the current sub path is not the final sub path, transfer stop is assumed as the
origin and arrival time to transfer stop is assumed as journey start time and steps 1, 2

and 3 are repeated until arriving to the destination.

.......

First Stop
of Line B

10:13:00
10:25:00
10:37:00

Last Stop
of Line A

AY
10:06:50

N
“ 11:12:33
~,

R 10:46:14

of Line A
10:18:12

10:28:00
10:40:00

10:52:00

Figure 5.15 Illustration of sample departure time calculation

While back warding to the initial stop of a line and subtracting average time
between stops in step 1, it is important to remember that the time may change to the
day before. In the same manner, while forwarding stop by stop and adding average
time between stops in step 2 and 3, it can be change to next day. In these two

situations, corresponding time tables are used.

5.3.7 Filtering the Alternatives

Gradual Path Finding Algorithm produces at least k paths. If k paths could not be
produced yet, algorithm continues with the next stage to produce at least k paths. The
number of the produced paths can be exceeding k by the paths produced at last stage.

Because, stages do not end when produced path count reaches to k.

76

The number of the paths returned by the Web Service is changeable and at most
equals to 10. For example, if the best path has no transfer or one transfer and the
second best path has three or more transfers, then only one result can be returned. In
Gradual Path Finding Algorithm, result paths are produced in ascending order by the
number of transfers. Then, the paths are ordered by the travel cost or time spent
according to the user's preference and best 10 of them are returned.

77

CHAPTER SIX
EXPERIMENTATIONS

6.1 Evaluation Measures

Success of the algorithm can be evaluated according to three different criteria.
Evaluation measures consist of accuracy and completeness of the answer,

computational resource usage, and the response time of the system.

Accuracy and completeness of the answer have been verified by the experts from
the transportation agencies, firstly. Some improvements have been taken into account
according to their feedback. The users of the system are still going to send their
feedbacks by using the applications in use. 1JPS is a live system which is being

improved.

Search space reduction of the path finding algorithm has been analyzed to
evaluate computational resource usage. Average response time of the algorithm

calculated by using the test dataset which will be explained in the next section.

6.2 Test Dataset

In order to verify the accuracy, reliability and consistency of the IJPS, a test data
table has been created. The necessary data has been collected by executing thousands
of sample queries. Origin and destination stops, total query execution time, produced
result count, time spent and count of the paths that are produced at each stage are the

properties recorded for each query.

All properties and some example tuples of the test data can be found in Figure 6.1.
From each first stop of all the available bus, train, metro, and ferry lines to each last
stop of the lines, a path finding query has been executed as shown in Figure 6.2. A
total of 96,107 query results have been recorded in to target the data table.

78

FERISTAH-PC\SQLEX...dbo.UPS_TST Test x

Testld Origi Destinati Time TotalPathCount DirectPathCount OneT Count TwoTi ount TransferCenterPathCount N hCount
1 13016 22192 00:00:00.6821581 3 3 0 13 0 0
2 13016 13015 00:00:009784421 10 1) 0 291 0
3 13016 100021 00:00:00.1099912 1 1 5 0 0 0
4 13016 100029 00:00:00.1788916 10 2 15 0 0 0
5 13016 1000232 00:00:00.1188485 4 2 3 0 0 0
6 13016 100024 00:00:009825712 1 2 2 40 0]
7 13016 1000312 00:00:00.3915519 8 0 12 0] 0
8 13016 1000315 00:00:04.8033591 10 1 3 88 0 0
TimeDirect TimeOneTransfer TimeTransferCenter TimeAktarmaMerkezli TimeNTransfers BusExist i i rryExist Distance
00:00:00.0066617 00:00:00.0426609 00:00:00.4514018 00:00:00.0000004 00:00:00.0000012 True True False True True 32,80415726
00:00:00.0000652 00:00:00.0256153 00:00:00.0875075 00:00:00.5399772 00:00:00.0000008 True True False False True 0,018788295
00:00:00.0001459 00:00:00.0786852 00:00:00.0000004 00:00:00.0000004 00:00:00.0000004 False True False False True 74,84560394
00:00:00.0002448 00:00:00.0949539 00:00:00.0000004 00:00:00.0000004 00:00:00.0000004 True True False False True 34,71960831
00:00:00.0000652 00:00:00.0511734 00:00:00.0000004 00:00:00.0000008 00:00:00.0000004 True True False False True 3,792606592
00:00:00.0002662 00:00:00.0377953 00:00:00.8531882 00:00:00.0000008 00:00:00.0000004 False True False False True 49,2746048
00:00:00.0000046 00:00:00.3429631 00:00:00.0000004 00:00:00.0000004 00:00:00.0000004 True True True False True 25,52355957
00:00:00.0000793 00:00:00.1220863 00:00:04.4679580 00:00:00.0000004 00:00:00 True True True False True 21,04958534

