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LINK PREDICTION IN SOCIAL NETWORKS 

 

 

ABSTRACT 

 

Link prediction is used to forecast link evolution over time in networks. It has been 

used in several areas such as bioinformatics, online recommendation systems, e-

commerce sites, collaboration networks and social networks. Predicting user behavior has 

become crucial with the expansion of multiuser online systems. This study aims to 

provide an insight to performance characteristics, both in terms of effectiveness and 

efficiency, for several link prediction methods. Four fundamental link prediction methods 

(i.e., common neighborhood, Adamic-Adar, preferential attachment, and Jaccard 

coefficient) that have been reported in the literature, and a novel metric have been 

evaluated. The proposed metric makes predictions on the premise that a newly joined 

member tends to make connections with available nodes that are popular amongst the 

network. Real-life data sets obtained from the Stanford Large Network Dataset 

Collection. Common neighborhood, Adamic-Adar and preferential attachment metrics 

provided more successful results than the others in all networks. In terms of running time, 

preferential attachment, common neighborhood and the novel metric of this study are the 

fast-running ones. The highest F1-score is 0.12 in the email-Eu-core and Reddit networks 

achieved by the Adamic-Adar metric. This study presents and discusses the performance 

of several link prediction methods on temporal networks. It provides some insights for 

practical usage of link prediction metrics. 

 

Keywords: Link prediction, structure based metrics, temporal network 
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SOSYAL AĞLARDA BAĞLANTI TAHMİNİ 

 

ÖZ 

 

Bağlantı tahmini, ağlarda zamana göre değişen bağlantı gelişimini tahmin etmek için 

kullanılır. Biyoinformatik, çevrimiçi öneri sistemleri, e-ticaret siteleri, işbirliği ağları ve 

sosyal ağlar gibi çeşitli alanlarda kullanılır. Çok kullanıcılı çevrimiçi sistemlerin 

yaygınlaşmasıyla kullanıcı davranışını tahmin etmenin önemi arttı. Bu çalışma, çeşitli 

bağlantı tahmin yöntemleri için hem etkinlik hem de verimlilik açısından performans 

özelliklerine bir fikir vermeyi amaçlamaktadır. Literatürde bildirilen dört temel bağlantı 

tahmin yöntemi (Common Neighbourhood, Adamic-Adar, Preferential Attachment ve 

Jaccard Coefficient) ve sunulan yeni bir metot kullanılmıştır. Önerilen metot, yeni katılan 

bir üyenin ağ arasında popüler olan mevcut üyelerle bağlantı kurma eğiliminde olduğu 

varsayımıyla tahminlerde bulunur. Kullanılan gerçek veri setleri Stanford Large Network 

Dataset kütüphanesinden alınmıştır. En başarılı sonuçlara Common neighbourhood, 

Adamic-Adar ve Preferential attachment metotlarıyla ulaşılmıştır. En hızlı metrikler 

Preferential attachment, Adamic-Adar ve yeni metriktir. En yüksek F1 değeri, Adamic-

Adar metriğiyle email-Eu-core ve Reddit veri setlerinde 0,12 olarak hesaplanmıştır. Bu 

çalışma zamansal ağlar üzerindeki çeşitli bağlantı tahmin yöntemlerinin performansını 

sunmakta ve karşılaştırmaktadır. Bağlantı tahmini ölçümlerinin pratik kullanımı için 

bilgiler içermektedir.  

 

Anahtar kelimeler: Bağlantı tahmini, yapı tabanlı metrikler, zamansal ağ 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

 

Link prediction is connected to real life problems thus it is a popular research area. It 

can be used for recommender systems, socialization, finding potential collaborators, and 

online shopping (Wang, Zu, Wu & Zhou, 2015). To find out which entities may generate 

new links in the near future is a very important and challenging problem (Shan, Li, Zhang, 

Bai & Chen, 2020). For instance, accurate identification of product sets that would appeal 

to individual users in a large e-commerce system is becoming a greater challenge 

everyday as the number of available products and the size of userbases increase steadily. 

Tackling with such problems has opened way for ramifications in the approaches used 

for link prediction and several different strategies have been devised for this purpose.  

 

It is important to understand and use these data to correctly predict the behavior of the 

users. Especially for e-commerce sites and social media, the number of users and the time 

they spend online are two important parameters. To ensure that, making better predictions 

are significant. For example, when a user search for a product on Amazon it is crucial for 

site to suggest similar products that will attract interest of the user. If a user easily find 

the product he/she searches and leaves the site satisfied, it is more likely for him/her to 

visit this site again. This loyalty is important for Amazon to increase their profit. Another 

example is one of the most popular social media application Instagram, when users are 

able to find accounts that they want to follow or watch videos suitable for their interest 

they will continue to use the application. People can share photos about their lives, 

communicate with other people and this way they feel fulfilled. For an application to be 

popular delivering users what they want is critical. So, they need to understand the act of 

users and show matching accounts/products or brands to them. It is similar for Reddit as 

well, one of the data sources used in this study, when a user finds the subject he/she wants 
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to read about, he/she should be able to find other users comments and the application 

should offer other titles that would be appealing to the user. For online helping sites like 

Stack-overflow and Math-overflow, users post the questions and other users help them to 

solve that problem. They should retrieve similar questions when user searches for one. 

 

The motivation of this study is to propose a link prediction approach that explores 

multiple temporal network data sources and link prediction methods to increase the 

accurateness of predicted links. Besides, a novel metric is proposed and compared the 

results after evaluating with metrics. The methods are investigated and the type of 

networks the methods worked better on are explained. 

 

1.2 Problem Definition 

 

Subject of link prediction takes an important place in the field of graphs and networks. 

Link prediction techniques consist of node-based metrics, topology-based metrics, social-

theory-based metrics and machine learning based methods. Feature selection is the 

essential part of feature-based classification. Link prediction problem has six categories 

as temporal link prediction, link prediction in heterogeneous networks, link prediction 

with active and inactive links, link prediction in bipartite networks, link prediction for 

unfollow or disappearing links and link prediction scalability (Wang et al., 2015). In this 

study, topology based metrics have been used for temporal link prediction. 

 

In temporal networks entities are represented by nodes and relationships between them 

are represented by links. “Temporal link prediction problem is defined as graph G, G = 

(V, E) be a dynamic network, where V is the set of vertices and each edge (u, v) € E 

represents a link between u and v” (Divakaran & Mohan, 2020). These entities and 

relationships appear and disappear over time. Temporal link prediction is a task of 

predicting the links in a network that would appear in a near future at the t+1 time, by 

looking at the snapshots of the network from a period 1 to t time (Liben-Nowell & 

Kleinberg, 2007). Link prediction can be classified in three categories as the newly added 
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links, disappeared links or both (Gao, Musial, Cooper & Tsoka, 2015). This research is 

only focused on the newly added ones.   

 

Link prediction techniques can be grouped as node-based, topology-based and social 

theory. Topology-based techniques have sub categories as neighbor-based, path-based 

and random walk-based. In this study, link prediction is performed using different 

temporal networks and neighbor-based methods. Efficiency of neighbor-based methods 

is analyzed in terms of both accurate prediction of temporal links and running times of 

methods. 

