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ANALYSIS AND PROCESSING OF HISTOPATHOLOGICAL IMAGES 

 

ABSTRACT 

 

 Neuroblastoma (NB) is a cancer of nerve cell origin commonly affecting infants 

and children. For treatment planning of the tumor, histopathological examinations 

performed by expert pathologists are required to characterize the histology. This 

analysis guides the experts to determine the histological character stage and gives 

information about treatment methods.  

 

 Unfortunately, the qualitative visual examination performed by pathologists under 

the microscope is tedious and prone to error due to several factors. First, for NB 

diagnosis, pathologists typically pick some representative regions at lower 

magnifications (e.g. 2×, 4×) and examine only those regions. The final decision 

about the entire slide is based on these sampled regions. Although this approach 

provides accurate decisions, it may be misleading for heterogeneous tumors. Second, 

the resulting diagnosis varies considerably between different examiners. Experience 

and fatigue may cause variations among pathologists. 

 

 The purpose of this thesis is to develop an algorithm by using image processing 

and classification techniques and decrease the decision variations to the lowest level 

by simplifying the diagnosis for the pathologists as much as possible. For this goal, 

images belonging to the tissue samples of NB taken from the patient are examined 

histologically and analyzed. The images with different magnifications are captured 

by using the electron microscope. The percentage of neuropil is calculated and the 

tumor cells are determined by using these captured images. After the application of 

various image processing techniques, the feature matrices are created by using the 

extracted region and texture features. Then, via these feature matrices, classification 

of the cells are performed with the help of artificial neural networks (ANNs) and 

some other machine learning algorithms (ensemble methods). Depending on these 

classification results, mitosis karyorrhexis (MK) index and the grade of 

differentiation are determined. Thanks to these calculations, a computer-based tool is 
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provided to pathologists for determining the stage of NB disease from the tissue 

images.  

 

Keywords: Neuroblastoma, image processing, neural networks, Haralick texture 

features, ensemble methods, morphological operations, resampling methods, 

dimensionality reduction, cross validation, bootstrap. 
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HİSTOPATOLOJİK GÖRÜNTÜLERİN ANALİZİ VE İŞLENMESİ 

 

ÖZ 

 

 Nöroblastom çoğunlukla bebekleri ve çocukları etkileyen nöral hücre kökenli bir 

kanserdir. Tümörün tedavi planlaması için patologlar tarafından histopatolojik 

inceleme gerekmektedir. Bu histolojik analiz hastalık evresini tespit etmek ve tedavi 

yöntemleri hakkında bilgi vermek için uzman hekimlere rehberlik eder.  

 

 Ne yazık ki patologlar tarafından mikroskop altında yapılan nitel görsel inceleme 

uzun süren bir işlemdir ve çeşitli faktörlerden dolayı hata yapmaya yatkındır. 

Öncelikle, nöroblastom teşhisi için, patologlar genel olarak daha düşük büyütme 

oranlarında (2x, 4x, vs.) bazı belirgin bölgeleri alırlar. Tüm slayt hakkındaki son 

karar bu örnek bölgelere bağlıdır. Bu yaklaşım doğru karar verilmesini sağlasa da 

heterojen tümörler için yanıltıcı olabilir. İkinci olarak, son teşhis farklı kişilerin 

incelemesine göre önemli ölçüde farklılık gösterebilmektedir. Deneyim ve yorgunluk 

patologlar arasında önemli farklılıklara neden olabilir.  

  

 Bu tezin amacı, görüntü işleme ve sınıflandırma teknikleri kullanarak bir 

algoritma geliştirmek ve bu algoritma ile teşhisi patologlar için mümkün olduğunca 

kolaylaştırarak kişisel hataları en aza indirmektir. Bu amaçla, nöroblastom 

hastasından alınan doku örneğine ait görüntüler histolojik olarak incelenmekte ve 

analiz edilmektedir. Nöroblastom doku örneğinden elektron mikroskobu yardımı ile 

farklı büyütme oranlarında görüntüler alınmaktadır. Bu alınan görüntüler kullanılarak 

nöropil yüzdesi hesaplanır ve tümör hücreleri tespit edilir. Çeşitli görüntü işleme 

teknikleri uygulandıktan sonra resimlerden çıkarılan bölgesel ve dokusal öznitelikler 

ile öznitelik matrisleri oluşturulur. Daha sonra bu öznitelik matrisleri yapay sinir 

ağları ve diğer bazı otomatik öğrenme algoritmalarına giriş olarak kullanılarak 

hücrelerin sınıflandırılması sağlanmaktadır. Bu sınıflandırma sonuçlarına bağlı 

olarak mitosis karyoreksis (MK) indeksi ve diferansiyasyon derecesi 

hesaplanmaktadır. Bu sayede nöroblastom doku görüntülerinden hastalık safhası 

tespit edilerek patologlara yardımcı bir araç sağlanmaktadır.  
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Anahtar kelimeler: Nöroblastom, görüntü işleme, yapay sinir ağları, Haralick doku 

öznitelikleri, ensemble yöntemleri, morfolojik işlemler, yeniden örnekleme 

metodları, boyut azaltma, çapraz doğrulama, bootstrap. 
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CHAPTER ONE 

INTRODUCTION 

 

 

Through the increasing use of direct digital imaging systems for medical 

diagnostics, digital image processing becomes more and more important in health 

care. In addition to originally digital methods, such as Computed Tomography (CT) 

or Magnetic Resonance Imaging (MRI), initially analogue imaging modalities such 

as endoscopy or radiography are nowadays equipped with digital sensors. Digital 

images are composed of individual pixels, to which discrete brightness or color 

values are assigned. Based on digital imaging techniques, the entire spectrum of 

digital image processing is now applicable in medicine.  

 

 

    Figure 1.1 Modules of image processing (Deserno, T. M., 2011).  

 

The commonly used term biomedical image processing means the provision of 

digital image processing for biomedical sciences. In general, digital image 

processing covers four major areas: image formation, image visualization, image 

analysis, and image management as seen in Figure 1.1 (Deserno, T. M., 2011). 

 

Histopathological image analysis is an emerging field. It is becoming increasingly 

popular mostly due to the recent developments in the scanning technology, which 
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made it possible to digitize the whole tissue slides at high magnifications. However, 

there are several challenges ahead. The variations between samples of the same 

cancer type, either due to relatively distinct content or due to the slide preparation 

stages, make it difficult to develop adaptive and robust algorithms. Nevertheless, 

there are a number of computerized systems developed for several cancer types such 

as follicular lymphoma, prostate cancer, breast cancer, and neuroblastoma (Sertel, 

O., Catalyurek, U. V., Shimada, H., & Gurcan, M.N., 2009). 

 

Neuroblastoma (NB) is a tumor that begins in nerve tissues in the neck, chest, 

abdomen, adrenal gland, or pelvis. About 50% of neuroblastomas start in the tissues 

of the adrenal glands, located just above the kidneys. Often this tumor spreads before 

it is diagnosed. The common sites are the lymph nodes, liver, bones, and bone 

marrow. Neuroblastoma occurs in early childhood with 2/3 of the children younger 

than 5 years of age when they are diagnosed.  

 

The treatment depends on the extent and the nature of the tumor. Once a 

neuroblastoma is found, more tests are done to find out if it has spread to 

surrounding tissues or other parts of the body. This process is called staging. 

 

 Stage 1: Tumor confined to the organ or structure of origin. 

 Stage 2: Tumor extending beyond the organ/structure of origin, involving the 

lymph nodes on the same side of the tumor. 

 Stage 3: Tumor extends beyond the midline, involves the lymph nodes on 

both sides of the body. 

 Stage 4: Metastatic disease involving other parts of the body, especially the 

bones or bone marrow. 

 Stage 4S: In a child younger than 12 months when there is evidence of liver, 

lymph node, or marrow involvement associated with a primary tumor which 

is often quite small. 

Due to the large variation in neuroblastoma’s morphological structure, the 

prognosis of this disease is challenging and affects the treatment plan. In current 

clinical practice, neuroblastoma classification is carried out by highly trained 
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pathologists with visual examinations of pathological slides under the microscope 

according to the International Neuroblastoma Classification System developed by 

Shimada H., Ambros, I. M., Dehner, L. P., Hata, J., Joshi, V. V., Roald, B., Stram, D. 

O., Gerbing, R. B., Lukens, J. N., Matthay, K. K. & Castleberry, R. P. (1999a). The 

Shimada classification system uses morphological information such as presence and 

absence of Schwannian cell development, the relative count of tumor cells in mitosis 

and karyorrhexis.  

 

1.1 The Studies for Neuroblastoma Classification 

 

Generally, pre-processing, segmentation, post-processing, feature extraction, and 

classification are applied to analyze the histopathology image. Pre-processing and 

post processing are used for enhancement of the image. Segmentation is used for 

detecting cell nuclei or cell components. Feature extraction is for obtaining the 

properties of the cells or cell components and classification is used for analyzing the 

data.  

 

According to Shimada, et al. (1999a), neuroblastoma tissues are classified into 

two different subtypes. One of them is grade of differentiation (undifferentiated, 

poorly differentiated, well differentiated) and the other is mitosis karyorrhexis (MK) 

index (high, intermediate, low). There are different studies about classification 

methods of neuroblastoma tissues as seen below. The use of image processing 

methods simplifies and accelerates the analysis and prevents subjective results.   

 

An automated cell nuclei segmentation method is developed by Gurcan, M. N., 

Pan, T., Shimada, H. & Saltz, J. (2006). This method employs morphological top-hat 

by reconstruction algorithm coupled with hysteresis thresholding to both detect and 

segment the cell nuclei. Accuracy of the automated cell nuclei segmentation 

algorithm is measured by comparing its outputs to manual segmentation. The 

average segmentation accuracy is 90.24±5.14%. 

 

An automatic classification system is presented that includes a novel segmentation 

method using the Expectation Maximization (EM) algorithm with the Fisher-Rao 
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criterion as its kernel by Kong, J., Shimada, H., Boyer, K., Saltz, J. &  Gurcan, M. N. 

(2007b). This is followed by a classification stage with classifiers applied to the 

actual neuroblastoma images. The good classification accuracy suggests that the 

developed method is promising in automating this pathological assessment. 

 

Another method classifies the image either into low or high grades based on the 

amount of cytological components by Sertel, O., Kong, J., Lozanski, G., Shana’ah, 

A., Catalyurek, U., Saltz, J. & Gurcan, M. N. (2008a). To further discriminate the 

lower grades into low and mid grades, a novel color texture analysis approach was 

proposed. This approach modifies the gray level co-occurrence matrix method by 

using a non-linear color quantization with self-organizing feature maps (SOFMs). 

This is particularly useful for the analysis of Haematoxylin and Eosin (H&E) stained 

pathological images whose dynamic color range is considerably limited. 

Experimental results on real follicular lymphoma images demonstrate that the 

proposed approach outperforms the gray level based texture analysis. 

 

An image analysis approach that operates on digitized NB histology samples is 

proposed by Sertel, O., Catalyurek, U. V., Shimada, H. & Gurcan, M. N. (2009). 

Based on the likelihood functions estimated from the samples of manually marked 

regions, a probability map is computed that indicates how likely a pixel belongs to 

mitosis and karyorrhexis cells. Component-wise 2-step thresholding of the generated 

probability map provides promising results in detecting mitosis and karyorrhexis 

cells with an average sensitivity of 81.1% and 12.2% false positive detections on 

average. 

 

An image analysis system is proposed that operates on digitized H&E stained 

whole-slide NB tissue samples and classifies each slide as either stroma-rich or 

stroma-poor based on the degree of Schwannian stromal development by Sertel, O., 

Kong, J., Shimada, H., Catalyurek, U. V., Saltz, J. H. & Gurcan, M. N. (2008b). 

Their statistical framework performs the classification based on textural features 

extracted using co-occurrence statistics and local binary patterns. Due to the high 

resolution of digitized whole-slide images, a multi-resolution approach is proposed 
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that mimics the evaluation of a pathologist such that the image analysis starts from 

the lowest resolution and switches to higher resolutions when necessary. An offline 

feature selection step is employed, which determines the most discriminative features 

at each resolution level during the training step. A modified k-nearest neighbor 

classifier is used to determine the confidence level of the classification to make the 

decision at a particular resolution level. The proposed approach was independently 

tested on 43 whole-slide samples and provided an overall classification accuracy of 

88.4%. 

 

The development of a computer-aided system for the classification of grade of 

neuroblastic differentiation is developed by Kong, J., Sertel, O., Shimada, H., Boyer, 

K., Saltz, J. & Gurcan, M. N. (2007a). This automated process is carried out within a 

multi-resolution framework that follows a coarse-to-fine strategy. Additionally, a 

novel segmentation approach using the Fisher-Rao criterion, embedded in the generic 

EM algorithm, is employed. Multiple decisions from a classifier group are 

aggregated using a two-step classifier combiner that consists of a majority voting 

process and a weighted sum rule using priori classifier accuracies.  

 

The aim of this thesis work is to find the number of mitosis and karyorrhexis cells 

to determine MK index and the percentage of neuropil and differentiated cells to 

determine the grade of differentiation in the neuroblastoma images. When the desired 

input data is obtained, the stage of the illness is automatically and objectively 

determined at a relatively short processing time. 

 

1.2 Outline of the Thesis 

 

The remainder of this thesis is organized as follows. Chapter Two outlines the 

fundamentals of neuroblastoma disease. Chapter Three and Chapter Four present the 

theoretical background of image processing techniques that are used in this study and 

theoretical background on artificial neural networks, respectively. The details of all 

the developed algorithms in this study are given step by step in Chapter Five. The 

obtained results of the developed algorithms are discussed in Chapter Six. In Chapter 

Seven, the results of the thesis are discussed and our conclusions are given.
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CHAPTER TWO 

THEORETICAL BACKGROUND ON NEUROBLASTOMA  

 

2.1 Neuroblastic Tumors 

 

Tumors of the neuroblastoma group (neuroblastic tumors), defined as embryonal 

tumors of the sympathetic nervous system, derive from the neural crest and arise in 

the adrenal medulla, paravertebral sympathetic ganglia, and sympathetic paraganglia, 

such as the organ of Zuckerkandl. 