Figure 6.1 Example tuples of the test data.

vemiret
Sancam
Pagakoy
ishakgelebi
Ugpinar Saruhanl
Selimgahlar
Yenikoy Miitevelli
Muradiye OUZeloy Koldere
" Manisa
\ 3 Hacihaliller
Asagicobanisa
Karaoglanh

Turgt

 Grenfstiklal

Halilyl
sa

adiovacik

Armut|

Figure 6.2 First and last stops of the available bus (red), train (green), metro (yellow) and ferry (blue)
lines.

79

6.3 Search Space

In this section, we present an experimental study investigating the reduction of the
search space achieved by the modification on the Dijkstra’s algorithm. A sample
query for O-D pair “31770-Evka 3 Aktarma Merkezi” and “40015-Buca Belediye
Saray1” is executed to evaluate the search spaces of the stages in which Dijkstra’s
algorithm is used. In Stage 1, memory look-ups are sufficient to find the direct
routes. In Stages 2 to 5, Dijkstra’s algorithm is used with different modifications.

The implementation details of the algorithms have been given in Section 5.3.
While the algorithm is limited to find only the paths containing one transfer in Stage
2, it is limited for the paths containing two transfers in Stage 3. Shortest paths
through the nearest transfer centers are searched in Stage 4. In Stage 5, there is no
transfer count or transfer center restriction and the algorithm is modified to find the

shortest paths with the minimum number of transfers and walk as possible.

Table 6.1 shows the visited edge counts for the modified Dijkstra’s algorithms
used in Stages 2-5. Visited edge counts are increasing over the upper stages of the
algorithm. Increase in the number of visited edges also increases the runtime of the

algorithm. Runtimes will be discussed in the next section.

Table 6.1 Visited edge counts for the modified and Pure Dijkstra’s algorithms

Visited Edges All Edges Ratio %
Stage 2 364 1.32
Stage 3 2,169 7.89
Stage 4 5,833 27,506 21.21
Stage 5 21,288 77.39
Pure Dijkstra’s Alg. 27,464 99.85

80

A large scale and zoomed visualizations of the search spaces corresponding to the
sample query and the optimal paths obtained in Stages 2, 3, 4 and 5 are given in
Figure 6.3, 6.4, 6.5 and 6.6, respectively. Black colored lines indicate the traversed

edges and the red colored ones show the optimal path obtained.

Figure 6.3 A visualization of the search space for Stage 2.

The rules applied in Stage 2 reduce the search space by restricting the traversal of
the nodes corresponded to the stops of the origin lines and the destination lines. In
stage 3, the search space is reduced to the nodes corresponded to the stops of origin
lines, destination lines and the lines connected to them. Reducing this large search
space such these extents makes an essential sense on the performance of the

algorithm.

Figure 6.4 A visualization of the search space for Stage 3.

81

Figure 6.5 A visualization of the search space for Stage 4.

Because the transportation graph is a multi-graph, some u,v node pairs have
multiple edges connected to them. Figure 6.6 shows a visualization of the search
space for Stage 5. It seems that, the algorithm searches the whole graph, but indeed it
only visits 77.39% of all the edges. Visited edges put unvisited parallel edges out of
sight.

Figure 6.6 A visualization of the search space for Stage 5.

82

Goal-directed search is a very useful technique for transportation networks as it
simply modifies the edge weights on-the-fly and reduces the search space of the
Dijkstra’s algorithm, by decreasing the number of the visited nodes and edges.
Actually, we are able to reduce the search space to 1.32%, 7.89%, 21.21%, and
77.39% for Stages 2-5, respectively while Pure Dijkstra’s Algorithm visits 99.85% of
all the edges.