 

1.3 Contribution 

 

Contribution of this study is twofold: the performance of four naive methods that have 

already been reported in the literature are realized, evaluated and analyzed both in 

effectiveness and in efficiency. Second, a novel method to predict future link evolution 

that can especially be useful in domains that include, but not limited to, e-commerce and 

social networks is proposed. 

 

 In this study, six real-life temporal data sets are used and the topology-based methods 

are evaluated. Presenting a comparative analysis of different networks, a solution to run 

big data sets in shorter time using chunks is found, so there is no need for special computer 

systems for evaluation. The results are compared to obtain which methods works better 

on which type of network. For this purpose, the relationship between the metrics that 

performed well and the networks that give the results are examined and the reasons are 

searched. 

 

Part of this thesis (Peten & Işık, 2021) had been accepted and presented in Global 

Conference on Engineering Research (GLOBCER’21). 
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1.4 Organization of the Thesis 

 

This thesis consists of five chapters organized as follows: 

 

In Chapter 2, detailed background information and literature review of relevant 

researches and approaches are provided. Thus, the history of the subject and the basic 

concepts are outlined and our approach to link prediction, evaluation metrics and 

temporal networks are correlated. 

 

In Chapter 3, we introduce our framework in terms of what we evaluate and measure 

and why we choose this methods and metrics. After that, we explain our preparation 

process such as creation of the graphs, finding the giant component and building the 

dictionaries. Then, we mention about our strategy and the aim of third-party tools used 

while compiling the code. We finalize with the details of execution. 

 

In Chapter 4, we present the experimental results of link prediction performance for 

each network and evaluate them in terms of precision, recall and F1-Score values. We 

also examine the compilation time of every network for each of the methods. We elect 

the most successful metrics and clarify the reasons behind. 

 

In Chapter 5, we conclude our study and mention about what can be added in the 

future.  
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CHAPTER TWO 

LITERATURE REVIEW 

  

In this chapter, relevant studies and techniques for link prediction will be introduced. 

Discussions and history of the subject will be given for seminal and significant studies.  

Similar studies will be examined in detail both in common and different point of views.  

 

2.1 Networks and Link Prediction 

 

Large amounts of data are encountered in countless examples in the real world, ranging 

from e-commerce systems to online forums. These data are considered to be networks 

among different pieces of entities and are often represented using graphs. In theory a 

network can be static, however, most of the examples seen in the real-world change over 

time. Such changes occur by the addition or deletion of entities and relationships over 

time, and networks that exhibit this kind of behavior are called dynamic or temporal 

networks (Casteigts, 2012; Holme, 2012; Kostakos, 2009). 

 

Since dynamic and temporal networks are in constant evolution it is very important to 

be able to predict how the network would change as time passes. Link prediction 

addresses this challenge and aims to predict the links in a changing network that would 

appear in its next state of period (Liben-Nowell & Kleinberg, 2007). Link prediction can 

take place in various scenarios to analyze and solve problems such as product 

recommendation, e-mail networks, co-author networks (Hasan & Zaki, 2011). 

 

Link prediction is not an easy task due to the time-varying structure of the temporal 

networks. There are several approaches reported in the literature to tackle this challenge. 

These approaches can be classified into mainly two categories: baseline methods, which 

employ relatively basic heuristics, and enhancements applied to these methods. There are 

many methods belonging to these categories, which will be discussed in the following 

subsections. 
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This study aims to evaluate the performance of selected neighborhood-based baseline 

methods, and a novel baseline prediction method that will be presented in the following 

chapter, in terms of both effectivity and efficiency. Therefore, it aims to provide an insight 

to practitioners that would use the selected methods in a real-world link prediction 

problem. 

 

2.2 Baseline Methods 

 

The baseline methods aim to use the current topology of the network. They define a 

similarity index for the nodes, calculate the values for the node tuples of the defined index 

for the current state of the network, and use these values to predict which links may come 

into existence and which links may be removed from the network in its next state.  

 

The Common Neighbor (CN) method (Yao, Wang, Pan & Yao, 2016) quantizes the 

similarity between two nodes by finding the number of nodes that are adjacent to both 

nodes. The higher the number of common neighbors the higher a similarity value to nodes 

get. An application of this method is the study by Yang-Tian & Zhang (2012) which aims 

to perform link prediction on a Facebook wall posts dataset. 

 

The Jaccard Coefficient (JC) (Jaccard, 1901) method uses a similar approach to CN, 

where it normalizes the number of common neighbors by taking into account the 

proportion of common neighbors to the total number of neighbors the nodes have. A pair 

with a higher ratio of common neighbors receive a higher similarity value in this method. 

Niwattanakul et al. (2013) uses this method to find the similarity between keywords and 

improve search performance for search engines. 

 

Adamic Adar (AA) (Adamic & Adar, 2003) formulation is like the reverse sibling of 

the JC formulation, where lower ratios receive higher values. It is seminally used to 

compute web page similarities. Liben-Nowel and Kleinberg (2007) use AA, among many 

other methods, to predict possible future collaborations in academic publishing. 
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Preferential Attachment (PA) (Barabasi, 2002) is based on the premise that nodes with 

high number of links are more likely to acquire new links. Thus, node pairs containing 

nodes with high degrees receive a greater similarity value. Capocci et al. (2006) use PA 

to build a statistical model in order to predict the growth of Wikipedia. 

 

Apart from the baseline methods discussed above, there are many other simple 

methods based on neighborhood in the network. Hub Promoted (Ravasx et al., 2002) and 

Hub Depressed (Zhou & Zhang, 2009) checks how overlapped two nodes neighbors are 

and assign a similarity value depending on the degree with higher and lower nodes, 

respectively. Leiht-Holme-Newman (2006) considers a ratio of number of common 

neighbors that exist over number of common neighbors expected to exist and assigns a 

higher value to those with a higher ratio. 

 

There also exist methods that are based on path-based metrics. For instance, Katz 

(Katz, 1953) computes all paths between two nodes and assigns higher similarity values 

to the links en route that would form the shortest path. FriendLink (Papadimitriou, 

Symeonidis & Manolopoulos, 2012) also computes all paths, however, bound the 

traversal length with a certain limit. Local Path (Lu, Jin & Zhou, 2009) augments 

neighborhood concept by not just taking the immediate neighbors but taking into account 

the neighbors that have a path length of 2 and 3. 

 

Some methods adopt a random traversal strategy, where a random walk is formed 

through neighbors and a probabilistic transition function is used to take the next step. 

Hitting Time (HT) (Fouss, Pirotte, Renders & Saerens, 2007) performs an arbitrary walk 

between two certain nodes to find the number of probable steps between them and assigns 

a higher prediction value to the links forming the path. Commute Time (Fouss et al., 2007) 

adds symmetry to HT by walking back. SimRank (Jeh & Widom, 2002) adopts a recursive 

approach and assumes two nodes are similar if they are connected to similar nodes. 