 

Neuroblastic tumors are assigned to one of four basic morphologic categories: 

neuroblastoma (Schwannian stroma-poor); ganglioneuroblastoma, intermixed 

(Schwannian stroma-rich); ganglioneuroma (Schwannian stroma-dominant); and 

ganglioneuroblastoma, nodular (composite Schwannian stroma-rich/stroma-

dominant and stroma-poor).  

 

2.1.1 Neuroblastoma 

 

Neuroblastoma (NB) is a cancer of nerve cell origin. It commonly affects infants 

and children. Based on the American Cancer Society’s statistics, it is by far the most 

common cancer in infants and the third most common type of cancer in children. As 

in most cancer types, histopathological examinations are required to characterize the 

histology of the tumor for further treatment planning. The World Health 

Organization recommends the use of the International Neuroblastoma Pathology 

Classification (the Shimada system) for categorization of the patients into different 

prognostic groups (Shimada, H., et al., 1999a, 1999b). 

 

 The grade of neuroblastic differentiation and mitosis karyorrhexis (MK) index are 

the most salient features that contribute to the final tissue classification as favorable 

and unfavorable histology. 

 

The neuroblastoma classification is shown in Figure 2.1. 
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     Figure 2.1 Neuroblastoma classification.  

 

2.1.1.1 Grade of Differentiation 

 

Neuroblastoma has three subtypes in terms of grade of differentiation; 

undifferentiated, poorly differentiated, and well differentiated as seen below. 

 

Undifferentiated Subtype: Neuropil absent; no tumor cell differentiation; diagnosis 

relies heavily on ancillary techniques, such as immunohistochemistry, electron 

microscopy, and/or molecular/cytogenetics (see Figure 2.2). 

 

 

 Figure 2.2 Neuroblastoma (Schwannian stroma-poor), 

undifferentiated subtype (Shimada, et al. 1999b). 

 

Poorly Differentiated Subtype: Neuropil background evident; 5% or fewer tumor 

cells show a feature of differentiating neuroblasts with a synchronous differentiation 

of nucleus (enlarged, vesicular, with a single prominent nucleolus) and cytoplasm 

Neuroblastoma 

 (Schwannian  

stroma-poor) 

Grade of 
Differentiation 

Undifferentiated 

Poorly Differentiated 

Well Differentiated 

Mitosis 
Karyorrhexis 

Index 

Low 

Intermediate 

High 
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(conspicuous, eosinophilic, or amphophilic, and 2 times larger in diameter than 

nucleus). The sample image of poorly differentiated subtype is shown in Figure 2.3. 

 

 

Figure 2.3 Neuroblastoma (Schwannian stroma-poor), poorly 

differentiated subtype, composed of undifferentiated 

neuroblastic cells with clearly recognizable neuropil (Shimada, 

et al. 1999b). 

 

Well Differentiated Subtype: More than 5% of tumor cells show an appearance of 

differentiating neuroblasts (may be accompanied by mature ganglion-like cells), and 

neuropil is usually abundant. Some tumors can show substantial Schwannian stromal 

formation, frequently at their periphery, and a transition zone between 

neuroblastomatous and ganglioneuromatous region can develop, although this zone 

does not have well-defined borders and comprises less than 50% of the tumor 

(Qualman, S. J., Bowen, J., Fitzgibbons, P. L., Cohn, S. L. & Shimada, H., 2005). 

The well differentiated subtype image is shown in Figure 2.4. 
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Figure 2.4 Differentiating neuroblasts in neuroblastoma 

(Schwannian stroma-poor), well differentiated subtype, 

showing synchronous nuclear and cytoplasmic differentiation 

(Shimada, et al. 1999b). 

 

2.1.1.2 Mitosis Karyorrhexis (MK) Index  

 

The MK index is the number of mitoses and karyorrhectic nuclei per 5000 

neuroblastic cells. It is a useful prognostic indicator for tumors in the neuroblastoma 

(Schwannian stroma-poor) category and should be determined as an average of all 

tumor sections available. 

 

(1) Low MK Index: Fewer than 100 mitotic and karyorrhectic cells/5000 tumor 

cells, or less than 2% of tumor consisting of mitotic and karyorrhectic cells 

(2) Intermediate MK Index: 100 to 200 mitotic and karyorrhectic cells/5000 tumor 

cells, or 2% to 4% of tumor consisting of mitotic and karyorrhectic cells 

(3) High MK Index: More than 200 mitotic and karyorrhectic cells/5000 tumor 

cells, or greater than 4% of tumor consisting of mitotic and karyorrhectic cells 

(Shimada, et al. 1999b). 
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CHAPTER THREE 

THEORETICAL BACKGROUND ON IMAGE PROCESSING TECHNIQUES 

 

3.1 Perception-Based Color Spaces 

 

Color spaces that are based intuitively on human color perception are of interest 

for the fields of computer vision and computer graphics. A color can be more easily 

described intuitively by values for hue, color saturation, and intensity than from 

vector components in the RGB (red, green, blue) or CMYK (cyan, magenta, yellow, 

black)  color space. 

 

3.1.1 HSV Color Space 

 

In the HSV color space, colors are specified by the components hue, saturation, 

and value. Hue, saturation, and brightness values are used as coordinate axes. By 

projecting the RGB unit cube along the diagonals of white to black, a hexacone 

results that forms the topside of the HSV pyramid. The hue H is indicated as an angle 

around the vertical axis. Red is determined with      or       , green with 

      , and so on (Figure 3.1). 

 

 

Figure 3.1 Hexacone representation of the HSV color 

space (Koschan, A. & Abidi, M., 2008). 

 

The saturation   is a number between 0 on the central axis (the  -axis) and 1 on 

the sides of the pyramid. For    ,   is undefined. The brightness value   lies 

between 0 on the apex of the pyramid and 1 on the base. The point on the apex of the 
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pyramid with     is black. At this point, the values of   and   have no 

significance. The lightest colors lie on the topside of the pyramid; however, not all 

colors with the same brightness are visible on the plane    .  

 

Figure 3.2 (a) shows a sample RGB image and Figures 3.2 (b) through 3.2 (d) 

show hue, saturation, and value channels of the HSV image, respectively. The HSV 

image is created by using rgb2hsv command in MATLAB. 

 

(a) (b)

(c) (d) 

Figure 3.2 (a) Original RGB Image (b) Hue channel of the HSV image (c) Saturation channel 

of the HSV image (d) Value channel of the HSV image. 

 

3.2 Segmentation 

 

Image segmentation is a broad and active field, not only in medical imaging, but 

also in computer vision and satellite imagery. Its purpose is to divide an image into 

regions which are meaningful for a particular task. Segmentation is an essential step 

prior to the description, recognition, or classification of an image or its constituents. 

There are two major approaches – region-based methods, in which similarities are 

detected, and boundary-based methods, in which discontinuities (edges) are detected 

and linked to form boundaries around regions.  
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Segmentation is the partitioning of an image into meaningful regions, most 

frequently to distinguish objects or regions of interest (foreground) from everything 

else (background). In the simplest cases, there would be only these two classes 

(foreground and background) and the segmented image would be a binary image. 

Segmentation is used, for example: for the detection of organs, such as the brain, 

heart, lungs, or liver in CT or MR images; to distinguish pathological tissue, such as 

a tumor, from normal tissue; and in treatment planning. Pseudocolor can be added to 

the original image based on the extent of the segmented regions (Figure 3.3). The 

most basic attribute used in defining the regions is image gray level or brightness, but 

other properties such as color or texture can also be used. Segmentation is often the 

first stage in pattern recognition systems; once the objects of interest are isolated 

from the rest of the image, certain characterizing measurements could be made 

(feature extraction), and this could be used to classify the objects into particular 

groups or classes. 

 

 

 Figure 3.3 A characteristic shading has been added to the brain following segmentation 

(Dougherty, G., 2009). 

 

3.3 Morphological Operators 

 

Morphological image processing is a tool for extracting or modifying information 

on the shape and structure of objects within an image. Morphological operators, such 

as dilation, erosion, and skeletonization are particularly useful for the analysis of 

binary images, although they can be extended for use with grayscale images as well. 

Morphological operators are non-linear. Their common usages include filtering, edge 

detection, feature detection, counting objects in an image, image segmentation, noise 

reduction, and finding the midline of an object. 
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There are a number of morphological operators, but the two most fundamental 

operations are dilation and erosion; all other morphological operations are built from 

a combination of these two. 

 

3.3.1 Dilation and Erosion 

 

In binary images dilation is an operation that increases the size of foreground 

objects, generally taken as white pixels, although in some implementations this 

convention is reversed. Figure 3.4 represents the dilation operation. 
 

 

 

   Figure 3.4 Dilation operation, (a) Original image, (b) After a single dilation, (c) After 

several dilations (Dougherty, G., 2009). 

 

Erosion is an operation that increases the size of background objects (and shrinks 

the foreground objects) in binary images. Figure 3.5 represents the erosion operation. 
 

  

 

  Figure 3.5 Erosion operation, (a) Original image, (b) After single erosion, (c) After two erosions 

(Dougherty, G., 2009). 

 

 

 

(a)                                                        (b)                                                        (c) 

(a)                                                                (b)                                                             (c) 
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3.3.2 Opening and Closing 

 

The combination of an erosion followed by a dilation is called an opening, 

referring to the ability of this combination to open up gaps between just-touching 

features, as shown in Figure 3.6. It is one of the most commonly used sequences for 

removing fine lines and isolated pixel noise from binary images. Performing the 

same operations in the opposite order (dilation followed by erosion) produces a 

different result. This sequence is called a closing because it can close breaks in 

features (Figure 3.6).  
 

 

Figure 3.6 Combining erosion and dilation to produce an 

opening or a closing (Russ, J. C., 2011). 

 

3.4 Feature Extraction 

 

In pattern recognition and image processing, feature extraction is a special form of 

dimensionality reduction. When the input data to an algorithm is too large to be 

processed and is suspected to be notoriously redundant, then the input data is 

transformed into a reduced representation set of features. Transforming the input data 

into the reduced set of features is called feature extraction. If the features extracted 

are carefully chosen, it is expected that the feature set will extract the relevant 

information from the input data in order to perform the desired task using this 

reduced representation instead of the full size input. 
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3.4.1 Low Level Feature Extraction 

 

Low-level features are those basic features that can be extracted automatically 

from an image without any shape information. The low-level features are edge 

detection, corner detection, motion detection, detecting image curvature, etc. as seen 

in Figure 3.7. 

 

 

 Figure 3.7 Low-level feature extraction (Nixon, M. S. & Aguado, A. S., 2002). 

 

3.4.2 Object Description 

 

Objects are represented as a collection of pixels in an image. Thus, for purposes of 

recognition we need to describe the properties of groups of pixels. The description is 

often just a set of numbers – the object’s descriptors. Using these, objects by simply 

matching the descriptors of objects in an image against the descriptors of known 

objects can be compared and recognized. However, in order to be useful for 

recognition, descriptors should have four important properties. First, they should 

define a complete set. That is, two objects must have the same descriptors if and only 

if they have the same shape. Secondly, they should be congruent. As such, we should 
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be able to recognize similar objects when they have similar descriptors. Thirdly, it is 

convenient that they have invariance properties. For example, rotation invariant 

descriptors will be useful for recognizing objects whatever their orientation. Other 

important invariance properties naturally include scale, position, and also invariance 

to affine and perspective changes. Table 3.1 presents the characterization of objects 

by two forms of descriptors (Nixon, M. S. & Aguado, A. S., 2002). 

 

Table 3.1 Object descriptors (Nixon, M. S. & Aguado, A. S., 2002). 

Object 

Description 

Shape 

Boundary 

Chain Codes 

Fourier Descriptors 
Cumulative Angular Function 

Elliptic descriptors 

Region 

Basic 

Area 

Perimeter 

Compactness 

Dispersion 

Moments 

First order 

Centralized 

Zernike 

 

3.4.3 Texture Description 

 

Texture is actually a very nebulous concept, often attributed to human perception, 

as either the feel or the appearance of (woven) fabric. Everyone has their own 

interpretation as to the nature of texture; there is no mathematical definition for 

texture, it simply exists. 

 

As an alternative definition of texture, it can be considered as a database of 

images that researchers use to test their algorithms. Many texture researchers have 

used a database of pictures of textures, produced for artists and designers, rather than 

for digital image analysis. Parts of three of the Brodatz texture images are given in 

Figure 3.8. 
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 Figure 3.8 Three Brodatz textures (Nixon M. S. & Aguado A. S., 2002). 

 

Clearly, images will usually contain samples of more than one texture. 

Accordingly, we would like to be able to describe texture (texture descriptions are 

measurements which characterize a texture) and then to classify it (classification is 

attributing the correct class label to a set of measurements) and then perhaps to 

segment an image according to its textural content. Basically, there are three 

approaches for deriving the features which can be used to describe textures. These 

can be given as follows; 

 Structural (transform-based) approaches 

 Statistical approaches 

 Combination approaches 

 

3.4.3.1 Statistical Approaches 

 

The most famous statistical approach is the co-occurrence matrix. This was the 

result of the first approach to describe, and then classify, image texture (Haralick, R. 