6.4 Experimental Results

When we examine the query results recorded for the test dataset, some inferences
can be obtained. Detailed statistical information gathered from the query result is
given in Table 6.2. Executed query count, average runtime and average produced
result count are calculated for each stage.

Table 6.2 Average runtime and result counts for stages of the Gradual Path Finding Algorithm.

of queries that generate
result (Ratio to executed
queries in this stage %)

of executed queries Avg.
(Ratio to all queries %) runtime(s)

Avg.

Stage result count

96,107 (100.0%) 0.00005 15,738 (16.4%) 2.24
2 96,107 (100.0%) 0.08743 47,319 (49.2%) 20.46
3 66,500 (69.2%) 0.37313 47,434 (71.3%) 28.92
4 28,905 (30.1%) 0.77419 27,392 (94.8%) 949.27
5 777 (0.8%) 8.47079 91 (11.7%) 2.38

Stage 1 and Stage 2 have been executed for 100% of all the queries independent
from the result count. The operation has continued with Stage 3 for 69.2% of the
queries because of k-shortest path (k equals to 5 in this case) could not be found in
the first two stages. After Stage 3, 30.1% of the queries has been processed in Stage
4 to achieve k-shortest path (k equals to 5 in this case, too). Only 0.8% of the queries
that could not produce at least 3 paths have been continued with Stage 5 as can be
seen in Figure 6.7. Executed stage count differs for each query. Approximately 30%
of all the queries end in the first two stages while approximately 70% of them end in

the third stage.

83

% B Percentage of executed queries

100
90
80
70
60
50
40
30
20
10
00 T T T T

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 6.7 Percentages of executed queries for all stages.

In the first four stages average runtimes have been observed under 1 second. But
in Stage 5, average runtime has been observed as 8.47 s as shown in Figure 6.8. The
fact under that is the similarity of the modified Dijkstra’s algorithm used in Stage 5
with the pure Dijkstra’s algorithm. It should be noted that all runtimes contain
several runs of modified Dijkstra’s algorithms. How many times Dijkstra’s algorithm
run depends on the origin stop count and the origin line count which are explained in
Chapter 5.

Sec. == Average Run Time

9

8) 4

7 /

6 /

5 /

s /

3 /

2 /

1 7

0 * ———— . .
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 6.8 Average runtimes for all stages.

84

=—¢— Average Result Count

1000
900

R
800 / \
0o /—\
500 / \
200 / \
100 / \
0 * e \

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 6.9 Average result counts for all stages.

In stage 1, 2.24 direct paths have been produced by memory look-ups without
using Dijkstra’s algorithm. In stage 2 and 3 modified Dijkstra’s algorithms produced
20.46 and 28.92 result paths in average, respectively. Figure 6.9 shows the average
result count graph for all the stages. A pick point attracts the attention as the result
count obtained in Stage 4. The average result count obtained in this stage is observed

as 949.27, thanks to the cross production of the paths found for each route segments.

When we look at the overall picture, 1JPS produces accurate results for all the

queries in an acceptable response time for the users of the system, as we target.

85

CHAPTER SEVEN
CONCLUSION

7.1 Conclusion

In this thesis, we have designed and implemented the service-oriented and inter-
model Intelligent Journey Planner System to assist travelers for planning their
journey. There are various alternative sources of transportation and it is not easy to
integrate information from these diverse sources to plan a journey. In many countries
and cities, journey planning systems are in use. But, at the beginning of this study,
there was no such a service in Izmir. A system that assists people in making better
use of public transportation was a necessity. Now, 1JPS supplies information about
urban transportation for domestic and foreign visitors in Izmir. So those, passengers
can minimize the cost of their journeys and save travel time. In this study, we also
aimed to reduce dependence on the car and encourage greater use of public transport.
Another purpose was to reduce noise and carbon dioxide emissions, and avoid traffic

jump and congestion by promoting passengers to public transport.

IJPS advices alternative routes, transfer details, departure and arrival times
according to the user’s choice for any determined origin—destination point. The
system produces optimal routes according to multiple criteria like preferred mode,
maximum distance to walk, least changes, shortest travelling time or lowest fare. The
IJPS runs on different kinds of platforms to provide wide range of usage at anytime
and anywhere. Specific applications have been developed for iOS, Android and
Windows Phone mobile operating systems. In addition to these mobile applications,
a mobile web application is available for the remaining mobile platforms which are
not commonly used. Web application module of IJPS has been designed in
accordance with all common web browsers. IJPS is available in both English and
Turkish.