Rooted PageRank (Liben-Nowell & Kleinberg, 2007) uses probability to guess how likely 

a node is to be visited through a random walk and assigns ranks to nodes in order to find 
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similarity values. PropFlow (Lichtenwalter, Lussier & Chawla, 2010) is similar to the 

Rooted PageRank method, except that it limits the length of the path to be walked. 

 

2.3 Enhanced Methods 

 

There are various works that aim to enhance the aforementioned baseline methods. For 

instance, Xu & Zhang (2013) facilitates a time attribute to extend these methods and 

enhance the performance results. The paper proposes of active factor usage on two 

datasets, Citation Network and Cooperation Network collected from ArXiv. Preferential 

Attachment, Common Neighborhood, Jaccard Coefficient and Adamic-Adar methods are 

used with and without active factor. As a result, the AUC value of Preferential Attachment 

method increases 0.1, and becomes 0.9 with active factor while others remain same. 

 

Tylenda et al. (2009) propose to use network history to create edge weights and 

increase the performance of the Adamic Adar method. A novel testing method proposed 

and applied on the datasets DBLP and astro-ph. Normalized Discounted Cumulative Gain 

and Average Normalized Rank methods are defined, even though the score of the first 

method is similar, Preferential Attachment is better than the second method. The best 

precision score achieved by the random classifier on astro-ph data set is 8.56%. 

 

Facilitating machine learning approaches, to enhance the efficiency of baseline 

methods have also been reported in the literature by Ramya By et al. (2020). Twitch 

dataset, which is a network of gamers that consists of 7.126 nodes and 35.324 edges 

collected from the Stanford Large Network Dataset Collection. After random sampling 

applied to missing edges and edges that are already exist in the network are classified as 

positive and negative, 10 features used. The highest value of precision, recall, F1-Score 

and accuracy achieved using XGBoost algorithm, the accuracy value is 97.72%.  

 

Wohlfarth and Ichise (2008) propose to utilize semantic and event-based features to 

improve the prediction success while aiming to find researchers whose collaboration 
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would be highly prolific. Valverde-Rebeza and de Andrade Lopes (2013) suggests 

facilitating features based on Twitter users’ interests and behavior, thus augment the 

topology of the network with the community information, to predict future links in 

Twitter network. Pech et al. (2019) proposes to transform the link prediction problem into 

a linear optimization problem and use the solutions devised in this mature area. Menon 

and Elkan (2011) utilizes matrix factorization for link prediction. Pech et al. (2017) 

redefines the link prediction problem as a matrix completion problem to be able to use 

the solutions reported in that area. 
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CHAPTER THREE 

METHOD 

 

In this chapter, the formulas and the complexity of the link prediction methods will be 

given, after that data sets will be explained, followed by the preparation of the data. 

Finally, the evaluation details will be revealed.  

 

3.1 Neighbor-Based Link Prediction Methods 

 

This study focuses on neighbor-based metrics that take place under the topology-based 

techniques. Networks have been modelled as graph G = <V, E>, where V is the set of 

nodes and E is the set of edges. Summary of the applied methods in this study can be 

found below.  

 

3.1.1 Common Neighborhood 

 

Assumption of this method is if two nodes have lots of common neighbors the 

probability that they will be connected in the future is also high. If m is the average degree 

in a network, the running time complexity of this method is O (Nm2).  

  

𝐶𝑁(𝑥, 𝑦) = |Γ (x) ∩  Γ (y)| (3.1) 

 

where x, y denote nodes, N denotes number of nodes in the network. Γ (x) and Γ (y) 

denote the neighboring nodes of x and y, respectively (Tylenda et al., 2009). 

 

3.1.2 Jaccard Coefficient 

 

It supposes if neighbors of two nodes include lots of common neighbors, they are more 

likely to connect in the future. The running time complexity of this method is O (Nm2). 
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𝐽𝐶(𝑥, 𝑦) =
|Γ (x)∩ Γ (y)|

|Γ(x) ∪ Γ(y)|
 (3.2) 

 

3.1.3 Adamic-Adar Index 

 

This method assigns higher importance to node pairs with fewer common nodes. The 

running time complexity is also O (Nm2). 

 

𝐴𝐴(𝑥, 𝑦) = ∑
1

𝑙𝑜𝑔 |Γ(z)|𝑧∈Γ(𝑥)∩Γ(𝑦)  (3.3) 

 

where z is a common neighbor of node x and y. 

 

 3.1.4 Preferential Attachment 

 

This method gives higher scores to node pairs that have high degree. The running time 

complexity of this metrics is O (N2m2).          

                                     

𝑃𝐴(𝑥, 𝑦) = |Γ (x) ∗  Γ (y)| (3.4) 

 

3.1.5 Popularity Method 

 

Popularity method is a novel link prediction method recently proposed by Peten and 

Işık (2021). The motivation behind this new metric comes from daily used applications. 

Nowadays, most of the people sign up for social media and they make online shopping 

more frequently. When a new user signing up to a social media platform such as Twitter 

or Instagram, accounts of celebrities or popular people are directly suggested to follow 

for the new user. When a new user searches for something to watch, YouTube suggests 

the most popular videos. On the other hand, the best seller items are listed on e-commerce 

web sites like Amazon. As a result of such content suggestions, the chance of a new link 

occurrence between these two nodes in a network become higher.  
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The Popularity Method is conducted on the idea that a new node with fewer neighbors 

has a higher probability to connect nodes with many connections. The idea behind this 

method is similar to Preferential Attachment with an opposite manner, in Preferential 

Attachment both nodes should have high degree. The popularity method considers the 

degree values of all nodes then it sorts them; it gives a higher matching chance to lowly 

connected and highly connected ones by considering absolute value of their degree 

differences. 

 

𝑃𝑀(𝑥, 𝑦) = 𝑎𝑏𝑠(|Γ (x) −  Γ (y)|)  (3.5) 

 

3.2 Data sets 

 

The study has been conducted on six different temporal networks, downloaded from 

Stanford Large Network Dataset Collection (Leskovec, Krevl, 2021). The first one is 

Reddit Hyperlink Network; it represents the connections between two users. It has 55.863 

nodes and 858.490 edges. The attributes of the dataset are the source subreddit, target 

subreddit, post id, timestamp, link sentiment and properties. This network is directed, 

signed, temporal and attributed. Each post has a title and a body, therefore there are two 

networks, and the network with hyperlinks extracted from body of the posts has been used 

(Kumar, Hamilton, Leskovec & Jurafsky, 2018). Source subreddit, target subreddit and 

timestamp columns are used for experiments, the others are eliminated. The attribute 

information can be seen in Figure 3.1 below. 

 

 

Figure 3.1 The structure and attributes of the Reddit data set 
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The second data set is Stack Overflow temporal network; it consists of the answers, 

questions and comments on the stack exchange web site. This is the biggest data set with 

2.601.977 nodes and 63.497.050 temporal edges (Paranjape, Benson & Leskovec, 2017). 

Dataset has the source user, target user and timestamp information. Since, this data is too 

big, it is separated looking at the years as 2008 and 2009.  