M., 1979). It remains popular today, by virtue of good performance. The co-

occurrence matrix contains elements that are counts of the number of pixel pairs for 

specific brightness levels, when separated by some distance and at some relative 

inclination. For brightness levels b1 and b2 the co-occurrence matrix C is 

 

       ∑ ∑ (       )  (         ) 
   

 
                             (3.1) 
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where the x co-ordinate    is the offset given by the specified distance d and 

inclination θ by 

 

         ( )       ,     ( )-      ,    -                  (3.2) 

 

and the y co-ordinate    is 

 

          ( )      ,     ( )-    ,    -                   (3.3) 

 

When Equation 3.1 is applied to an image, we obtain a square and symmetric 

matrix whose dimensions equal the number of grey levels in the picture. The co-

occurrence matrices for the three Brodatz textures of Figure 3.8 are shown in Figure 

3.9. The results for the two samples of French canvas in Figures 3.9 (a) and (b) 

appear to be much more similar and quite different than the co-occurrence matrix for 

beach sand in Figure 3.9 (c). As such, the co-occurrence matrix looks like it can 

better expose the underlying nature of texture than can the Fourier description. This 

is because co-occurrence measures spatial relationships between brightness, as 

opposed to frequency content.  

 

 

     (a) French canvas (detail)                 (b) French canvas                         (c) Beach sand 

Figure 3.9 Co-occurrence matrices of the three Brodatz textures (Nixon M. S. & Aguado A. S., 

2002). 

 

Haralick described 14 statistics that can be calculated from the co-occurrence 

matrix with the intent of describing the texture of the image. Table 3.2 shows 

Haralick’s features for textural analysis.  
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Table 3.2 Features in Haralick’s co-occurrence-based method for texture analysis (Boland M. V., 

1999).    

 Angular Second Moment ∑ ∑  (   )     

Contrast  ∑   {∑ ∑  (   )
  

   

  

   
}

    

    |   |     

Correlation ∑ ∑ (  ) (   )       
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Sum of Squares: Variance ∑ ∑ (   )  (   )    

Inverse Difference Moment ∑ ∑
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 (   )    

Sum Average ∑      ( )
   

   
 where x and y are the coordinates 
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HXY= ∑ ∑  (   )    ( (   ))   ,  

HX, HY are the entropies of    and   , 
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HXY2= ∑ ∑   ( )  ( )    {  ( )  ( )}   

Max. Correlation Coefficient Square root of the second largest eigenvalue of 

Q where  (   )  ∑
 (   ) (   )
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3.4.4 Dimensionality Reduction 

 

In machine learning, dimension reduction is the process of reducing the number of 

variables under consideration. Dimensionality reduction techniques can be divided 

into two groups as feature selection and feature extraction.  

 

3.4.4.1 Principal Component Analysis (PCA) 

 

Component analysis is the most popular feature extraction technique, especially 

PCA. Component analysis is an unsupervised approach to finding the ―right‖ features 

from the data. We discuss two leading methods (PCA and ICA), each having a 

somewhat different goal.  

 

In PCA, we seek to represent the d-dimensional data in a lower-dimensional 

space. This will reduce the degrees of freedom, reduce the space and time 

complexities. The goal is to represent data in a space that best describes the variation 

in a sum-squared error sense. In independent component analysis (ICA), we seek 

those directions that show the independence of signals. This method is particularly 

helpful for separating signals from multiple sources. As with standard clustering 

methods, it helps greatly if we know how many independent components exist ahead 

of time (Duda, R. O., Hart, P. E. & Stork, D. G., 2000). 

 

3.4.4.2 Feature Selection 

 

Feature selection is the technique of selecting a subset of relevant features for 

building robust learning models. Feature selection is a particularly important step in 

analyzing the data from many experimental techniques in biology, such as DNA 

microarrays, because they often entail a large number of measured variables 

(features) but a very low number of samples. By removing most irrelevant and 

redundant features from the data, feature selection helps improve the performance of 

learning models by: 
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 Alleviating the effect of the curse of dimensionality 

 Enhancing generalization capability 

 Speeding up learning process 

 Improving model interpretability. 

 

Feature selection also helps people acquire better understanding about their data 

by telling them which are the important features and how they are related with each 

other. 

 

Simple feature selection algorithms are ad hoc, but there are also more 

methodical approaches. From a theoretical perspective, it can be shown that optimal 

feature selection for supervised learning problems requires an exhaustive search of 

all possible subsets of features of the chosen cardinality. If large numbers of features 

are available, this is impractical. For practical supervised learning algorithms, the 

search is for a satisfactory set of features instead of an optimal set. 

 

Feature selection algorithms typically fall into two categories: feature ranking 

and subset selection. Feature ranking ranks the features by a metric and eliminates all 

features that do not achieve an adequate score. Subset selection searches the set of 

possible features for the optimal subset. 

 

In statistics, the most popular form of feature selection is stepwise regression. It 

is a greedy algorithm that adds the best feature (or deletes the worst feature) at each 

round. The main control issue is deciding when to stop the algorithm. In machine 

learning, this is typically done by cross-validation. In statistics, some criteria are 

optimized. This leads to the inherent problem of nesting. More robust methods have 

been explored, such as branch and bound and piecewise linear network. 
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CHAPTER FOUR 

THEORETICAL BACKGROUND ON ARTIFICIAL NEURAL NETWORKS 

 

4.1 Computational Models of Neurons 

 

McCulloch and Pitts proposed a binary threshold unit as a computational model 

for a neuron. A schematic diagram of a McCulloch Pitts neuron is shown in Figure 

4.1 (Jain, A. K., Mao, J. & Mohiuddin, K. M., 1996). 

 

 

   Figure 4.1 McCulloch-Pitts model of a neuron. 

 

This mathematical neuron computes a weighted sum of its n input signals, 

                and generates an output of 1 if this sum is above a certain threshold 

u, and an output of 0, otherwise. Mathematically,  

 

   (∑       )  
                                             (4.1) 

 

where   ( ) is a unit step function, and    is the synapse weight associated with the 

    input. For simplicity of notation, we often consider the threshold u as another 

weight       attached to the neuron with a constant input     . Positive 

weights correspond to excitatory synapses, while negative weights model inhibitory 

ones.  

 

The McCulloch-Pitts neuron has been generalized in many ways. An obvious one 

is to use activation functions other than the threshold function, such as piecewise 

linear, sigmoid, or Gaussian, as shown in Figure 4.2. The sigmoid function is by far 

the most frequently used in artificial neural networks (ANNs). The standard sigmoid 

function is the logistic function, defined by 
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 ( )  
 

      (   )
                                              (4.2) 

 

where   is the slope parameter. 
 

 

Figure 4.2 Different types of activation functions; (a) Threshold, (b) Piecewise linear, (c) Sigmoid, 

(d) Gaussian (Jain, A. K., Mao, J. & Mohiuddin, K. M., 1996). 

 

4.2 Network Architectures 

 

ANNs can be viewed as weighted directed graphs in which artificial neurons are 

nodes and directed edges (with weights) are connections between neuron outputs and 

neuron inputs. Based on the connection pattern (architecture), ANNs can be grouped 

into two categories (Figure 4.3): 

 

 feed-forward networks, in which graphs have no loops 

 recurrent (or feedback) networks, in which loops occur because of feedback 

connections 

In the most common family of feed-forward networks, called multilayer 

perceptron, neurons are organized into layers that have unidirectional connections 

between them. Figure 4.3 also shows typical networks for each category. 

 

(a)                            (b)                             (c)                             (d) 
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   Figure 4.3 A taxonomy of network architectures (Jain, A. K., Mao, J. & Mohiuddin, K. M., 1996). 

 

Different connectivities yield different network behaviors. Generally speaking, 

feed-forward networks are static, that is, they produce only one set of output values 

rather than a sequence of values from a given input. Feed-forward networks are 

memoryless in the sense that their response to an input is independent of the previous 

network state. Recurrent, or feedback, networks, on the other hand, are dynamic 

systems. When a new input pattern is presented, the neuron outputs are computed.  

 

4.3 Learning 

 

Ability to learn is a fundamental trait of intelligence. Although what is meant by 

learning is often difficult to describe, a learning process, in the context of artificial 

neural networks can be viewed as the problem of updating network architecture and 

connection weights so that a network can efficiently perform a specific task. 

Typically, learning in ANNs is performed in two ways. Sometimes, weights can be 

set a priori by the network designer through a proper formulation of the problem. 

However, most of the time, the network must learn the connection weights from the 

given training patterns. Improvement in performance is achieved over time through 

iteratively updating the weights in the network.  

 

There are three main learning paradigms: supervised, unsupervised, and hybrid. In 

supervised learning, or learning with a teacher, the network is provided with a correct 
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answer (output) for every input pattern. Weights are determined to allow the network 

to produce answers as close as possible to the known correct answers. In contrast, 

unsupervised learning, or learning without a teacher, does not require a correct 

answer associated with each input pattern in the training data set. Hybrid learning 

combines supervised and unsupervised learning.  Part of the weights is usually 

determined through supervised learning, while the others are obtained through 

unsupervised learning.  

 

Learning theory must address three fundamental and practical issues associated 

with learning from samples: capacity, sample complexity, and time complexity. 

There are four basic types of learning rules: error correction, Boltzmann, Hebbian, 

and competitive learning (Figure 4.4) (Jain, A. K., Mao, J. & Mohiuddin, K. M., 

1996). 

 

 

  Figure 4.4 Elements of the learning process (Jain, A. K., Mao, J. & Mohiuddin, K. M., 1996). 
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4.4 Resampling Techniques 

 

In statistics, resampling is any of a variety of methods for doing one of the 

following: 

 Estimating the precision of sample statistics (medians, variances, 

percentiles) by using subsets of available data (jackknifing) or drawing 

randomly with replacement from a set of data points (bootstrapping) 

 Exchanging labels on data points when performing significance tests 

(permutation tests, also called exact tests, randomization tests, or re-

randomization tests) 

 Validating models by using random subsets (bootstrapping, cross 

validation) 

Common resampling techniques are given in the following sections. 

 

4.4.1 Cross Validation 

 

In cross validation we randomly split the set of labeled training samples D into 

two parts: one is used as the traditional training set for adjusting model parameters in 

the classifier. The other set — the validation set — is used to estimate the 

generalization validation error. Since our ultimate goal is low generalization error, 

we train the classifier until we reach a minimum of this validation error, as sketched 

in Figure 4.5. It is essential that the validation set not include points used for training 

the parameters in the classifier — a methodological error known as ―testing on the 

training set‖ (Duda, R. O., Hart, P. E. & Stork, D. G., 2000). 

 

4.4.1.1 M-Fold Cross Validation 

 

A simple generalization of the above method is m-fold cross validation. Here the 

cross validation training set is randomly divided into m disjoint sets of equal size 

n/m, where n is the total number of patterns in D. The classifier is trained m times, 

each time with a different set held out as a validation set. The estimated performance 

is the mean of these m errors. In the limit where m = n, the method is in effect the 

leave-one-out approach.  
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  Figure 4.5 Training with cross validation. 

 

4.4.1.2 Leave-One-Out Cross Validation 

 

As the name suggests, leave-one-out cross-validation involves using a single 

observation from the original sample as the validation data, and the remaining 

observations as the training data. This is repeated such that each observation in the 

sample is used once as the validation data. This is the same as a K-fold cross-

validation with K being equal to the number of observations in the original sample. 

Leave-one-out cross-validation is computationally expensive because it requires 

many repetitions of training. 

 

4.4.2 Bootstrap 

 

A ―bootstrap‖ data set is one created by randomly selecting n points from the 

training set D, with replacement. In bootstrap estimation, this selection process is 

independently repeated B times to yield B bootstrap data sets, which are treated as 

independent sets. There are several ways to generalize the bootstrap method to the 

problem of estimating the accuracy of a classifier. One of the simplest approaches is 

to train B classifiers, each with a different bootstrap data set, and test on other 

bootstrap data sets. The bootstrap estimate of the classifier accuracy is simply the 

mean of these bootstrap accuracies. In practice, the high computational complexity of 

bootstrap estimation of classifier accuracy is rarely worth possible improvements in 

that estimate (Duda, R. O., Hart, P. E. & Stork, D. G., 2000). 
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4.4.3 Boosting 

 

The goal of boosting is to improve the accuracy of any given learning algorithm. 

In boosting we first create a classifier with accuracy on the training set greater than 

average, and then add new component classifiers to form an ensemble whose joint 

decision rule has arbitrarily high accuracy on the training set. In such a case we say 

the classification performance has been ―boosted.‖ In overview, the technique trains 

successive component classifiers with a subset of the training data that is ―most 

informative‖ given the current set of component classifiers.  

 

4.4.3.1 AdaBoost 

 

There are a number of variations on basic boosting.   The most popular, AdaBoost 

— from ―adaptive‖ boosting — allows the designer to continue adding weak learners 

until some desired low training error has been achieved. In AdaBoost, each training 

pattern receives a weight which determines its probability of being selected for a 

training set for an individual component classifier. If a training pattern is accurately 

classified, then its chance of being used again in a subsequent component classifier is 

reduced; conversely, if the pattern is not accurately classified, then its chance of 

being used again is raised. In this way, AdaBoost ―focuses on‖ the informative or 

―difficult‖ patterns. 

 

AdaBoost applied to a weak learning system can reduce the training error E 

exponentially as the number of component classifiers, kmax, is increased. Because 

AdaBoost ―focuses on‖ difficult training patterns, the training error of each 

successive component classifier (measured on its own weighted training set) is 

generally larger than that of any previous component classifier (shown in gray in 

Figure 4.6).  It is often found that the train and test errors decrease in boosted 

systems as well, as shown in red in Figure 4.6. 
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Figure 4.6 Ensemble train and test error graph (Duda, R. O., 

Hart, P. E. & Stork, D. G., 2000). 
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CHAPTER FIVE 

THE EXPERIMENTAL STUDY 

 

 

In this chapter, details of the MATLAB algorithms developed in this thesis are 

given step by step.  

 

As mentioned before, the aim of this thesis is to determine the stage of the NB 

disease by examining the neuroblastoma tissue images. For this purpose, the neuropil 

percentage, the number of mitosis and karyorrhexis cells, and the number of 

differentiated cells are estimated by our algorithms. 
 