In order to create a more social and intellectual community, citizens should be

aware of the social activities and events in the city. To this end, IJPS informs the

86

users about activity centers and events on the route. User can display selected path,
point of interests, activity centers and events on the map. Weather forecast, traffic
and road condition, and approximate taxi fare are other informative details produced
by the 1JPS. Also, another objective of this study is to increase the use of technology

anywhere anytime in the public by especially supporting mobile platforms.

In scope of this thesis, two main services and some auxiliary services have been
developed. The Update Service has been developed as a windows service
application. The Journey Planner Web Service and other auxiliary services have been
developed as WCF web services. Update service is a windows service application
that runs automatically on the database server every night to collect actual data from
transportations agencies. After the update of the transportation data, some
preprocessing tasks are executed by the Update service. The Journey Planner Web
Service forms the core of the IJPS. Client applications use this service for path
finding. The main method is the route finding method which takes the source and
destination points and the user preferences as parameters and returns the calculated

routes ordered by the preferred criteria.

Route finding problem in a complex multi-model network is one of the most
studied areas and still needs to be improved. While planning a route in such a
combined network, some constraints as switching the mode of transportation
frequently or unacceptable transfer counts must be considered and producing an
undesired path should be avoided. Dijkstra's algorithm forms the basis of the modern
journey planner search algorithms and provides an optimal solution to simple
searches. In this thesis, we propose a new path finding algorithm named the Gradual
Path Finding Algorithm. Modified versions of the Dijkstra’s algorithm are used in

several stages of the algorithm.

During the last years, the GTFS has become the most popular format to describe
static schedule data of transit networks. Both official and user-generated feeds are
available for many transit agencies around the world. Relying on a common data

format makes an application could work in all transit systems for which open transit

87

data has been released and a common data is available to any developer to use.
Therefore, 1JPS stands on the GTFS format. An application has been developed to
load any GTFS feed into the IJPS database system and to convert Izmir transport
data into the GTFS format. One of the practical results of this study is the GTFS feed

for lzmir.

In order to verify the accuracy, reliability and consistency of the I1JPS, a test data
table has been created. The necessary data has been collected by executing thousands
of sample queries. Experimental studies showed that visited edge counts are
increasing over the upper stages of the algorithm. Increase in the number of visited
edges also increases the runtime of the algorithm. In the first four stages runtimes
have been observed under one second. But in Stage 5, average runtime has been
observed as 8.47 s. The fact under that is the similarity of the modified Dijkstra’s
algorithm used in Stage 5 with the pure Dijkstra’s algorithm. Edge weights have
been assigned on-the-fly and the search space of Dijkstra’s algorithm has been
reduced by decreasing the number of visited nodes and edges. The reduced search
spaces have been observed as 1.32%, 7.89%, 21.21%, and 77.39% for Stages 2-5
respectively while Pure Dijkstra’s Algorithm visits 99.85% of all edges.

7.2 Future Works

IJPS is a flexible system which can include any other public transportation mode.
In future, new transportation modes that will be operated in 1zmir can be integrated
into the system. Also, the IJPS can be experimented in any other city. Performance of
IJPS can be increased by combination of other multi-model speed-up techniques.
Applications are going to be upgraded by the new versions of the mobile platforms.

88

REFERENCES

Antrim, A., & Barbeau, S. J. (2013). The many uses of GTFS data — Opening the
door to transit and multimodal applications. ITS America's 23rd Annual

Meeting & Exposition, Nashville, Tennessee.

Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M. V., & Wagner, D.
(2008). Engineering label-constrained shortest-path algorithms. 4th
International Conference of Algorithmic Aspects in Information and

Management, Shanghai, China, 23-25.

Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., & Wagner,
D. (2010). Combining hierarchical and goal-directed speed-Up techniques for
Dijkstra’s algorithm. ACM Journal of Experimental Algorithmics, 15 (2.5), 1-
31.

Bellman, R. (1958). On a routing problem. The Quarterly of Applied Mathematics,
16, 87-90.