 

The third data set is Math Overflow temporal network, like Stack Overflow it includes 

the interactions on the stack exchange web site Math Overflow. It has 24.818 nodes and 

506.550 temporal edges (Paranjape et al., 2017). Some of train and test sets can be seen 

in Figure 3.2 below. 

  

 

 

Figure 3.2 Example of seperated data as  train and test set for Math Overflow Network 

 

The fourth data set is another stack exchange interaction network named Super User. 

The dataset has 94.548 nodes and 479.067 temporal edges.  

 

The fifth data set is named email-Eu-core temporal network, an email data from a large 

research institution. A directed edge is created to save the information about sender, 

receiver, and the receipt time of the e-mail. For each recipient of the email, a separate 

edge is created.  This data has 986 nodes and 332.334 temporal edges (Yin, Benson, 

Leskovec & Gleich, 2017).  
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The sixth data set is Bitcoin Alpha trust weighted signed network, each member rate 

other members in a scale of -10 to 10 for trust. The network includes 3.783 nodes and 

24.186 edges. The attributes of the network are source id, target id, rating, and time 

(Kumar, Spezzano, Subrahmanian & Faloutsos, 2016).  

 

All the datasets are divided half as a train set and half as a test set, the node and edge 

numbers are given in the Table 3.1. For all data sets source, target and timestamp 

attributes are used. Timestamps are converted to date before separation of the data to clear 

the beginning and ending range of the train and test sets. An example of conversion code 

block is given in Figure 3.3.  

 

  Table 3.1 Total number of nodes and edges in train and test sets 

 

 

 

 

 

 

 

 

 

Figure 3.3 The code used of conversion of timestamp to date 

 

 

 

 

Dataset Train set Test set 

# of Nodes # of Edges # of Nodes # of Edges 

Reddit 14.584 60.030 14.584 59.475 

Stack Overflow 7.263 68.585 7.263 38.978 

Math Overflow 4.444 76.521 4.444 36.983 

Super User 10.903 52.860 10.903 23.055 

Email-Eu-core 793 10.705 793 10.589 

Bitcoin Alpha 582 582 2839 1561 
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3.3 Data Processing 

 

Temporal link prediction is a time related activity; therefore, datasets with timestamps 

have been used, the entire data was separated as training and test sets. A small example 

for construction steps of training and test sets is given in the Fig.  3.4 and Fig. 3.5 The 

metrics predict the potential links that will be added from time t to a given future time t’ 

(Tylenda et al., 2009). Based on this time interval operation, Fig.3.4 shows the separation 

of initial training set (on the left) and test set (on the right). The final training set is 

constructed by focusing the giant component, which is the largest cluster of connected 

nodes. The giant component can be seen in Figure 3.5 (on the left). The nodes that are in 

the test set but not in the train set have been eliminated and then final test set is obtained 

(the right panel of Fig. 3.5). 

 

        

     

Figure 3.4 Initial training set (on the left) and test set (on the right) 
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Figure 3.5 The final training set with giant component (on the left) and final test set (on the right) 

 

Train and test set networks are created as graphs with the help of Network X Python 

Library. Positive predictions and the existing links in the test set are stored in dictionaries.  

 

3.4 Evaluation Metrics 

 

For every dataset, a k threshold value is set, which is 10% of all of edges covered in 

the test set. Predictions are labeled as positive and negative; link prediction is regarded as 

a binary classification problem, the class label is specified by the existence of links 

(Leskovec et al., 2021). If two nodes have a connection in the final test set, we label them 

as positive, if there is no connection occurred between two nodes the edge label will be 

negative. If there is a link between two nodes in the training set (giant component) and 

the connection still remains in the final test set, the edge label will be positive, and 

negative otherwise. True positive reflects the number of node pairs that links are correctly 

identified as positive. False positive shows the number of node pairs that are incorrectly 

classified as positive. False negative shows the number of node pairs that links are 

incorrectly recognized as negative. True negative reflects the number of node pairs that 

are negative and truly predicted as negative (Shan, Li, Zhang & Chen, 2020). 

 

Precision, Recall and F1-Score have been used to measure the performance of each 

neighbor-based metric.  
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Precision shows us how many selected items are relevant. 

 

Precision =
True Positives

True Positives + False Positives
                                     (3.6) 

 

Recall shows us how many relevant items are selected. 

 

Recall =  
True Positives

True Positives + False Negatives
                                       (3.7) 

  

F1- Score is a combination of Precision and recall values and it show us the accuracy. 

 

F1. Score =  
2 ∗ (Precision ∗ Recall)

Precision + Recall
                                             (3.8) 

 

3.5 Evaluation  

 

3.5.1 Strategy 

 

The experiments that have been conducted to evaluate the selected methods consist of 

three major stages:  

 Input data preparation 

 Method execution 

 Result report generation 

 

Input data preparation is the stage where the graph that represents the network is 

created from the input data sets. The method execution phase consists of running the 

method realization codes that are fed with the graph, which has been prepared in the 

previous phase. Finally, result report generation includes saving the evaluation metrics 

that have been recorded during and after the method execution phase. This stage, which 

incorporates the steps to generate the result reports, calculates the evaluation metrics that 

have been discussed in Subsection 3.4 using the data recorded during the execution of the 
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prediction methods, formats the output, creates visualized presentations, and saves the 

result in a separate output file.   

 

Processing the graphs that have been created using real-world data sets pose a 

significant challenge due to the large amount of data that has been stored in the data sets. 

As presented in Subsection 3.2 the graphs include thousands of nodes and tens of 

thousands of edges. Therefore, trying to store all possible node pairs, which are candidates 

to be connected in the next state of the graph, grow exponentially and result in memory 

insufficiency very quickly. In order to overcome this problem, all candidate pairs have 

not been created at once but rather been processed using chunks of data, which enables 

freeing the memory portion used for a chunk after the chunk has been processed. By this 

approach the candidates have been processed chunk by chunk, growing the processed 

portion constantly until all is processed, obtaining the results for all possibilities without 

facing a memory problem.  

 

3.5.2 Implementation 

 

Experiments have been implemented in the Python programming language using 

PyCharm version 2019.3.3 Community edition (PyCharm, The Python IDE for 

Professional Developers).  

 

Since we are dealing with large graphs, it is essential to perform to computations with 

optimized methods. Also, another concern would be ensuring that the methods work 

effectively and efficiently. It would require a great deal of time and effort to develop such 

methods, therefore, we have preferred to use third party libraries in order to avoid such 

costs. We have chosen to use the NetworkX Python Library and Pandas Python Data 

Analysis Library (Network X, Network Analysis in Python; Pandas, Python Data 

Analysis Library). Both of the libraries are well known and open source. 
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Network x Python library is a useful helper package especially for complex networks. 

The version used is NetworkX 2.4. It is used for reading networks, creating graphs for 

train and test sets and for the evaluation of five methods explained in 3.1.  

 

Pandas Python Data Analysis Library is beneficial for data structures and data analysis. 

The version 1.2.4 is used for storing the results of the methods and writing the results to 

excel.  