 

  Figure 5.1 The relationship among various algorithms and the use of 

images with different magnifications. 

 

     

   Figure 5.2 Tissue images of NB tumor with 20x zoom. 
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There are three different algorithms developed in this study as seen in Figure 5.1. 

The first algorithm is used for determining the neuropil percentage of the 20x image 

(Figure 5.2). We have named this algorithm ―Neuropil Percentage Determination 

Algorithm (NPDA)‖. If the output of NPDA comes up as poorly differentiated or 

well differentiated, the second algorithm must be used and the input image taken 

under 40x magnification from the same region (Figure 5.3 (a) and (b)) must be 

processed. We have named the second algorithm ―Cell Detection in Differentiated 

Images (CDDI)‖.  The aim of the CDDI algorithm is to create a binary image 

belonging to differentiated cells in the differentiated image and the other tumor cells. 

On the other hand, if the output of NPDA is determined as undifferentiated, the third 

algorithm, which we call ―Cell Detection in Undifferentiated Images (CDUI)‖, must 

be used and the input image taken under 100x magnification from the same region 

(Figure 5.3 (c) and (d)) must be processed. The aim of CDUI algorithm is to create a 

binary image belonging to mitosis and karyorrhexis cells in the undifferentiated 

image and the other tumor cells. 

 

     
                                    (a)                                                                                     (b) 

       
                                    (c)                                                                                     (d) 

Figure 5.3 (a), (b) Tissue images of NB tumor including differentiated cells with 40x zoom, (c), (d) 

Tissue images of NB tumor including mitosis and karyorrhexis cells with 100x zoom. 
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5  

5.1 Detection of Neuropil Regions 

 

First of all, the percentage of the neuropil structure is determined in the images 

which are taken under 20x magnification to decide if the image includes mitosis and 

karyorrhexis cells or differentiated cells. If the sample images in Figure 5.4 are 

examined, it is seen that nuclei, cytoplasm, neuropil, and the other components can 

be segmented by using the color information. In the images in Figure 5.4, dark purple 

color corresponds to tumor nuclei, and light pink color indicates neuropil. If light 

pink color is detected and the other color components are not taken into account, the 

neuropil can be segmented.  

 

    

   

Figure 5.4 (a), (b) Tissue images of NB tumor of undifferentiated type with 20x zoom, (c), (d) Tissue 

images of NB tumor of differentiated type with 20x zoom. 

 

In order to determine the algorithm to be used in the next stage, the percentage of 

neuropil must be determined. If the image is decided to have neuropil regions 

covering higher than 5% of the whole image, then the image type is determined as 

differentiated (poorly differentiated or well differentiated). If the image is decided to 

b a 

d c 
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have neuropil regions covering less than 5%, it means the image type is 

undifferentiated.  

 

The flowchart of NPDA is given in Figure 5.5. This algorithm is used to 

determine the neuropil percentage in the image which is taken under 20x 

magnification.   

 

 

 

The color image belonging to neuroblastoma tissue (Figure 5.6 (a)) is obtained by 

taking the image of real neuroblastoma tissue samples by using an electron 

microscope in our laboratory. Hue, saturation, and value channels of the color image 

are shown in Figure 5.6 (b), (c), and (d), respectively. 

 

After the pixel values in the value channel are set to one, the color image given in 

Figure 5.7 is obtained. While constructing the binary mask, the value channel is not 

used. Since the value channel is related with only the brightness of the image, it does 

not affect the color information which we want to detect (Figure 5.8).  

 

 
    

    Figure 5.5 The flowchart of NPDA. 

20x Image 

NPDA 

If  

Percentage of 
Neuropil > 5% 
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                             (a)                                                                            (b) 

  
                                 (c)                                                                                    (d) 

 Figure 5.6 (a) Tissue image of NB tumor with 20x zoom, (b) Hue channel, (c) Saturation 

channel, (d) Value channel. 

 

 

Figure 5.7 The obtained color image when the value channel of the 

image is set to one. 

 

The values of V channel are equalized to 1
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 Figure 5.8 HSV cylinder and hue,  saturation,  and  brightness scale     

 (http://ie.technion.ac.il/CC/Gimp/node51.html). 

 

 

 Figure 5.9 The labeled neuropil regions (with green color). 

 

By using the color information, the binary image to be used for masking out the 

neuropil regions is created. For this purpose, thresholding is applied to hue and 

saturation channels. By this way, the selected color is converted into white and the 

other colors are converted into black and the final binary image is obtained. We have 

named this algorithm ―Color Detection Algorithm (CODA)‖. The inputs of this 

algorithm are hue and saturation channels of the color image, minimum hue 

threshold level, maximum hue threshold level, and saturation threshold level. The 

output of the algorithm is a binary image which has white-colored regions for the 

Labelled cells with orange color
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detected color and black-colored regions for the eliminated colors. If the pixel value 

of  the hue channel is between minimum and maximum hue threshold levels and also 

the pixel value of the saturation channel is higher than the saturation threshold level, 

the related pixel value is converted into 1; if not, it is converted into 0. This way, the 

final binary image is obtained. 

  

Most of the neuropil regions seen in Figure 5.9 where the labeling color is green 

are successfully detected. Figure 5.10 shows the detected neuropil regions by using 

the binary masking image. 

 

    
                                     (a)                                                                              (b) 

Figure 5.10 (a) The obtained binary masking image for detecting neuropil regions, (b) the image 

obtained after applying binary AND operation to the mask and the original color image. 

 

CODA algorithm used for detecting neuropil structure can also be used for 

segmentation of undesired regions. However, the threshold levels that are used at hue 

and saturation channels are different for that task. Figure 5.11 shows the undesired 

areas in the image that are detected in order to calculate percentage of neuropil 

regions. 

 

The percentage of neuropil is calculated as in Equation 5.1. 

 

                            
(                        )     

(          ) (                        )
                      (5.1) 

 

The percentage of neuropil is 42.22% in the image seen in Figure 5.6 (a). For that 

reason, the image type is decided as well differentiated, so that a new image must be 

tespit edilen bölge
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taken by using 40x magnification and the CDDI algorithm must be used for 

analyzing that image. 

  

    
                                      (a)                                                                             (b) 

Figure 5.11 (a) The obtained binary masking image for unwanted regions, (b) the image obtained 

after applying binary AND operation to the mask and the original color image. 

 

   
                                   (a)                                                                                 (b) 

 
                                                                             (c)                                                                                    

 Figure 5.12 (a) Tissue image of NB tumor (undifferentiated type) with 20x magnification,  

(b) Detected neuropil regions, (c) Detected undesired regions. 

 

beyaz alanlar

The original image of Neurablastoma tissue tespit edilen bölge
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The percentage of neuropil in the image seen in Figure 5.12 (a) is found as 2.99% 

by using NPDA. Thus, the image type is determined as undifferentiated, so that a 

new image must be taken by using 100x magnification and CDUI algorithm must be 

used for analyzing that new image. The detected neuropil regions and the detected 

undesired regions are seen in Figure 5.12 (b) and (c), respectively.  

 

5.2 Detection of Cells in Differentiated Images 

 
If 20x zoomed image has neuropil regions, the tissue will be poorly differentiated 

or well differentiated, so that a new image which is taken under 40x magnification 

must be used as input of the CDDI algorithm to create a binary image in order to find 

the grade of differentiation. Figure 5.13 shows the flowchart of the CDDI algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 5.13 The flowchart of the CDDI algorithm. 
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When the original image in Figure 5.14 is examined, it is seen that there are two 

different tumor cells; differentiated cells and the other tumor cells. The differentiated 

cells have cytoplasm, but the other tumor cells do not have cytoplasm. Their color is 

dark purple and their area is considerably smaller as compared to the differentiated 

cells. Figure 5.14 also indicates that the color distribution range is rather narrow. In 

order to separate the differentiated cells and the other tumor cells, firstly the image 

contrast is enhanced as seen in Figure 5.15. Now, the cells are clearer and most of the 

background components are eliminated. The image whose contrast is enhanced is 

used as the input image for detection of white-blue undesired regions, differentiated 

cells, and the other tumor cells. 

 

 

 Figure 5.14 The image with 40x magnification. 

 

    

Figure 5.15 The image in Figure 5.14 after contrast enhancement.  

The original image of Neurablastoma tissue
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Figure 5.16 shows hue, saturation, and value channels of the image in Figure 5.15 

whose contrast is enhanced. 

 

  
                                  (a)                                                                                    (b) 

  
                                   (c)                                                                                   (d) 

Figure 5.16 (a) Tissue image of NB tumor (differentiated type) with 40x magnification after 

contrast enhancement, (b) Hue channel, (c) Saturation channel, (d) Value channel. 

 

If we examine the image in Figure 5.16 (a), we see that there are white-blue 

regions combined with differentiated cells. The white-blue regions must be detected 

and be subtracted from the image in Figure 5.16 (a) which is the input image of the 

CDDI algorithm. By utilizing saturation channel of the image (Figure 5.16 (c)), 

white-blue background is detected using thresholding method as seen in Figure 5.17. 

By this way, the white-blue background regions can be separated from the 

differentiated cells. 

 

If the image includes blood cells, these cells can be mistakenly detected as 

differentiated cells or the other tumor cells. Therefore, they must be detected and 

eliminated, as well. CODA algorithm is used to detect the blood cells. The minimum 

Hue channel of the image

Saturation channel of the image Value channel of the image
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hue threshold level is chosen as 0.85, the maximum hue threshold level is chosen as 

1, and the saturation threshold level is chosen as 0.5 to segment blood cells. Figure 

5.18 shows some detected blood cells in the image. The regions within the above 

given threshold values are converted into white and the other regions are converted 

into black, and thus the binary masking image for blood cells is obtained. 

 

  
                                   (a)                                                                                   (b) 

Figure 5.17 (a) The contrast enhanced color image, (b) The detected white-blue regions. 

 

 

   Figure 5.18 Some segmented blood cells. 

 

Up to now, the white-blue regions and blood cells have been detected for the 

correct segmentation of tumor cells.  

 

The CDDI algorithm enables the differentiated cells and the other tumor cells to 

be identified in two different ways. In order to detect differentiated cells, the CDDI 

algorithm uses the saturation channel of the contrast enhanced image in Figure 5.16 

(c). Thresholding is applied to saturation channel of the contrast enhanced image. If 

Son maske
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the pixel value is larger than 0.3, the pixel value is converted into 1; otherwise it is 

converted into 0. The obtained binary image is shown in Figure 5.19 (a). The holes 

are filled, the white-blue regions and blood cells are eliminated, and binary AND 

operation is applied to the rough binary image and the original tissue image in Figure 

5.14 as seen in Figure 5.19 (b), (c) and (d), respectively. 

 

  
                                   (a)                                                                                   (b) 

  
                                   (c)                                                                                   (d) 

Figure 5.19 (a) After thresholding of saturation channel (>0.3) of the image in Figure 5.15, (b) After 

filling the region holes, (c) After eliminating blood cells and white areas, (d) After applying binary 

AND operation to the current binary image and the original color image. 

 

One can observe in Figure 5.19 (d) that some of the differentiated cells (shown in 

yellow circles), some tumor cells (shown in red circles), and some undesired regions 

(shown in blue circles) are detected together. After the application of a thresholding 

with respect to areas of regions, the image in Figure 5.20 is obtained. When the 

image is examined, it is seen that the other tumor cells shown by red circles and 

undesired regions shown by green circles are detected. It is also seen that some 

white-blue regions exist within undesired regions indicated by green color. Although 

Beyaz alanların ve kan hücrelerin elendiği maske Maske (masked
u
d5)
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the white-blue regions were eliminated from the image previously, they are again 

seen in the final image. This is because, after the holes are filled, the elimination of 

some white-blue regions is partially cancelled.  

 

 

 Figure 5.20 The other tumor cells (red circles) and undesired regions (green circles). 

 

  

 Figure 5.21 The detected dark purple cells (labeled with green) (left) the binary image for the other 

tumor cells (right). 

 

The CODA algorithm is used for the detection of the other tumor (dark purple) 

cells in the contrast-enhanced color image (Figure 5.15). The minimum and 

maximum hue threshold levels are chosen as 0.5 and 0.8 respectively, and the 

saturation threshold is chosen as 0.5 for the CODA algorithm. Figure 5.21 shows the 

Labelled cells with orange color Küçük çekirdekler
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detected dark purple cells (labeled with green) and the binary image which is the 

final output of the CODA algorithm. 

 

The morphological operations and region features (eccentricity, area, and 

perimeter) are used to pre-process the image. The border cells are also eliminated as 

seen in Figure 5.22, and the resulting binary image for dark purple cells is obtained. 

 

  

  Figure 5.22 Elimination of border cells. 

 

 

Figure 5.23 The image obtained after applying binary AND operation to the tumor 

binary image in Figure 5.22 and the original color image in Figure 5.14. 

 

Küçük çekirdeklerden kenardakilerin elenmesi

Küçük hücreler Son Maske
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Now, the binary image given in Figure 5.22 is used for detecting tumor cells 

except the differentiated cells as seen in Figure 5.23.  

 

Furthermore, although differentiated cells have larger cytoplasms in general, some 

differentiated cells might still have smaller cytoplasms. They are detected together 

with the other tumor cells, but they can be separated by using region characteristics. 

However, the image in Figure 5.23 does not include any such differentiated cell. 

 

Binary AND operation is applied to the transpose of the binary image in Figure 

5.22 and the image in Figure 5.20. Also, some morphological operations (erosion, 

opening) are used to eliminate some small regions. Figure 5.24 shows application of 

these steps. 

 

    
                                   (a)                                                                                     (b) 

    
                                   (c)                                                                                    (d) 

Figure 5.24 (a) The roughly detected differentiated cells together with the other tumor cells, (b) The 

binary image of (a), (c) The image after the elimination of the other tumor cells, (d) After the 

application of morphological operations. 