Brander, A. W., & Sinclair, M. C. (1995). A comparative study of k-shortest path
algorithms. 11th UK Performance Engineering Workshop, 370-379.

Brodal, G. S., & Jacob, R. (2004). Time-dependent networks as models to achieve
fast exact time-table queries. 3rd Workshop on Algorithmic Methods and
Models for Optimization of Railways, Electronic Notes in Theoretical Computer

Science, Elsevier, 92, 3-15.

Delling, D., Holzer, M., Miiller, K., Schulz, F., & Wagner, D. (2006). High-
performance multi-level graphs. 9th DIMACS Implementation Challenge, 52-
65.

Delling, D., Sanders, P., Schultes, D., & Wagner, D. (2009). Engineering route
planning algorithms. Algorithmics of Large and Complex Networks, Springer,
Berlin, 117-139.

89

Delling, D., Pajor, T., & Wagner, D. (2009). Accelerating multi-modal route
planning by access-nodes. 17th Annual European Symposium on Algorithms
(ESA°09), Lecture Notes in Computer Science, 5757, 587-598.

Dibbelt, J., Pajor, P., & Wagner, D. (2012). User-constrained multi-modal route
planning. 14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12), 118-129.

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1 (1), 269-271.

Disser, Y., Miiller-Hannemann, M., & Schnee, M. (2008). Multi-criteria shortest
paths in time-dependent train networks. 7th International Workshop on

Experimental Algorithms, Lecture Notes in Computer Science, 5038, 347-361.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5
(6), 345.

General Transit Feed Specification Reference (2007). Retrieved April 8, 2013,

from https://developers.google.com/transit/gtfs/reference.

Goldberg, A. V., & Harrelson, C. (2005). Computing the shortest path: A* search
meets graph theory. 16th Annual ACM- SIAM Symposium on Discrete
Algorithms (SODA’05), 156-165.

Goldberg, A. V., & Werneck, R. F. (2005). Computing point-to-point shortest
paths from external memory. 7th Workshop on Algorithm Engineering and
Experiments (ALENEX’05), 26—40.

Google Transit (2011). Retrieved May 14, 2013, from
http://maps.google.com/intl/en/landing/transit/#mdy.

GTFS-realtime Reference (2011). Retrieved April 8, 2013, from

https://developers.google.com/transit/gtfs-realtime/reference.

90

Hadjiconstantinou, E., & Christofides, N. (1999). An efficient implementation of
an algorithm for finding K shortest simple paths. Networks, 34 (2), 88-101.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2), 100-107.

Hoffman, W., & Pavley, R. (1959). A method for the solution of the nth best path
problem. Journal of the Association for Computing Machinery (ACM), 6, 506—
514.

Holzer, M. (2003). Hierarchical speed-up techniques for shortest-path algorithms.
Technical report, Departmaent of Informatics, University of Konstanz,

Germany.

Holzer, M., Schulz, F., & Wagner, D. (2006). Engineering multi-level overlay
graphs for shortest-path queries. 8th Workshop on Algorithm Engineering and
Experiments (ALENEX 06), Philadelphia, 156-170.

Holzer, M., Schulz, F., Wagner, D., & Willhalm, T. (2006). Combining speed-up
techniques for shortest-path computations. ACM Journal of Experimental
Algorithmics, 10 (2.5).

Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM, 24 (1), 1-13.

Katoh, N., Ibaraki, T., & Mine, H. (1982). An efficient algorithm for k shortest
simple paths. Networks, 12, 411-427.

Kirchler, D., Liberti, L., Pajor, T., & Calvo, R. W. (2011). UniALT for regular
language constraint shortest paths on a multi-modal transportation network.
11th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’11), 20, 64-75.

91

Lauther, U. (2004). An extremely fast, exact algorithm for finding shortest paths
in static networks with geographical background. Geoinformation und Mobilitat

- von der Forschung zur praktischen Anwendung, 22, 219-230.

Lawler, E. L. (1972). A procedure for computing the K best solutions to discrete
optimization problems and its application to the shortest path problem.
Management Science, 18, 401-405.

Martins, E., & Pascoal, M. (2003). A new implementation of Yen’s ranking
loopless paths algorithm. Quarterly journal of the Belgian, French and Italian
Operations Research Societies, 1 (2), 121-134.