 

Code file consists of mainly three segments. The first portion is responsible for reading 

the input datasets and creating the corresponding graphs. The NetworkX library methods 

have been utilized for this purpose as can be seen in Fig 3.6. Datasets for the train and 

test graphs are processed separately.  

 

 

 

Fig 3.6 Reading the inputs and separation of the graph as training-test sets 

 

Once the graphs are created, the isolated nodes are removed from the graphs in order 

to obtain the giant component. Since the main objective of the experiments are checking 

the success of the prediction methods on determining the addition of new links among 

existing nodes it is necessary to ensure that the train and test graphs contains the same set 

of nodes. To achieve this condition nodes that are exclusive to a single graph are removed 

from the graphs. The corresponding code part is given in Figure 3.7. This step concludes 

the first segment. 
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Figure 3.7 Finding the giant component 

 

Second segment aims to realize the experimentation framework for the methods that 

will be evaluated. Here the implementation for the framework for the Common 

Neighborhood evaluation will be discussed, implementation of the remainder frameworks 

is similar in nature and the reader can refer to Appendix 1 for the full implementation 

code.  

 

To determine the predictions of the common neighborhood method first number of 

common neighbors must be computed for each possible pair that can be extracted from 

the graph. A nested loop structure has been used to form these possible pairs (Fig. 3.8).  

 

 

 

Figure 3.8 Generation of the possible node pairs 

 

If a graph has n nodes then the number of possible node pairs, which is equivalent to 

choosing all subsets of the set of nodes where each subset cardinality is equal to exactly 

two, can be calculated with the following formula:  
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(𝑛
2

) =  
𝑛!

2! (𝑛−2)!
                                                        (3.9) 

 

Therefore, the number of potential pairs will be very large since it will be in the order 

of a factorial function. Due to this, it is not feasible to create all pairs at once and process 

them altogether. In order to achieve a feasible solution node pairs are created and 

processed chunk by chunk, where each chunk consists of 1000 pairs (Fig. 3.9). 

 

 

 

Figure 3.9 Dividing data into chunks 

 

After a chunk is created and filled with pairs, the number of common neighbors for 

the nodes in the pairs are computed for each pair in the chunk. Next, these calculated 

values are checked against the best values that have been encountered so far. Best 

candidates among the combined list of values are chosen and the remaining values are 

discarded (Fig. 3.10). With this approach only the best candidates (i.e., the pairs that will 

be included in the predictions of the evaluated method) are kept in the memory, which 

uses the memory efficiently and prevents memory insufficiency problems. With each step 

the portion of the processed pairs grow and results reflect the best candidates among the 

cumulative graph portion processed.   
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Figure 3.10 Choosing the best candidates 

 

Final code segment includes the computation of the metrics that will be used in the 

evaluation of the methods and generating a combined report of all metrics and 

visualization data for each of the methods evaluated. To achieve this goal, metrics are 

calculated right after a method is executed. Three types of metrics (i.e., Precision, Recall, 

F1-Score) have been computed, as mentioned in Subsection 3.4. In order to reach a more 

accurate view these metrics have been calculated for a series of number of picks ranging 

from 1 to a predefined value, and all of these metrics are included in the result report (Fig. 

3.11).  

 

 

 

Figure 3.11 Calculating the metrics 
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Metric calculations are performed by code encapsulated as a function, which is 

presented in Figure 3.12.   

 

Final segment is devoted to a report generation. Data gathered from the evaluation of 

methods are combined and presented in a user-friendly way with the aid of visual 

representations. The collected data is presented in an Excel file where columns denote the 

methods evaluated and rows include the performance values for the respective methods. 

A sample from the aforementioned file is given in Figure 3.13. 

 

 

 

Figure 3.12 Function that calculates the evaluation metrics 
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Figure 3.13 Example Precision values for the Reddit dataset 

 

Result presentation is also supported with visual representations, two example charts 

are presented in Figure 3.14 and Figure 3.15. 

 

 

 

Figure 3.14 Visual chart of the precision results for the Reddit data set 
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Figure 3.15 Visual chart of the F1-Score results for the Reddit data set 

 

3.5.3 Execution Setup 

 

All the experiments conducted on a computer with CPU Intel® Core™ i7-8750H, 

16GB RAM and Windows 10 Home operating system. Datasets are divided 50% - 50% 

for training and test sets. The Python program is executed from the command line and 

program is use its messages to the command window (Fig 3.16).  

 

 

 

Figure 3.16 An example run  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

In this section, first results of the measured metrics will be given as graphs and tables. 

All methods and results will be compared to each other and best performance metrics and 

methods will be revealed. Then, the reasons behind this success will be discussed.  

 

4.1 Results 

 

During the experiments three evaluation metrics have been measured: Precision, 

Recall, and F1-Score. As discussed in Subsection 3.4, these metrics have been computed 

for all values in the range 1 to k, thus, k-many metrics have been measured for each data 

set. Figures 4.1, 4.2, and 4.3 depict all computed values for the metrics precision, recall, 

and F1-score, respectively.  

 

The charts indicate that all of the methods have achieved their best performances for 

the precision metrics. It can be seen that three methods (i.e., PA, AA, and CN) stand out 

for all of the datasets. JC and PM generally got lower results, however, JC is the third 

best method for email-eu-core dataset. 
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Figure 4.1 The results evaluated by Precision 
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Figure 4.2 The results evaluated by Recall 

 

Recall metrics values indicate that methods can be categorized into three groups with 

respect to their performances. The first group consists of the methods AA, CN, and PA 

which usually outperform the other methods. Second group includes only the PM method 

which performs generally worse than the methods in the first group, however, better than 

JC. Worst performing method is JC, however, it must be noted that its performance 
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fluctuates significantly, for instance it is the third best performing method in the Email-

eu-core data set. However by far the worst method in the Stack overflow.  

 

 

 

 

 

Figure 4.3 The results evaluated by F1-score  
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method varies from dataset to dataset, hence, a specific method cannot be named. 

Differences between the performances of the methods also vary from dataset to dataset. 

For instance, the difference among the performances in the Reddit dataset is more 

significant than the difference in the e-mail-eu core dataset.  

 

Results provide a detailed view of how prediction methods perform on these datasets 

and enable deriving several simple metrics (e.g., precision), as well as more complex 

metrics (e.g., Area under curve) for evaluation. In the scope of this study all three chosen 

metrics require recordings at designated points. To achieve a more accurate evaluation, 

the values at the points where k has its maximum value, hence converges to a larger 

coverage, have been chosen. These values are presented in the Tables 4.1, 4.2, and 4.3, 

for the evaluation metrics precision, recall, and F1-Score, respectively.  