 

Küçük hücreler Son Maske
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                                   (a)                                                                                   (b) 

  
                                   (c)                                                                                   (d) 

   
                                   (e)                                                                                   (f)  

Figure 5.25 (a) The obtained image after applying binary AND operation to the transpose of white-

blue binary image and Figure 5.24 (d), (b) After elimination of small regions and application of 

morphological operation (close) to (a), (c) After application of morphological operation (open) to 

(b), (d) After elimination of small regions, (e) After application of morphological operation (dilate) 

and filling the holes, (f) The obtained image after applying binary AND operation to (e) and the 

original color image.       

 

Binary AND operation is again applied to the transpose of white-blue regions 

(Figure 5.17 (b)) and the image given in Figure 5.24 (d). In order to improve the 

binary mask image, some morphological operations are applied to eliminate the 



47 
 

 
 

undesired regions such as small regions and holes in the cells, as seen in Figure 5.25 

(a), (b), (c), and (d), respectively. After all these operations, the binary masking 

image for differentiated cells are obtained as seen in Figure 5.25 (e) and also the 

masked color image is shown in Figure 5.25 (f).  

 

Moreover, the images of the extracted differentiated cells and the other tumor 

cells are obtained separately as seen in Figure 5.26 (a) and (b), respectively, by using 

the CDDI algorithm. These images are to be further used in the feature extraction and 

classification stages.  

 

  
                                                                      (a) 

  
                                                                               (b) 

Figure 5.26 (a) The binary mask for the differentiated cells (left) and the image after applying 

binary AND operation to the binary mask and the original color image (right), (b) The binary mask 

for the other tumor cells (left) and the image after applying binary AND operation to binary mask 

and the original color image (right). 

 

 

Küçük çekirdeklerden kenardakilerin elenmesi Küçük hücreler Son Maske
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5.3 Detection of Cells in the Images for Determining Mitosis Karyorrhexis (MK) 

Index 

 

In this section, the structure of the CDUI algorithm is explained in detail. If 

neuropil percentage of 20x zoomed image is lower than 5%, the tissue is determined 

as of undifferentiated type, so that new image which is taken under 100x 

magnification must be used as the input of the CDUI algorithm to create a binary 

image for mitosis and karyorrhexis cells and the other tumor cells. The flowchart of 

the CDUI algorithm is shown in Figure 5.27. 

 

 

     Figure 5.27 The flowchart of the CDUI algorithm. 

 

Figures 5.28 and 5.29 show two images of undifferentiated type belonging to two 

different patients. Hue, saturation, and value channels of the images can also be seen 

in both figures. In the following, the output of the CDUI algorithm will be 

determined and shown for both patients.  
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The aim of the CDUI algorithm is to detect the tumor cells, same as the CDDI 

algorithm. In order to detect the cells, the color thresholding method is used again as 

in the CDDI algorithm. If Figure 5.28 (a) and Figure 5.29 (a) are compared, it is 

realized that the tissue color distributions and color scales are different. Because of 

this, the saturation threshold level is determined by averaging the pixel values of the 

saturation channel. By this way, a dynamic threshold level can be calculated based 

on the image. 

 

  
                                   (a)                                                                                   (b) 

  
                                   (c)                                                                                   (d) 

Figure 5.28 (a) Tissue image of NB tumor with 100x zoom for Patient 1. (b) Hue channel of the 

image, (c) Saturation channel of the image, (d) Value channel of the image. 

 

 

 

 

 

 

 

The original image of Neurablastoma tissue
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                                   (a)                                                                                   (b) 

  
                                   (c)                                                                                   (d) 

Figure 5.29 (a) Tissue image of NB tumor with 100x zoom for Patient 2. (b) Hue channel of the 

image, (c) Saturation channel of the image, (d) Value channel of the image. 

 

After the values of the pixels in the value channel are set to one, the color images 

given in Figure 5.30 is obtained for two different patients. 

 

 
                                   (a)                                                                                   (b) 

Figure 5.30 The color images when value channels of the images are set to one; (a) Patient 1, (b) 

Patient 2. 

 

The original image of Neurablastoma tissue

The values of V channel are equalized to 1 The values of V channel are equalized to 1
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Again, by using the color information, the binary mask image to be used for 

masking the tumor cells is created. For this purpose, the CODA algorithm can be 

used. The images have different saturation cutoff levels; so that the saturation 

threshold level is calculated automatically and the binary mask image is obtained. 

Most of the tumor cells are detected as seen in Figure 5.31 where the labeling color is 

orange. 

 

 
                                   (a)                                                                                   (b) 

 Figure 5.31 Detected tumor cells (labeled with orange); (a) Patient 1, (b) Patient 2. 

 

The rough binary mask is obtained now. As seen in Figure 5.32, there are 

undesired small regions. In order to improve the binary mask image some 

morphological operations (opening, closing) are applied to eliminate these undesired 

regions such as small regions and holes in the cells.  

 

  

 Figure 5.32 The initially obtained binary mask images for both patients. 

  

Labelled cells with orange color Labelled cells with orange color
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In order to improve the rough binary image, closing operation is used. The newly 

obtained images are shown in Figure 5.33. 

 

 

 Figure 5.33 Binary images after the application of closing operation. 

 

The images are still not useful, because there are many small areas and unwanted 

holes in the detected areas. For this reason opening operation is applied. Thus, holes 

are filled and also small areas are eliminated as seen in Figure 5.34. 

 

 

  

 Figure 5.34 The binary images after elimination of small areas and holes and after applying binary 

AND operation to the masks and original images. 

The rough binary cells mask The rough binary cells mask

The binary cells mask after enhancement

The binary cells mask after enhancement
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As shown in Figure 5.35, most of the cells are detected as attached to each other. 

Hence, it is not appropriate to extract features and perform classification by using 

these binary images. Because of this, a type of watershed algorithm described in 

Meyer, F. (1994) is used in order to separate these attached cells. 

 

The first step of our watershed algorithm is the labeling of independent regions in 

the image. The area values of the labeled regions are examined and the following 

operations are performed for the regions that have areas larger than a predetermined 

threshold value.  

 Compute the distance transform (Jain, A., 1989) of the binary image 

complement. 

 Complement the distance transform, and force pixels that do not belong to the 

objects to be at -Inf. 

 

   
                                   (a)                                                                                   (b) 

   
                                   (c)                                                                                   (d) 

Figure 5.35 (a), (b) The binary images including regional minimum points, (c), (d) After zooming in 

the images given in (a) and (b), respectively. 
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Then, find the regional minimum points in the image and process them as shown 

in Figure 5.35. 

 

Erosion operation is applied by using the minimum points given in Figure 5.35. 

By this way, if there are several points for a single cell, they are combined to create 

the cell (Figure 5.36 (a), (b)).  

 

  

                                   (a)                                                                                   (b) 

Figure 5.36 (a), (b) The minimum points obtained after eroding process. 

 

The midpoints of each black region are determined and the squares having a pre-

determined size are placed on these midpoints (Figure 5.37 (a) and (b)). However, 

this operation is not applied to regions having areas under a certain value, because 

the possibility to find several cells in such small regions is too low. Then, the inverse 

of the image is calculated by converting the original colored image into gray-level 

image (Figure 5.37 (c), (d)). Finally, these images are combined with the binary 

images including squares by using imimposemin command and the images in Figure 

5.37 (e) and (f) are obtained. These final images are used as input of the watershed 

algorithm.  
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                                   (a)                                                                                   (b) 

 
                                   (c)                                                                                   (d) 

 
                                   (e)                                                                                   (f) 

Figure 5.37 (a), (b) The binary images with inserted squares, (c), (d) The inverse of the gray-level 

image of the original image, (e), (f) The combined images by applying imimposemin command to the 

images (a) and (c) with (b) and (d), respectively. 

 

 The binary images obtained after the application of the watershed algorithm are 

shown in Figure 5.38. If the images are examined, it is seen that there are regions 

including more than one cell. It is observed that the detection of MK cells in the 

image on the left hand side of Figure 5.38 is better although all the cells are still not 

separated after the application of the watershed algorithm.  

noktalı mask noktalı mask

Input image of the watershed function Input image of the watershed function
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 After the removal of components on image borders and elimination of small and 

large regions, the new binary images are obtained as shown in Figures 5.39 and 5.40. 

 

   

Figure 5.38 The binary images after the application of the watershed algorithm. 

 

 

 Figure 5.39 The binary images after elimination of components on image borders. 

 

 

  Figure 5.40 The binary images after elimination of small and large regions. 

 

watershed watershed

The binary cells mask after eliminating areas at the border The binary cells mask after eliminating areas at the border

The binary cells mask after eliminating small area The binary cells mask after eliminating small area
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  Figure 5.41 The final images obtained after applying binary AND operation to the binary images in 

Figure 5.40 and the original images in Figures 5.28 (a) and 5.29 (a). 

 

The binary images to be used for feature extraction are obtained as shown in 

Figure 5.40. Binary AND operation is applied to the original colored images and the 

binary images in Figure 5.40 and the final images shown in Figure 5.41 are obtained.   

 

In the next section, separate images are obtained for each cell and then region and 

texture features are calculated for each image. Next, the classification is performed 

by using the artificial neural network structure.  

 

5.4 Feature Extraction 

 

Up to now, operations are applied to whole images. In order to extract the features 

belonging to the cells, the cells must be segmented from the image. In order to 

extract the cells from the whole image, ―Binary Cell Image (BCI)” algorithm is 

written. The block diagram of that algorithm is given in Figure 5.42. 

 

 Figure 5.42 The block diagram of the BCI algorithm. 

 

If the binary image is labeled, the coordinates of the cells are found separately. In 

MATLAB, an image can only be defined as having a quadrilateral shape, so that the 

The original image after masking binary cells mask The original image after masking binary cells mask

Labeling the 
binary mask 

image 

Getting 
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the smallest 
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smallest quadrilaterals are found for all the detected cells by using the coordinate 

data. After that, the cells are obtained as small images. However, other cells close to 

the labeled cell can create problems as seen in Figure 5.43 (red rectangular). These 

unwanted parts must be eliminated and the image must only include the selected cell. 

After eliminating the unwanted parts, the binary cell images are obtained as given in 

Figure 5.44. A MATLAB function called Binary Cell Image forms this part of the 

algorithm. The input of the algorithm is the binary image and the outputs of the 

algorithm are the binary cell images. The purpose of this function is to extract cells 

from the whole image.  

 

 

    Figure 5.43 The binary cell images with unwanted parts. 

 

 

  Figure 5.44 The binary cell images after the elimination of unwanted parts. 

 

The correct segmentation of each cell is crucial in order to obtain a useful feature 

matrix for the classification of the cells. Our aim is not only the segmentation of the 

cell regions, but also to count and classify them as mentioned before.  

 

In order to obtain region features of the cells, the binary image must be labeled 

with bwlabel command. After that, by using regionprops command, area, perimeter, 

eccentricity, and convexarea are calculated for all the extracted cells.  

 

For texture analysis of the cells, features obtained by Haralick’s co-occurrence 

matrix are used. The input of the Haralick function must be a grayscale image, so 
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that the masked color image is converted into grayscale image by using rgb2gray 

command (Figure 5.45). Then, the cells are obtained from the whole image by using 

BCI algorithm (Figure 5.46 (a), (b)). The texture features depend on the pixel values 

in the image. As seen in Figure 5.45, the background of the cell image is black and 

the cells do not have the same dimensions. The background can affect the values of 

the obtained features with each cell having different amount of background. 

Therefore, the pixels having zero values (black color) have been converted into NaN 

before the calculation of the co-occurrence matrix. 

 

 

 Figure 5.45 The masked color image after conversion of the image into grayscale. 
 

 

 

               
 

 

 

 

 

Figure 5.46 Creating input data for the Haralick 

function (a) The binary cell mask image (b) The 

grayscale cell image. 

(a)                                                    (b)                     
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A gray level co-occurrence matrix (GLCM) is created by using graycomatrix 

using grayscale images as in Figure 5.46 (b). GLCM_Features1 helps to calculate 

features from different GLCMs that are input to the function. After running 

GLCM_Features1 function, we obtain a 20xN matrix where 20 is the number of 

Haralick features to be used and N is the number of cells in the image. 

  

Perimeter, eccentricity, and convex area features are obtained from the binary 

image by using regionprops command. Besides, we calculate one more feature; it is 

the area of a cell, which does not contain any darkest purple region, divided by the 

cell area. The feature is named as Non-darkest area. As a result, the number of total 

features is 24. 

 

Non-darkest area feature is found by using CODA, but the threshold levels are 

changed in order to accommodate different color ranges. At this step, the new binary 

mask image is created (Figure 5.47). 

 

 

Figure 5.47 The binary mask image for darkest purple regions. 

 

After applying binary AND operation to the binary mask image (Figure 5.40 

(left)) and the transpose of the new binary mask image in Figure 5.47, some regions 

The cells has darker purple color
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disappear, because some tumor cells have only darkest purple color (Figure 5.48). 

All the area features of the cells are recalculated and area itself is used as a feature. 

 

 

Figure 5.48 The image obtained after applying binary AND operation to the 

binary mask image in Figure 5.40 (left) and the new binary mask image in 

Figure 5.47. 

 

The texture and region features of tumor cells are listed in Table 5.1 below. 

 

Table 5.1 Texture and region features of tumor cells. 

1. Autocorrelation 13. Sum Variance 

2. Contrast 14. Sum Entropy 

3. Correlation 15. Difference Variance 

4. Cluster Prominence 16. Difference Entropy 

5. Cluster Shade 17. Information Measurement of Correlation 1 

6. Dissimilarity 18. Information Measurement of Correlation 2 

7. Energy 19. Inverse Difference Normalized (INN) 

8. Entropy 20. Inverse Difference Moment Normalized 

9. Homogeneity 21. Perimeter 

10. Maximum Probability 22. Convex Area 

11. Sum of Squares: Variance 23. Eccentricity 

12. Sum Area 24. Non- darkest Area 

The binary image (purple color(white), darker purple color (black))
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5.5 Classification 

 

In order to classify the cells, we use artificial neural networks (ANNs) and 

ensemble methods in MATLAB.   