Mendelzon, A. O., & Wood, P. T. (1995). Finding regular simple paths in graph
databases. SIAM Journal on Computing, 24 (6), 1235-1258.

Muller—Hannemann, M., & Schnee, M. (2007). Finding all attractive train
connections by multi-criteria pareto search. In Algorithmic Methods for

Railway Optimization, Lecture Notes in Computer Science, 4359, 246-263.

Muller-Hannemann, M., Schnee, M., & Weihe K. (2002). Getting train timetables
into the main storage. 2nd Workshop on Algorithmic Methods and Models for
Optimization of Railways (ATMOS 2002), Elsevier Electronic Notes in

Theoretical Computer Science, 66.

Muller-Hannemann, M., & Weihe K. (2001). Pareto shortest paths is often feasible
in practice. 5th International Workshop of Algorithm Engineering (WAE 2001),
Lecture Notes in Computer Science, 2141, 185-197.

Nachtigal, K. (1995). Time depending shortest-path problems with applications to
railway networks. European Journal of Operations Research, 83, 154-166.

Open Trip Planner (2009). Retrieved April 9, 2013, from
http://opentripplanner.org/

92

Orda, A., & Rom, R. (1990). Shortest-path and minimum-delay algorithms in
networks with time-dependent edge-length. Journal of the ACM, 37 (3), 607-
625.

Orda, A., & Rom, R. (1991). Minimum weight paths in time-dependent networks.
Networks, 21, 295-319.

Pohl, 1. (1969). Bi-directional and heuristic search in path problems. Technical

Report 104, Stanford Linear Accelerator Center, Stanford, California.

Pyrga, E., Schulz, F., Wagner, D., & Zaroliagis C. (2008). Efficient models for
timetable information in public transportation systems. ACM Journal of

Experimental Algorithmics, 12 (2.4).

Pyrga, E., Schulz, F., Wagner, D., & Zaroliagis C. (2004). Experimental
comparison of shortest path approaches for timetable information. 6th
Workshop on Algorithm Engineering and Experiments, 88—99.

Sanders, P., & Schultes, D. (2005). Highway hierarchies hasten exact shortest path
queries. 13th Annual European Symposium (ESA 2005), Lecture Notes in
Computer Science, 3669, 568-579.

Sanders, P., & Schultes, D. (2006). Engineering highway hierarchies. 14th Annual
European Symposium (ESA 2006), Lecture Notes in Computer Science, 4168,
804-816.

Schulz, F., Wagner, D., & Weihe, K. (2000). Dijkstra’s algorithm on-line: An
empirical case study from public railroad transport. ACM Journal of

Experimental Algorithmics 5, 12.

Schulz, F., Wagner, D., & Zaroliagis, C. (2002). Using multi-level graphs for
timetable information in railway systems. 4th Workshop on Algorithm
Engineering and Experiments (ALENEX), Lecture Notes in Computer Science,
2409, 43-59.

93

Services (2014). Microsoft Developer Network. Microsoft. Retrieved December
15,
2014, from:http://msdn.microsoft.com/enus/library/windows/desktop/ms685141
%28v=vs.85%29.aspx

The European Reference Data Model for Public Transport (2001). Retrieved Jun
19, 2013, from http://www.transmodel.org/.

The Open Transport Vocabulary (2014). Retrieved January 7, 2015, from
https://github.com/opentransport/vocabulary.

Turkish Statistical Institute (2013). Turkey's statistical yearbook. Retrieved
January 15, 2015, from http://www.tuik.gov.tr/Kitap.do?metod=KitapDetay&
KT_ID=0&KITAP_ID=1.

UML Diagram of the Google Transit Feed Specification (2007). Retrieved April 8,
2013,from:http://www.google.com/help/hc/images/transitpartners_1106431_obj

ecttablelarge_en.gif.
Warshall, S. (1962). A theorem on boolean matrices. Journal of ACM, 9, 11-12.

What Is Windows Communication Foundation (2014). Microsoft Developer
Network. Microsoft. Retrieved December 18, 2014, from
http://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx

Yen, J. Y. (1971). Finding the K shortest loopless paths in a network. Management
Science, 17, 712-716..

94

https://github.com/opentransport/vocabulary