 

Table 4.1 Precision values at the points where k reaches the maximum value 

 

 Common 

Neighborhood 

Jaccard 

Coefficient 

Adamic/Adar 

Index 

Preferential 

Attachment 

Popularity 

Method 

Reddit 0.6252 0.003 0.0654 0.5138 0.0186 

Stack 

Overflow 
0.0612 0.0051 0.0674 0.0728 0.0121 

Math 

Overflow 
0.3521 0.0289 0.3601 0.3509 0.0656 

Super User 0.8260 0 0.8087 0.1165 0.1039 

Email-Eu-

core 
0.7391 0.6881 0.7620 0.5997 0.2431 

Bitcoin 

Alpha 
0.1813 0.0066 0.1933 0.1812 0.0403 

 

Some methods achieve full performance on several datasets, for instance, CN and AA 

for Reddit and Math Overflow. PM is generally outperformed by other methods except 

for the Bitcoin Alpha dataset. PA, CN, and AA generally perform better than JC. 
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Table 4.2 Recall values at the points where k reaches the maximum value 

 

 Common 

Neighborho

od 

Jaccard 

Coefficient 

Adamic/Adar 

Index 

Preferential 

Attachment 

Popularity 

Method 

Reddit 0.0620 0.0003 0.0648 0.0509 0.0018 

Stack Overflow 0.0061 0.0001 0.0067 0.0073 0.0012 

Math Overflow 0.0352 0.0029 0.0360 0.0351 0.0066 

Super User 0.0082 0 0.0081 0.0116 0.0104 

Email-Eu-core 0.0697 0.0649 0.0719 0.0566 0.0229 

Bitcoin Alpha 0.0173 0.0006 0.0185 0.0172 0.0038 

 

Results indicate that performances of the methods for the Recall metric show a 

resemblance to the Precision metric. For instance CN, AA, and PA generally outperform 

JC. However, results for the Recall metric are significantly lower than the Precision 

metric. For instance no method could achieve the maximum performance for any of the 

datasets.  

 

Table 4.3 F1-Score values at the points where k reaches the maximum value 

 

 Common 

Neighborhood 

Jaccard 

Coefficient 

Adamic/Adar 

Index 

Preferential 

Attachment 

Popularity 

Method 

Reddit 0.1129 0.0006 0.1180 0.0927 0.0034 

Stack 

Overflow 
0.0111 0.0001 0.0123 0.0132 0.0022 

Math 

Overflow 
0.0640 0.0053 0.0655 0.0638 0.0119 

Super User 0.0149 0 0.0146 0.0211 0.0188 

Email-Eu-

core 
0.1275 0.1187 0.1315 0.1033 0.0419 

Bitcoin Alpha 0.0316 0.0012 0.0339 0.0315 0.0070 

 

Performances of the methods are closer to each other for F1-Score values. The results 

of F1-Score are higher than recall metric and lower than precision metric. AA is the most 

successful method followed by JC on dataset Super User.  
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Another analysis was performed for the total completion (i.e., running) time of 

methods. As it can be seen in Table 4.4, the Popularity method is the fastest one for 

Bitcoin Alpha and Super user datasets; Common Neighborhood is the fastest method for 

Math overflow and email-Eu-core datasets; Preferential Attachment is the fastest for 

Reddit and Stack overflow datasets. 

 

Table 4.4 Total running time (in seconds) of the methods 

 

 Common 

Neighborhood 

Jaccard 

Coefficient 

Adamic/Adar 

Index 

Preferential 

Attachment 

Popularity 

Method 

Reddit 16052.35 33244.03 15400.69 15349.98 30809.00 

Stack 

Overflow 
9055.46 10591.01 9096.49 8452.78 9121.55 

Math 

Overflow 
5904.55 8412.74 6359.45 8724.07 8924.60 

Super 

User 
2211.78 2675.75 2226.40 1523.56 1484.36 

Email-Eu-

core 
99.35 123.96 100.77 102.79 141.72 

Bitcoin 

Alpha 
2.58 3.25 2.83 0.83 0.53 

 

4.5 Discussion 

 

An analysis of the precision metric reveals that the AA method outperforms the JC 

method in all of social networks that can be classified as untargeted social networks (i.e., 

datasets Reddit through Super User). Note that the Reddit, Stack overflow, math 

overflow, and super user data sets are regarded as untargeted since the posts in these 

networks do not specifically target an individual, whereas email-eu core dataset is 

regarded to be targeted since an email is sent with an explicit set of specifically targeted 

users. Recall that node pairs with a higher normalized value receive a higher similarity 

index in JC, hence, are more likely to be picked in the predictions. However, a higher 

ratio of number of existing common neighbors to all existing neighbors can indicate a 

sense of satisfaction, since it means the user has already posted several times in the topics 
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the user is interested in and it is unlikely that the same user would post in the same topics 

again and again.  

 

On the other hand, similar node pairs in AA (i.e., pairs with a higher normalized value) 

receive a lower similarity index, thus, are less likely to be picked. Rather, node pairs with 

a lower ratio are more likely to be picked. Since a lower ratio means the user has not 

posted many times on these topics yet, it still has room for growth (i.e., the user can grow 

interest in these topics throughout time). In these cases, AA bets on the probability that 

users will grow and shift their interests in different topics, whereas JC assumes the users 

will keep posting on the domain they already have experience.  

 

Results indicate that user behavior fits AA’s ideas more than JC’s ideas and tend to 

expend their territories to new regions. However, when the results for the eu-email-core 

dataset are checked it can be observed that there is no significant difference in the 

performances of these two methods. It can be explained with the following circumstances. 

Members of a large institution are less dynamic than users of an online forum, and 

timespan of projects may range over long periods of time. Therefore, nodes connected to 

similar edges are likely to be linked (i.e., people working on the same projects or 

departments send emails to each other) again and again, so it is expected that JC method 

would perform well. However, some projects can end and some people can move to 

different projects or divisions. Such cases allow new links to be formed among people 

that did not have much in common before. Therefore, it is also expected that AA method 

would perform as well.  

 

 When the results for the recall metric are analyzed, the most striking feature is the 

notably low results achieved by the JC method. JC performed very low, even close to 0 

for all the datasets except for the email-Eu-core dataset. This situation indicates that JC 

does not perform well when the false negative predictions are included in the metric 

calculations (because JC makes lots of false negative predictions.).  

 



 

34 

 

Methods that have performed relatively well according to the recall metric obtained 

better results as k grew. However, remaining methods’ performance do not significantly 

improve with larger k values. Hence, it would be a better choice to choose CN, AA, or 

PA with larger designated k values whenever the recall metric will be used (i.e., false 

negatives will figure in metric calculations) to evaluate the performance of prediction of 

the next state of a network.  

 

It is not surprising to observe similar results when the F1-Score metric is taken into 

consideration. This is largely due to the fact that the recall metric score figures in the 

calculations for the F1-Score metric, hence, has a direct impact on the performance of the 

methods with the F1-Score metric as well. The methods CN, AA, and PA generally obtain 

better scores in the F1-Score metric. Also, larger k values provide better results.  

 

Datasets that have been used in the experiments vary in size. There are large datasets 

that include hundreds of thousands of transactions (e.g., the reddit dataset) and form 

graphs that have thousands of nodes and tens of thousands of edges, as well as relatively 

smaller datasets that include only thousands of transactions (e.g., the bitcoin dataset) and 

form smaller graphs. Results indicate that methods exhibit generally consistent behavior 

in terms of evaluation metrics. Thus, it can be stated that all methods are scalable (i.e., 

provide similar performances in both large and small networks).   