 

5.5.1 Input Data for Classification 

 

The feature matrices to be used for classification are obtained from the images in 

Figures 5.49 through 5.51. 

 

In Figure 5.49, the images obtained from the tissue sample including MK index 

are shown. The mitosis and karyorrhexis cells are indicated by red circles on the 

original images given on the left hand side. The mitosis and karyorrhexis cells are 

again shown by red circles and the eliminated mitosis and karyorrhexis cells during 

the image processing operations are indicated by yellow circles on the processed 

images given on the right hand side. The feature matrix is created by calculating the 

features related to each cell given on the processed images on the right hand side. 

The obtained feature matrices are used for training ANNs and ensemble methods. In 

Figure 5.50, the images obtained from the tissue samples taken from another patient 

for MK index analysis can be seen. There are no mitosis and karyorrhexis cells in 

this set of images.  

 

Images to be analyzed for grade of differentiation subtype are shown in Figure 

5.51. The red circles on these images indicate the differentiated cells. 
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Figure 5.49 The images to be used in training set. The mitosis and karyorrhexis cells are 

indicated with red circles (left), the images obtained after the application of previously 

described operations to the original images (right). 
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Figure 5.50 The original images to be used for training set (left), the images obtained after the 

application of previously described operations to the original images (right). 
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Figure 5.51 The images to be used as part of the training set. The differentiated cells are indicated 

with red circles. 
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Figure 5.52 The undifferentiated type images to be used in testing phase. The mitosis and 

karyorrhexis cells are indicated with red circles (left), the images obtained after the application 

of previously described operations to the original images (right). 

 

The test images to be used for ANNs or ensemble classifiers for MK index are shown in 

Figure 5.52. Similarly, the test images to be used for ANNs or ensemble classifiers for the 

grade of differentiation subtype are shown in Figure 5.53. 
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(a) 

 

    

(b)                                                                       (c) 

 Figure 5.53 (a) The differentiated type image to be used in testing phase. The differentiated cells 

are indicated with red circles, (b), (c) The images obtained after the application of previously 

described operations to the original image. 

 

5.5.2 Artificial Neural Network 

 

There are quite many variations for building ANNs. In our simulations, we use a 

feed forward back-propagation network together with different resampling methods 

such as cross validation, bootstrap, etc. The details of the used network are given 

below. 

 Transfer Function    : tansig 

 Training Function    : Scaled Conjugate Gradient (trainscg) 

 Performance Function  : mse 

 Number of Total Features : 24 

 Number of Hidden Layers : 1 

 Number of Hidden Neurons : 40 (if entire feature set is used) and 20 (if PCA 

or feature selection methods are used) 
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In order to train and test the neural network, feature set and targets (labeled cells) 

must be obtained. The feature set is obtained by application of feature extraction 

algorithms together with some image processing algorithms. However, target data 

must be labeled on the images manually by medical experts in order to determine the 

cell types. The block diagram of the training section is given below (Figure 5.54). 

 

 

  Figure 5.54 Block diagram for training the neural network. 

 

Two different neural networks are created in the classification stage; one for grade 

of differentiation subtype and the other for MK index subtype. In each network, one 

image is left out for testing purpose and the other images are used for training the 

network. 

 

Different resampling methods are used in order to obtain the best performance. 

The steps of the used methods are explained below. 

 

5.5.2.1 Cross Validation 

 

In order to apply this method, the feature set is divided into subsets by using 

crossvalind command in MATLAB. Since we have used 10-fold cross validation, ten 

subsets are randomly obtained.  

 

The neural network is trained ten times. Each time nine of the subsets are used for 

training the network and one of the subsets is used to test the network. For each 

training session, the single subset that is used for testing is changed. Thus, different 

training sets are used at each session. The final neural network is obtained in this 

way. 
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5.5.2.2 Bootstrap 

 

For the application of this method, again different feature subsets are required. 

These subsets are obtained by randomly selecting the features from the feature set. 

The difference of the bootstrap from the cross validation is that the size of the subsets 

is determined by the user without any limitation whereas the size of the subsets in 

cross validation method is fixed and calculated as the size of the feature set over 

number of folds. 

 

We have obtained 20 feature subsets each including 500 elements for training the 

network and the network is trained 20 times by using one subset at each time. By this 

way the final network is obtained in order to be used for testing purposes. 

 

5.5.2.3 Random Selection 

 

We have two classes for both grade of differentiation and MK index subtypes. For 

both of these subtypes, the number of tumor cells (labeled with zero) are excessive 

when compared to the other class. Since one class dominates the other, during the 

training, one cell type is overtrained while the other class is mostly ignored.  

 

In order to prevent this problem, training with fewer samples is realized. 50 

random samples are selected from the dominant class and all the samples of the weak 

class are used. By this way, the weights of both classes are almost equalized and 

overtraining problem is solved to a great degree. 

 

5.5.2.4 Increasing the Number of Weak Class 

 

Another method we have applied to equalize the weights of both classes is to 

increase the number of differentiated and MK index cells (the cells labeled with one). 

Each of the features from the weak class is replicated twenty times, and the entire 

feature set of tumor cells are added to these features. By this way, the total feature set 

is obtained and the training is performed by using this set. Thus, the weights of both 

classes are equalized somehow. 
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5.5.3 Ensemble Methods 

 

In this study, ensemble methods which are alternative methods to neural networks 

are also used. The reason for this is that ensemble is a technique for combining many 

weak learners in an attempt to produce a strong learner. Because we have a weak 

learner, we have decided to try this method, as well. 

 

The MATLAB command fitensemble is used with different parameters and a 

classifier object is obtained. By using predict command in MATLAB, the test of 

trained classifier is performed. 

 

Two ensemble methods are used in this study; AdaBoost and RobustBoost 

together with discriminant and tree methods.  

 

5.5.3.1 Adaptive Boosting  

 

Adaptive Boosting (AdaBoost), is a machine learning algorithm, formulated by 

Freund, Y. & Schapire, E. R. (1995). One of the main ideas of the algorithm is to 

maintain a distribution or set of weights over the training set. Initially, all weights are 

set equally, but on each round, the weights of incorrectly classified examples are 

increased so that the weak learner is forced to focus on hard examples in the training 

set. By this way, AdaBoost constructs a composite classifier by sequentially training 

classifiers, while putting more and more emphasis on certain patterns. 

 

There are many extensions of AdaBoost algorithm for classification of two and 

multiple classes. In this study, we have used AdaBoostM1 which is used for binary 

classification. We have used AdaBoost method with both tree and discriminant 

learners. Number of learning cycles is taken as 40.  

 

5.5.3.2 Robust Boosting 

 

Robust Boosting (RobustBoost) presented by Freund, Y. (2009) is a new boosting 

algorithm which is significantly more robust against label noise than AdaBoost.  
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We have also tested RobustBoost algorithm with our data set. This time only 

discriminant learner is tested, because this method does not allow the use of tree 

learner. The number of learning cycles is again taken as 40.  

 

5.5.4 Dimensionality Reduction 

 

All the above explained methods are used together with dimension reduction 

methods in order to get a better performance. For this purpose, principal component 

analysis (PCA), which is a feature extraction method, and a feature selection method 

are used. All the explained methods in the previous sections for neural networks and 

ensemble methods are tested with three options; normal training, which is the 

training type without any dimensionality reduction, PCA, and feature selection. 

 

5.5.4.1 Normal Training 

 

This is the training type we used without any dimensionality reduction. All the 

extracted 24 features are used with this training option. 

 

5.5.4.2 Principal Component Analysis (PCA) 

 

In PCA, the feature set is mapped into another feature set whose size is smaller 

than the original one. For our data set, 24 features are reduced to 9 by using this 

method and the networks are trained with this reduced set. Neural networks with 

different resampling algorithms and ensemble methods are trained together with 

PCA option. 

 

5.5.4.3 Feature Selection 

 

Feature selection is used to select some of the features inside the entire feature set 

and discard the other less relevant features. This selection is performed with an 

algorithm called sequentialfs in MATLAB. This time, features are not mapped into a 

new feature set. Instead, the features stay the same; only the selected features are 

used for training and testing the network.  
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As already mentioned, each of the neural networks and the ensemble classifiers 

described in Sections 5.5.2 and 5.5.3 are trained with three different dimensionality 

reduction techniques. For example, three neural networks are created for the cross 

validation technique; cross validation with entire feature set, cross validation with 

PCA, and cross validation with feature selection. Besides, each of the neural 

networks is trained 20 times and the average of these results is calculated. This is 

because the training results vary at each training session. For the training of the 

ensemble classifiers, the averaging is not necessary, because for these classifiers, the 

results of the training remain the same for each training. 

 

In the beginning of this section, it has been mentioned that all the images except 

one image from grade of differentiation subtype and one image from MK index 

subtype are used for training. The images reserved for testing are used to test each of 

the trained networks and ensemble classifiers. 

 

In the Chapter Six, the tables including the training and test results for each neural 

network and ensemble classifier described in this section are given together with 

some added comments.  

 

5.6 Graphical User Interface (GUI) 

 

In this section, the Graphical User Interface (GUI) designed for a user-friendly 

control of the developed algorithm is explained.  

 

In Figure 5.55, the designed GUI is shown. The analysis is performed in two 

stages in our GUI. First, the image taken under 20x magnification is selected by 

using the ―SELECT IMAGE‖ button on the left hand side and then the ―RUN‖ 

button is pressed. This button makes the ―NPDA‖ algorithm to run. The output of 

this algorithm is printed under the image on the left of the screen. For example, the 

output of the algorithm is obtained as ―undifferentiated type‖ for the image given in 

Figure 5.55. As a result of the first algorithm, the user is guided to select the 100x 

zoomed image. 
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 Figure 5.55 The screenshot of GUI for mitosis karyorrhexis (MK) subtype. 

 

In the second stage, according to the determined image type with respect to the 

magnification, the new image must be selected by using the second ―SELECT 

IMAGE‖ button on the right hand side. The selected image is shown in the middle. 

After selecting the image, the ―RUN‖ button next to it must be pressed. This ―RUN‖ 

button makes ―CDDI‖ or ―CDUI‖ algorithm to run based on the magnification of the 

selected image. The output image obtained from the algorithm is displayed on the 

right hand side. Under this image, the number of detected cells, the MK index, and 

the grade of differentiation rate are printed. In the sample image given in Figure 5.55, 

191 cells are detected and the MK index is determined as 7.2917%. Besides, the level 

of MK index is determined as ―High MKI‖.  

 

 The other GUI screenshots for different input images are shown in Figures 5.56 

and 5.57. 
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 Figure 5.56 The screenshot of GUI for undifferentiated subtype. 

 

 

 Figure 5.57 The screenshot of GUI for differentiated subtype. 
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CHAPTER SIX 

RESULTS 

 

In this chapter, the results of ANNs and ensemble methods employed for the 

analysis of MK index subtype and grade of differentiation subtype are given.   

 

6.1 The Results of MK Index Subtype 

 

The trained neural networks and ensemble classifiers are tested with the images 

given in Figure 6.1. These images do not exist in the training set because they are 

only used for testing purpose. The neural network results for the image given in 

Figure 6.1 (a) are shown in Table 6.1. All the values in the tables are obtained by 

averaging 20 different training and test results.  

 

  
                           (a)                                                                             (b) 

Figure 6.1 The images for analysis of MK index subtype; (a) the test image called Image_31u, 

(b) the test image called Image_27du. 

 

There are 1298 samples from Class 1 (tumor cells) and 14 samples from Class 2 

(mitosis and karyorrhexis cells) in the training set. The test image includes 179 cells 

from Class 1 and 11 cells from Class 2.  

 

For the feature selection dimension reduction technique, six features are selected 

and used; correlation, cluster prominence, cluster shade, energy, maximum 

probability, and information measurement of correlation 2. 
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When we observe Table 6.1, it is seen that the test performance of MK cells 

(Class 2) varies between 2.73% and 80.45% for different methods. The test 

performance of tumor cells (Class 1) differs between 87.23% and 99.69%. The 

correct classification rate of tumor cells is very high, but this rate is not sufficient for 

mitosis and karyorrhexis cells for some cases. It can be argued that the best results 

for mitosis and karyorrhexis cells are obtained at random selection case. Since we 

decrease the number of tumor cells in this method by random selection, the 

classification performance of tumor cells decreases, and this causes more than 10% 

of tumor cells to be misclassified as mitosis and karyorrhexis cells.  

 

Table 6.1 The classification performance results for the MK subtype using neural networks. 

 

 

Possibly more important results to be observed are the percentages of MK indices 

which are shown in Table 6.2.  For pathologists, the classification is not enough; they 

also use the MK index in order to determine the stage of the disease. The MK index 

is calculated as the number of mitosis and karyorrhexis cells over the number of all 

tumor cells (mitosis and karyorrhexis cells plus tumor cells). It is seen that the MK 

index is obtained around 15% for the random selection algorithm which was 

mentioned as successful in the above paragraph. The correct MK index is 

approximately 5.8%, hence the random selection algorithm has produced the worst 

results in terms of percentage of MK index. Cross validation and bootstrap methods 

give better results when compared to the other methods. 