 

It is obvious that regardless of the metric chosen, results on the datasets Reddit and 

email-Eu-core are better than the other datasets. These networks differ in size, however, 

the nodes in their graphs tend to form new links, since messages in these networks tend 

to get quick responses. For instance, when a reddit user posts something, the user specifies 

a certain group, by choosing a relevant topic, to specify who will read and answer. Other 

users who have already following these topics have a higher probability to answer this 

post due to the experience they gained. The email-Eu-core network represents email 

transactions and for each recipient of the email a separate connection is created, hence 

the probability of getting an answer in a short time is high. When all the metrics are taken 
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into account one can observe that the CN and AA methods are quite successful in the 

Reddit and email-Eu-core networks. These methods focus on the number of common 

neighbors between two given nodes. So, their better performance on these networks show 

that the future connections are accumulated on specific nodes which have triangle 

relationship with each other. 

 

Finally, when the running time performances of the methods are analyzed it can be 

seen that different methods finish first for different datasets. For instance, CN method has 

the fastest score for the Math overflow dataset, whereas the PM beats all the other 

methods for the Bitcoin-Alpha dataset. It must be noted that the chunk strategy that has 

been discussed in Section 3.5 decreases the demand for memory, however, affects 

runtime performance negatively. Nevertheless, no dramatic performance differences 

between the methods have been observed. Only one exception exists for this statement, 

which is the experiment conducted on the reddit dataset where the methods JC and PM 

perform twice as bad as the remaining methods. However, since majority of the results 

do not show such differences no method can be stated as the fastest.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

This study addresses the link prediction problem on temporal networks and aims to 

provide an insight to practitioners on the performance of four existing link prediction 

methods (i.e., common neighborhood, Adamic Adar, preferential attachment, and Jaccard 

coefficient) and a novel one (i.e., the popularity method). A number of experiments have 

been conducted to measure the performance of aforementioned methods using three well-

known evaluation metrics, which are precision, recall, and F1-score. Six datasets, which 

contain real-world data, of varying sizes have been used in the experiments.  

 

Experiments have been designed to measure the effectivity and efficiency of the 

prediction methods and have been implemented in the Python programming language. 

Third party tools such as Network X library is used to decrease development time while 

increasing efficiency and reliability.  

  

Analysis indicate that three methods, CN, AA, and PA, stand out in terms of 

performance evaluations. Regardless of the nature of the dataset used (e.g., four of them 

are derived from social networks, one from a financial network, and one from an email 

network) link prediction methods under evaluation showed similar performances. The 

novel link prediction method, the popularity method, recorded promising results, 

however, it is evident that there is still room for improvement since it could not 

outperform the three methods named above. As for scalability, all of the methods satisfied 

expectations since they did not exhibit any unpredictable and off the chart behavior on 

datasets of varying sizes. Runtime performances of all methods, regardless of how well 

they performed, did not depict significant differences. 

 

All of the methods evaluated in this study fall into the category of topology-based 

methods as they all rely on node-based information to do their predictions. However, 

there are various other heuristics such as using path-based information, adopting a 
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random traversal strategy, or facilitating enhanced tactics like using machine learning 

algorithms to improve performance. Thus, this study can be extended by adding methods, 

chosen from the aforementioned categories, to the experiments in order to obtain a larger 

view on performance statistics of link prediction methods. Such an expansion would 

provide a better view to the practitioners, hence, be more beneficial.  

 

As discussed before, the datasets that have been used in the experiments contain real-

world data and belong to different categories such as social networking and finance. 

Repeating the experiments designed in this study on other types of datasets (e.g., datasets 

created from e-commerce or co-authorship networks) would provide a better picture on 

the performances of methods and can even reveal new information on the characteristics 

of methods. Thus, it is desirable to extend the range of datasets used in the experiments 

to include a larger number of input datasets belonging to different domains as future work. 
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APPENDICES 

 

APPENDIX 1: FULL IMPLEMENTATION CODE 

 
import pandas as pd 

from networkx import nx 

#import matplotlib.pyplot as plt 

#import operator 

import time 

 

# The function that will compute the accuracy metrics for the given 

prediction lists# 

# posPredictionsDict : dictionary that includes the 'positive' predictions 

made by the method that will be evaluated 

# topK               : number of predictions that will be considered while 

measuring the accuracy 

# actualPosDict      : dictionary that includes the existing links in the 

test set 

 

def computeAccuracy(posPredictions, topK, actualPos): 

    tp = 0 

    fp = 0 

    fn = 0 

 

    # first check positive (true or false) predictions 

    for i in range(topK): 

        # if the method has predicted a link to be positive and the test 

set actually includes that link# 

        if posPredictions[i] in actualPos: 

            tp += 1 

        # if the method has predicted a link to be positive, however, the 

test set does NOT actually include that link# 

        else: 

            fp += 1 

 

    # next check false negative predictions# 

    fn = (len(actualPos) / 2) - tp 

 

    accuracy = [] 

 

    # Calculate precision 

    precision = tp / (tp + fp) 

    accuracy.append(precision) 

 

    # Calculate recall 

    recall = tp / (tp + fn) 

    accuracy.append(recall) 

 

    # Calculate F1 Score 

    f1score = 2 * (precision * recall) / (precision + recall) if 

(precision + recall) != 0 else 0 

    accuracy.append(f1score) 

    accuracy.append(tp) 

    accuracy.append(fp) 
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    accuracy.append(fn) 

 

    return accuracy 

 

# The function that will plot the charts in an excel sheet for the given 

computed values 

 

def plotChart(cnVals, jcVals, aaVals, paVals, pmvals, writer, sheetName): 

    computedValues = {'CN': cnVals, 'JC': jcVals, 'AA': aaVals, 'PA': 

paVals, "PM":pmvals} 

    df = pd.DataFrame(computedValues) 

    df = df.iloc[1:, ] 

    df.to_excel(writer, sheet_name=sheetName) 

 

    workbook = writer.book 

    worksheet = writer.sheets[sheetName] 

    chart = workbook.add_chart({'type': 'line'}) 

 

    rowCount = len(cnVals) 

    chart.add_series({'values': '=' + sheetName + '!$B$3:$B$' + 

str(rowCount), 'name': 'Com. Neig.'}) 

    chart.add_series({'values': '=' + sheetName + '!$C$3:$C$' + 

str(rowCount), 'name': 'Jac. Coef.'}) 

    chart.add_series({'values': '=' + sheetName + '!$D$3:$D$' + 

str(rowCount), 'name': 'Adamic/Adar'}) 

    chart.add_series({'values': '=' + sheetName + '!$E$3:$E$' + 

str(rowCount), 'name': 'Pref. Att.'}) 

    chart.add_series({'values': '=' + sheetName + '!$F$3:$F$' + 

str(rowCount), 'name': 'Pop. Met.'}) 

 

    worksheet.insert_chart('J2', chart) 

 

def plotDetailedChart(precisionVals, tpVals, fpVals, fnVals, header, 

writer, sheetName): 

    computedValues = {header: precisionVals, 'TP': tpVals, 'FP': fpVals, 

'FN': fnVals} 

    df = pd.DataFrame(computedValues) 

    df = df.iloc[1:, ] 

    df.to_excel(writer, sheet_name=sheetName) 