TRUE FALSE TRUE FALSE

- - 176,7 2,4 2,5 8,6 98,69 22,27 94,26

PCA - 178,1 0,9 0,8 10,3 99,50 6,82 94,13

Feature Selection - 178,5 0,6 0,3 10,7 99,69 2,73 94,08

- Cross Validation 173,2 5,8 6,0 5,1 96,79 54,09 94,31

PCA Cross Validation 174,0 5,0 5,6 5,5 97,21 50,45 94,50

Feature Selection Cross Validation 172,5 6,5 6,3 4,7 96,37 57,27 94,11

- Bootstrap 172,5 6,6 6,4 4,6 96,34 58,18 94,13

PCA Bootstrap 175,0 4,1 5,0 6,0 97,74 45,45 94,71

Feature Selection Bootstrap 174,3 4,7 5,1 5,9 97,37 46,36 94,42

- Random Selection 159,4 19,7 8,9 2,2 89,02 80,45 88,53

PCA Random Selection 156,2 22,9 8,8 2,2 87,23 80,00 86,82

Feature Selection Random Selection 160,0 19,1 8,4 2,6 89,36 76,36 88,61

- Increase Cl2 Samples 171,0 8,1 6,3 4,8 95,50 56,82 93,26

PCA Increase Cl2 Samples 174,8 4,2 5,5 5,5 97,67 50,00 94,91

Feature Selection Increase Cl2 Samples 169,4 9,6 5,4 5,6 94,64 49,09 92,00

Dimension 

reduction
Resampling Techniques Class 1 Class 2

Test Results for Test Image (Image_31u)

% Class 1 

Perfor.

% Class 2 

Perfor.

% General 

Perfor.
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 Table 6.2 The percentage of MK index results for the MK subtype using neural networks. 

 

 

In Table 6.3, the classification performance results for the image given in Figure 

6.1 (a) by using ensemble classifiers are shown. It is not necessary to train the 

ensemble classifier 20 times, because it always gives the same results. It is seen that 

the classification performance for tumor cells changes between 94.97% and 99.44%. 

For mitosis and karyorrhexis cells the classification performance varies between 

27.27% and 72.73%. The general performance is around 95%. The RobustBoost 

discriminant and AdaBoost discriminant methods produce acceptable results for both 

classes. 

 

 Table 6.3 The classification performance results for the MK subtype using ensemble methods. 

 

 

In Table 6.4, the percentages of MK indices for ensemble methods are given. 

Judging by the obtained values, it follows that the results are generally acceptable. 

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- - 179,00 11,00 5,789 185,20 4,80 2,526

PCA - 179,00 11,00 5,789 188,35 1,65 0,868

Feature Selection - 179,00 11,00 5,789 189,15 0,85 0,447

- Cross Validation 178,95 11,00 5,791 178,25 11,70 6,160

PCA Cross Validation 179,00 11,00 5,789 179,45 10,55 5,553

Feature Selection Cross Validation 179,00 11,00 5,789 177,20 12,80 6,737

- Bootstrap 179,00 11,00 5,789 177,05 12,95 6,816

PCA Bootstrap 179,00 11,00 5,789 180,95 9,05 4,763

Feature Selection Bootstrap 179,00 11,00 5,789 180,20 9,80 5,158

- Random Selection 179,00 11,00 5,789 161,50 28,50 15,000

PCA Random Selection 179,00 11,00 5,789 158,35 31,65 16,658

Feature Selection Random Selection 179,00 11,00 5,789 162,55 27,45 14,447

- Increase Cl2 Samples 179,00 11,00 5,789 175,70 14,30 7,526

PCA Increase Cl2 Samples 179,00 11,00 5,789 180,33 9,67 5,088

Feature Selection Increase Cl2 Samples 179,00 11,00 5,789 175,00 15,00 7,895

Dimension 

reduction
Resampling Techniques

MK INDEX PERCENT (For Test Image)

Real Data Simulated Data

TRUE FALSE TRUE FALSE

- Adaboost Discriminant 170,0 9,0 8,0 3,0 94,97 72,73 93,68

PCA Adaboost Discriminant 175,0 4,0 7,0 4,0 97,77 63,64 95,79

Feature Selection Adaboost Discriminant 178,0 1,0 3,0 8,0 99,44 27,27 95,26

- Adaboost Tree 174,0 5,0 5,0 6,0 97,21 45,45 94,21

PCA Adaboost Tree 175,0 4,0 6,0 5,0 97,77 54,55 95,26

Feature Selection Adaboost Tree 171,0 8,0 5,0 6,0 95,53 45,45 92,63

- Robustboost Discriminant 171,0 8,0 8,0 3,0 95,53 72,73 94,21

PCA Robustboost Discriminant 171,0 8,0 7,0 4,0 95,53 63,64 93,68

Feature Selection Robustboost Discriminant 174,0 5,0 5,0 6,0 97,21 45,45 94,21

Dimension 

Reduction
Ensemble Method Class 1 Class 2 % Class 1 

Perfor.

% Class 2 

Perfor.

% 

General 

Test Results for Test Image (Image_31u)
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The closest result to the true value is obtained when the AdaBoost discriminant 

method is utilized with PCA dimension reduction technique. 

 

Table 6.4 The percentage of MK index results for the MK subtype using ensemble methods. 

 

 

For the image given in Figure 6.1 (b), which is called Image_27du, the neural 

network results are given in Table 6.5. As seen from the table, the classification 

percentages are quite high for this image, because the colors are more distinctive in 

this image. The test image has no mitosis and karyorrhexis cells and the 

classification performance is 100% or around for most of the methods. 

 

Table 6.5 The classification performance results for the MK subtype using neural networks. 

 

 

Table 6.6 shows the percentage results of MK index for each method. However, 

for this image this analysis is not very meaningful, because there are no mitosis and 

karyorrhexis cells in this image. The random selection method used with PCA 

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- Adaboost Discriminant 179,00 11,00 5,789 173,00 17,00 8,947

PCA Adaboost Discriminant 179,00 11,00 5,789 179,00 11,00 5,789

Feature Selection Adaboost Discriminant 179,00 11,00 5,789 186,00 4,00 2,105

- Adaboost Tree 179,00 11,00 5,789 180,00 10,00 5,263

PCA Adaboost Tree 179,00 11,00 5,789 180,00 10,00 5,263

Feature Selection Adaboost Tree 179,00 11,00 5,789 177,00 13,00 6,842

- Robustboost Discriminant 179,00 11,00 5,789 174,00 16,00 8,421

PCA Robustboost Discriminant 179,00 11,00 5,789 175,00 15,00 7,895

Feature Selection Robustboost Discriminant 179,00 11,00 5,789 180,00 10,00 5,263

Dimension 

Reduction
Ensemble Method

MK INDEX PERCENT (For Test Image)

Real Data Simulated Data

TRUE FALSE TRUE FALSE

- - 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA - 115,0 0,0 0,0 0,0 100,00 100,00 100,00

Feature Selection - 115,0 0,0 0,0 0,0 100,00 100,00 100,00

- Cross Validation 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA Cross Validation 115,0 0,0 0,0 0,0 100,00 100,00 100,00

Feature Selection Cross Validation 115,0 0,0 0,0 0,0 100,00 100,00 100,00

- Bootstrap 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA Bootstrap 115,0 0,0 0,0 0,0 100,00 100,00 100,00

Feature Selection Bootstrap 115,0 0,0 0,0 0,0 100,00 100,00 100,00

- Random Selection 114,7 0,4 0,0 0,0 99,70 100,00 99,70

PCA Random Selection 99,9 15,2 0,0 0,0 86,83 100,00 86,83

Feature Selection Random Selection 114,6 0,4 0,0 0,0 99,65 100,00 99,65

- Increase Cl2 Samples 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA Increase Cl2 Samples 113,3 1,7 0,0 0,0 98,55 100,00 98,55

Feature Selection Increase Cl2 Samples 114,6 0,4 0,0 0,0 99,65 100,00 99,65

Dimension 

reduction
Resampling Techniques Class 1 Class 2

Test Results for Test Image (Image_27du)

% Class 1 

Perfor.

% Class 2 

Perfor.

% General 

Perfor.
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algorithm has produced the worst result; other methods produced results having 

satisfactorily high accuracy. 

 

Table 6.6 The percentage of MK index results for the MK subtype using neural networks. 

 

 

Table 6.7 The classification performance results for the MK subtype using ensemble methods. 

 

 

 Table 6.8 The percentage of MK index results for the MK subtype using ensemble methods. 

 

 

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- - 115,00 0,00 0,000 115,00 0,00 0,000

PCA - 115,00 0,00 0,000 115,00 0,00 0,000

Feature Selection - 115,00 0,00 0,000 115,00 0,00 0,000

- Cross Validation 115,00 0,00 0,000 115,00 0,00 0,000

PCA Cross Validation 115,00 0,00 0,000 115,00 0,00 0,000

Feature Selection Cross Validation 115,00 0,00 0,000 115,00 0,00 0,000

- Bootstrap 115,00 0,00 0,000 115,00 0,00 0,000

PCA Bootstrap 115,00 0,00 0,000 115,00 0,00 0,000

Feature Selection Bootstrap 115,00 0,00 0,000 115,00 0,00 0,000

- Random Selection 115,00 0,00 0,000 114,65 0,35 0,304

PCA Random Selection 115,00 0,00 0,000 99,85 15,15 13,174

Feature Selection Random Selection 115,00 0,00 0,000 114,60 0,40 0,348

- Increase Cl2 Samples 115,00 0,00 0,000 115,00 0,00 0,000

PCA Increase Cl2 Samples 115,00 0,00 0,000 113,33 1,67 1,449

Feature Selection Increase Cl2 Samples 115,00 0,00 0,000 114,60 0,40 0,348

Dimension 

reduction
Resampling Techniques

MK INDEX PERCENT (For Test Image)

Real Data Simulated Data

TRUE FALSE TRUE FALSE

- Adaboost Discriminant 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA Adaboost Discriminant 115,0 0,0 0,0 0,0 100,00 100,00 100,00

Feature Selection Adaboost Discriminant 115,0 0,0 0,0 0,0 100,00 100,00 100,00

- Adaboost Tree 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA Adaboost Tree 115,0 0,0 0,0 0,0 100,00 100,00 100,00

Feature Selection Adaboost Tree 115,0 0,0 0,0 0,0 100,00 100,00 100,00

- Robustboost Discriminant 115,0 0,0 0,0 0,0 100,00 100,00 100,00

PCA Robustboost Discriminant 115,0 0,0 0,0 0,0 100,00 100,00 100,00

Feature Selection Robustboost Discriminant 115,0 0,0 0,0 0,0 100,00 100,00 100,00

% Class 1 

Perfor.

% Class 2 

Perfor.

% 

General 

Dimension 

Reduction
Ensemble Method

Test Results for Test Image (Image_27du)

Class 1 Class 2

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- Adaboost Discriminant 115,00 0,00 0,000 115,00 0,00 0,000

PCA Adaboost Discriminant 115,00 0,00 0,000 115,00 0,00 0,000

Feature Selection Adaboost Discriminant 115,00 0,00 0,000 115,00 0,00 0,000

- Adaboost Tree 115,00 0,00 0,000 115,00 0,00 0,000

PCA Adaboost Tree 115,00 0,00 0,000 115,00 0,00 0,000

Feature Selection Adaboost Tree 115,00 0,00 0,000 115,00 0,00 0,000

- Robustboost Discriminant 115,00 0,00 0,000 115,00 0,00 0,000

PCA Robustboost Discriminant 115,00 0,00 0,000 115,00 0,00 0,000

Feature Selection Robustboost Discriminant 115,00 0,00 0,000 115,00 0,00 0,000

Real Data
Dimension 

Reduction
Ensemble Method Simulated Data

MK INDEX PERCENT (For Test Image)
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Table 6.7 shows the results for Image_27du in Figure 6.1 (b) by using ensemble 

methods. All the cells are correctly classified by all methods. In Table 6.8, the 

calculated percentage of MK index for each classifier is given. The results are 

obtained with 100% accuracy for all methods. 

 

6.2 The Results of Grade of Differentiation Subtype 

 

The trained neural networks and ensemble classifiers for the grade of 

differentiation subtype are tested with the image given in Figure 6.2. This image 

includes 199 cells from Class 1 (tumor cells) and 14 cells from Class 2 

(differentiated cells). There are 1298 cells from Class 1 (tumor cells) and 14 cells 

from Class 2 (mitosis and karyorrhexis cells) in the training set. 

 

For the feature selection dimension reduction technique, five features are selected 

and used; autocorrelation, entropy, sum variance, difference variance, and difference 

entropy. 

 

 

 Figure 6.2 The image (Image_57_1) for analysis of 

grade of differentiation subtype. 

 

In Table 6.9, the test results for the trained neural networks with different 

resampling techniques are given. As seen from the table, the classification rates are 

quite high. Because of that, not all methods are tested for this subtype. Again, for the 
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neural networks the training and test procedures are performed 20 times and the 

averaged results are given in the table. 

 

Table 6.9 The classification performance results for the grade of differentiation subtype using neural 

networks. 

 

 

In Table 6.10, the percentage of MK index for each method is given. The general 

performance is around 98%. Since the classification rate is quite high, the calculated 

MK index percentage is very close to the true value.  

 

Table 6.10 The percentage of grade of differentiation results for the grade of differentiation subtype 

using neural networks. 

 

 

The test results using the ensemble classifiers with the same image are given in 

Table 6.11. The results of some methods are a little better when compared to neural 

networks. The worst performance is obtained as 97.18% and the best performance is 

obtained as 99.53%. 

 

TRUE FALSE TRUE FALSE

- - 196,95 2,05 13,35 0,65 98,97 95,36 98,73

PCA - 196,95 2,05 12,80 1,20 98,97 91,43 98,47

Feature Selection - 197,65 1,35 11,60 2,40 99,32 82,86 98,24

- Cross Validation 197,00 2,00 13,00 1,00 98,99 92,86 98,59

PCA Cross Validation 196,15 2,85 13,00 1,00 98,57 92,86 98,19

Feature Selection Cross Validation 196,80 2,20 12,40 1,60 98,89 88,57 98,22

- Bootstrap 196,90 2,10 13,10 0,90 98,94 93,57 98,59

PCA Bootstrap 197,15 1,85 13,00 1,00 99,07 92,86 98,66

Feature Selection Bootstrap 197,85 1,15 12,15 1,85 99,42 86,79 98,59

Class 1 Class 2 % Class 1 

Perfor.

% Class 2 

Perfor.

% 

General 

Test Results for Test Image (Image_27d)
Dimension 

reduction
Resampling Techniques

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- - 199 14 6,573 197,60 15,40 7,230

PCA - 199 14 6,573 198,15 14,85 6,972

Feature Selection - 199 14 6,573 200,05 12,95 6,080

- Cross Validation 199 14 6,573 198,00 15,00 7,042

PCA Cross Validation 199 14 6,573 197,15 15,85 7,441

Feature Selection Cross Validation 199 14 6,573 198,40 14,60 6,854

- Bootstrap 199 14 6,573 197,80 15,20 7,136

PCA Bootstrap 199 14 6,573 198,15 14,85 6,972

Feature Selection Bootstrap 199 14 6,573 199,70 13,30 6,244

Real Data Simulated Data

GRADE OF DIFFERENTIATION PERCENT (For Test Image)
Dimension 

Reduction
Resampling Techniques
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Table 6.11 The classification performance results for the grade of differentiation subtype using 

ensembe methods. 

 

 

The percentage of MK index for each classifier is given in Table 6.12. As seen 

from the table, AdaBoost discriminant method with no dimension reduction and 

RobustBoost discriminant method with no dimension reduction and PCA give the 

best performance. 

 

Table 6.12 The percentage of grade of differentiation results for the grade of differentiation subtype 

using ensemble methods. 

 

 

6.3 The Results of Using Different Number of Neurons at ANNs  

 

 One of the most important parameters of ANNs is the number of hidden neurons. 

In this section, we have performed some tests in order to see the effect of the number 

of hidden neurons. Tables 6.13 through 6.16 show the results for the MK index 

subtype by using cross validation and bootstrap methods. From these results, it 

follows that the number of neurons directly affects the performance. If the number of 

hidden neurons is fewer than the number of features, the classification performance 

TRUE FALSE TRUE FALSE

- Adaboost Discriminant 198,00 1,00 13,00 1,00 99,50 92,86 99,06

PCA Adaboost Discriminant 198,00 1,00 14,00 0,00 99,50 100,00 99,53

Feature Selection Adaboost Discriminant 197,00 2,00 10,00 4,00 98,99 71,43 97,18

- Adaboost Tree 198,00 1,00 14,00 0,00 99,50 100,00 99,53

PCA Adaboost Tree 197,00 2,00 13,00 1,00 98,99 92,86 98,59

Feature Selection Adaboost Tree 199,00 0,00 10,00 4,00 100,00 71,43 98,12

- RobustBoost Discriminant 198,00 1,00 13,00 1,00 99,50 92,86 99,06

PCA RobustBoost Discriminant 198,00 1,00 13,00 1,00 99,50 92,86 99,06

Feature Selection RobustBoost Discriminant 196,00 3,00 13,00 1,00 98,49 92,86 98,12

Dimension 

Reduction
Ensemble Method

Test Results for Test Image (Image_27d)

Class 1 Class 2 % Class 1 

Perfor.

% Class 2 

Perfor.

% 

General 

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- Adaboost Discriminant 199 14 6,573 199,00 14,00 6,573

PCA Adaboost Discriminant 199 14 6,573 198,00 15,00 7,042

Feature Selection Adaboost Discriminant 199 14 6,573 201,00 12,00 5,634

- Adaboost Tree 199 14 6,573 198,00 15,00 7,042

PCA Adaboost Tree 199 14 6,573 198,00 15,00 7,042

Feature Selection Adaboost Tree 199 14 6,573 203,00 10,00 4,695

- RobustBoost Discriminant 199 14 6,573 199,00 14,00 6,573

PCA RobustBoost Discriminant 199 14 6,573 199,00 14,00 6,573

Feature Selection RobustBoost Discriminant 199 14 6,573 197,00 16,00 7,512

Real Data Simulated Data
Dimension 

Reduction
Ensemble Method

GRADE OF DIFFERENTIATION PERCENT (For Test Image)
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decreases. It is seen that using more hidden neurons than the number of features 

increases the performance. However, using excessively many neurons decreases the 

performance. This may be attributed to the overfitting problem. 

 

Table 6.13 The classification performance results for MK index subtype using neural networks with 

different number of neurons. 

 

  

Table 6.14 The percentage of grade of differentiation results for MK index subtype using neural 

networks with different number of neurons. 

 

  

Table 6.15 The classification performance results for MK index subtype using neural networks with 

different number of neurons and with feature selection. 

 

 

Table 6.16 The percentage of grade of differentiation results for MK index subtype using neural 

networks with different number of neurons and with feature selection. 

 

TRUE FALSE TRUE FALSE

- Cross Validation 5 172,3 6,7 5,2 5,8 96,26 47,27 93,42

- Cross Validation 10 173,6 5,4 4,4 6,6 96,98 40,00 93,68

- Cross Validation 24 171,8 7,2 5,8 5,2 95,98 52,73 93,47

- Cross Validation 40 173,2 5,8 6,0 5,1 96,79 54,09 94,31

- Cross Validation 60 174,0 5,0 4,6 6,4 97,21 41,82 94,00

Resampling 

Techniques
# of Neurons

Test Results for Test Image (Image_31u)

Class 1 Class 2 % Class 1 

Perfor.

% Class 2 

Perfor.

% General 

Perfor.

Dimension 

Reduction

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- Cross Validation 5 179,00 11,00 5,789 178,10 11,90 6,263

- Cross Validation 10 179,00 11,00 5,789 180,20 9,80 5,158

- Cross Validation 24 179,00 11,00 5,789 177,00 13,00 6,842

- Cross Validation 40 179,00 11,00 5,789 178,25 11,70 6,160

- Cross Validation 60 179,00 11,00 5,789 180,40 9,60 5,053

Real Data Simulated Data
Resampling 

Techniques
# of Neurons

MK INDEX PERCENT (For Test Image)
Dimension 

Reduction

TRUE FALSE TRUE FALSE

Feature selection Bootstrap 2 176,9 2,1 2,2 8,8 98,83 20,00 94,26

Feature selection Bootstrap 6 175,3 3,7 2,8 8,2 97,93 25,45 93,74

Feature selection Bootstrap 10 176,1 2,9 2,6 8,4 98,38 23,64 94,05

Feature selection Bootstrap 40 174,3 4,7 5,1 5,9 97,37 46,36 94,42

Feature selection Bootstrap 60 176,9 2,1 3,2 7,8 98,83 29,09 94,79

Test Results for Test Image (Image_31u)

Class 1 Class 2

* After feature selection, the number of features is 6. 

Dimension 

Reduction

Resampling 

Techniques
# of Neurons % Class 1 

Perfor.

% Class 2 

Perfor.

% General 

Perfor.

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

Feature selection Bootstrap 2 179,00 11,00 5,789 185,70 4,30 2,263

Feature selection Bootstrap 6 179,00 11,00 5,789 183,50 6,50 3,421

Feature selection Bootstrap 10 179,00 11,00 5,789 184,50 5,50 2,895

Feature selection Bootstrap 40 179,00 11,00 5,789 180,20 9,80 5,158

Feature selection Bootstrap 60 179,00 11,00 5,789 184,70 5,30 2,789

MK INDEX PERCENT (For Test Image)
Dimension 

Reduction

Resampling 

Techniques
# of Neurons Real Data Simulated Data

* After feature selection, the number of features is 6. 
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Table 6.17 The classification performance results for the grade of differentiation subtype using neural 

networks with different number of neurons. 

 

 

Table 6.18 The percentage of grade of differentiation results for the grade of differentiation subtype 

using neural networks with different number of neurons. 

 

 

Table 6.19 The classification performance results for the grade of differentiation subtype using neural 

networks with different number of neurons and with feature selection. 

 
 

Table 6.20 The percentage of grade of differentiation results for the grade of differentiation subtype 

using neural networks with different number of neurons and with feature selection. 

 
 

The same tests are also performed for grade of differentiation subtype. Tables 

6.17 through 6.20 show the results. Since the classification is easier for this subtype, 

the effect of increasing the number of hidden neurons is not so evident. Nevertheless, 

similar comments can also be made for this subtype as well.

TRUE FALSE TRUE FALSE

- Cross Validation 5 196,9 2,1 13,0 1,0 98,94 92,86 98,54

- Cross Validation 10 196,8 2,2 13,0 1,0 98,89 92,86 98,50

- Cross Validation 24 196,8 2,2 13,1 0,9 98,89 93,57 98,54

- Cross Validation 40 197,0 2,0 13,0 1,0 98,99 92,86 98,59

- Cross Validation 60 197,0 2,0 13,0 1,0 98,99 92,86 98,59

Resampling 

Techniques
# of Neurons

Test Results for Test Image (Image_51d)

Class 1 Class 2 % Class 1 

Perfor.

% Class 2 

Perfor.

% General 

Perfor.

Dimension 

Reduction

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

- Cross Validation 5 199,00 14,00 6,573 197,90 15,10 7,089

- Cross Validation 10 199,00 14,00 6,573 197,80 15,20 7,136

- Cross Validation 24 199,00 14,00 6,573 197,70 15,30 7,183

- Cross Validation 40 199,00 14,00 6,573 198,00 15,00 7,042

- Cross Validation 60 199,00 14,00 6,573 198,00 15,00 7,042

Resampling 

Techniques
# of Neurons

GRADE OF DIFFERENTIATION PERCENT (For Test Image)

Real Data
Dimension 

Reduction
Simulated Data

TRUE FALSE TRUE FALSE

Feature selection Bootstrap 2 197,5 1,5 12,0 2,0 99,25 85,71 98,36

Feature selection Bootstrap 5 197,3 1,7 11,6 2,4 99,15 82,86 98,08

Feature selection Bootstrap 10 197,6 1,4 11,7 2,3 99,30 83,57 98,26

Feature selection Bootstrap 20 197,9 1,2 12,2 1,9 99,42 86,79 98,59

Feature selection Bootstrap 60 197,2 1,8 12,0 2,0 99,10 85,71 98,22

Class 1 Class 2 % Class 1 

Perfor.

% Class 2 

Perfor.

% General 

Perfor.

Dimension 

Reduction

Resampling 

Techniques
# of Neurons

Test Results for Test Image (Image_51d)

* After feature selection, the number of features is 5. 

# of Class1 # of Class 2 % # of Class1 # of Class 2 %

Feature selection Bootstrap 2 199,00 14,00 6,573 199,50 13,50 6,338

Feature selection Bootstrap 5 199,00 14,00 6,573 199,70 13,30 6,244

Feature selection Bootstrap 10 199,00 14,00 6,573 199,90 13,10 6,150

Feature selection Bootstrap 20 199,00 14,00 6,573 199,70 13,30 6,244

Feature selection Bootstrap 60 199,00 14,00 6,573 199,20 13,80 6,479

Simulated Data

* After feature selection, the number of features is 5. 

Real Data
Dimension 

Reduction

Resampling 

Techniques
# of Neurons

GRADE OF DIFFERENTIATED PERCENT (For Test Image)
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CHAPTER SEVEN 

CONCLUSIONS 

  

Neuroblastoma (NB) is a cancer of nerve cell origin commonly affecting infants 

and children. As described earlier, histopathological examinations performed by 

expert pathologists are required to characterize the histology for further treatment 

planning of the tumor. Throughout this thesis work, we have developed an algorithm 

by using image processing and classification techniques. The purpose of this 

algorithm is to develop a system which decreases the decision variations to the 

lowest level by simplifying the diagnosis for pathologists as much as possible. 

 

 Basically, we have used images with different magnification ratios, belonging to 

the tissue samples of NB patients. After the application of various image processing 

techniques, the feature matrices are created by using the extracted region and texture 

features. Since the classification problem is difficult and the color distribution of the 

cells creates a texture, we have used Haralick texture features. These feature matrices 

are used for the classification of the cells. The classification results are given in 

Chapter Six.  

 

 Two kinds of results are given for each subtype in Chapter Six; the first one is the 

classification performance results and the other one is the percentage of MK index 

results. The latter one is more important for pathologists, because they use this 

information for determining the stage of the disease. We have performed the tests 

with different options; various resampling methods and dimension reduction 

techniques are employed in order to obtain the best performance.  

 

For the MK index subtype, the best results are obtained employing the cross 

validation and bootstrap resampling methods with ANNs. AdaBoost Discriminant 

method has produced acceptable results when ensemble methods are utilized. The 

classification for this subtype is quite hard, because the number of mitosis and 

karyorrhexis cells is not sufficient as compared to the number of tumor cells. 

Besides, differentiating the cells is very difficult even with visual inspection. 
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Nevertheless, the employed methods have produced acceptable results for this 

subtype. 

 

 For the grade of differentiation subtype, the classification is easier when 

compared to MK index subtype. Because, for this subtype, distinction of the classes 

is more evident. Hence, the classification performance is better than the MK index 

subtype. The ensemble methods have produced somewhat better results when 

compared to ANNs, but generally the accuracy performance for both types are over 

98%.  

 

 We have also applied different number of hidden neurons for ANNs in order to 

observe its effect. It is seen from the results that it is necessary to use more neurons 

than the number of features. If the number of hidden neurons is insufficient when 

compared to the number of features, the classification performance decreases. 

Besides, using excessively many hidden neurons also decreases the classification 

performance.  

 

 In summary, during this thesis study, we have developed an algorithm to be used 

as an auxiliary tool for determining the stage of NB disease for pathologists. We 

have also tested the classification results of the algorithm by using different machine 

learning algorithms with different options. The results are generally acceptable and 

useful, although further research is necessary especially for the MK index subtype. 

Using more mitosis and karyorrhexis cell samples, extracting different features, and 

using different pre-processing techniques on the images are some recommendations 

that can be used for improving the classification performance. 
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