 

    workbook = writer.book 

    worksheet = writer.sheets[sheetName] 

    chart = workbook.add_chart({'type': 'line'}) 

 

    rowCount = len(precisionVals) 

    chart.add_series({'values': '=' + sheetName + '!$B$3:$B$' + 

str(rowCount), 'name': 'Precision'}) 

 

    worksheet.insert_chart('H2', chart) 

 

# Computation and evaluation of the predictions according to the "Common 

Neighborhood" method#  

 

def commonNeighborhood(): 

    print("Evaluating the \"Common Neighborhood\" method....... ", end='', 

flush=True) 
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    startingTime = time.time() 

 

    # First compute the common neighborhood scores 

    i = 0 

    j = 0 

    chunkSetOfPossibleLinks = [] 

    topNumberOfCommons = [] 

    chunkCounter = 0 

    for i in range(len(setOfNodes)): 

        for j in range(i+1, len(setOfNodes)): 

            chunkSetOfPossibleLinks.append((setOfNodes[i], setOfNodes[j])) 

            if len(chunkSetOfPossibleLinks) == chunkSize: 

                chunkNumberOfCommons = [(e[0], e[1], 

len(list(nx.common_neighbors(trainingSet, e[0], e[1])))) for e in 

chunkSetOfPossibleLinks] 

 

# Combine the top nodes with maximum common neighbors found so far with 

the ones computed for the current chunk 

                combined = topNumberOfCommons + chunkNumberOfCommons 

 

# Choose the new top nodes with maximum common neighbors 

                sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

                topNumberOfCommons = sortedCombined[0:chunkSize] 

 

# Empty the set of possible links so that a fresh start can be done for 

the next chunk 

                chunkSetOfPossibleLinks = [] 

 

                chunkCounter += 1 

 

# If there's a remaining chunk, smaller than the predetermined size, 

process it as well 

    if len(chunkSetOfPossibleLinks) > 0: 

        chunkNumberOfCommons = [(e[0], e[1], 

len(list(nx.common_neighbors(trainingSet, e[0], e[1])))) for e in 

chunkSetOfPossibleLinks] 

 

        combined = topNumberOfCommons + chunkNumberOfCommons 

        sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

        topNumberOfCommons = sortedCombined[0:chunkSize] 

 

        chunkCounter += 1 

 

# Now that the top common neighborhood scores are computed, evaluate the 

method for different number of picks # 

    cnPrecisionValues.append(0) 

    cnRecallValues.append(0) 

    cnF1ScoreValues.append(0) 

    cnTPValues.append(0) 

    cnFPValues.append(0) 

    cnFNValues.append(0) 

    for k in range(1, maxNoOfPicks+1): 

        # Consider only the top-k predictions 

        pickedPredictions = topNumberOfCommons[0:k] 
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        # Reformat for the comparisons 

        positivePredictions = [] 

        for i in range(len(pickedPredictions)): 

            data = str(pickedPredictions[i][0]) + str(separators[0]) + 

str(pickedPredictions[i][1]) 

            positivePredictions.append(data) 

 

# Compute the accuracy for the predictions (for top numberOfTopLinks 

links) 

        results = computeAccuracy(positivePredictions, k, actualPositives) 

 

        cnPrecisionValues.append(results[0]) 

        cnRecallValues.append(results[1]) 

        cnF1ScoreValues.append(results[2]) 

        cnTPValues.append(results[3]) 

        cnFPValues.append(results[4]) 

        cnFNValues.append(results[5]) 

 

    endingTime = time.time() 

    elapsedTime = endingTime - startingTime 

 

    print("Done! (in %3.2f seconds)" % (elapsedTime), flush=True) 

 

# Computation and evaluation of the predictions according to the "Jaccard 

Coefficient" method 

 

def jaccardCoefficient(): 

    print("Evaluating the \"Jaccard Coefficient\" method....... ", end='', 

flush=True) 

    startingTime = time.time() 

 

    # First compute the similarity coefficient scores 

    i = 0 

    j = 0 

    chunkSetOfPossibleLinks = [] 

    topSimilarityCoefficients = [] 

    chunkCounter = 0 

    for i in range(len(setOfNodes)): 

        for j in range(i+1, len(setOfNodes)): 

            chunkSetOfPossibleLinks.append((setOfNodes[i], setOfNodes[j])) 

            if len(chunkSetOfPossibleLinks) == chunkSize: 

                chunkSimilarityCoefficients = 

list(nx.jaccard_coefficient(trainingSet, chunkSetOfPossibleLinks)) 

 

# Combine the top nodes with maximum similarity coefficients found so far 

with the ones computed for the current chunk 

                combined = topSimilarityCoefficients + 

chunkSimilarityCoefficients 

 

# Choose the new top nodes with maximum similarity coefficients 

                sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

                topSimilarityCoefficients = sortedCombined[0:chunkSize] 

 

# Empty the set of possible links so that a fresh start can be done for 

the next chunk 

                chunkSetOfPossibleLinks = [] 
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                chunkCounter += 1 

 

# If there's a remaining chunk, smaller than the predetermined size, 

process it as well 

    if len(chunkSetOfPossibleLinks) > 0: 

        chunkSimilarityCoefficients = 

list(nx.jaccard_coefficient(trainingSet, chunkSetOfPossibleLinks)) 

 

        combined = topSimilarityCoefficients + chunkSimilarityCoefficients 

        sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

        topSimilarityCoefficients = sortedCombined[0:chunkSize] 

 

        chunkCounter += 1 

 

    # Now that the top similarity coefficient scores are computed, 

evaluate the method for different number of picks 

    jcPrecisionValues.append(0) 

    jcRecallValues.append(0) 

    jcF1ScoreValues.append(0) 

    jcTPValues.append(0) 

    jcFPValues.append(0) 

    jcFNValues.append(0) 

 

    for k in range(1, maxNoOfPicks+1): 

        # Consider only the top-k predictions 

        pickedPredictions = topSimilarityCoefficients[0:k] 

 

        # Reformat for the comparisons 

        positivePredictions = [] 

        for i in range(len(pickedPredictions)): 

            data = str(pickedPredictions[i][0]) + str(separators[0]) + 

str(pickedPredictions[i][1]) 

            positivePredictions.append(data) 

# Compute the accuracy for the predictions (for top numberOfTopLinks 

links) 

        results = computeAccuracy(positivePredictions, k, actualPositives) 

 

        jcPrecisionValues.append(results[0]) 

        jcRecallValues.append(results[1]) 

        jcF1ScoreValues.append(results[2]) 

        jcTPValues.append(results[3]) 

        jcFPValues.append(results[4]) 

        jcFNValues.append(results[5]) 

 

    endingTime = time.time() 

    elapsedTime = endingTime - startingTime 

 

    print("Done! (in %3.2f seconds)" % (elapsedTime), flush=True) 

 

# Computation and evaluation of the predictions according to the 

"Adamic/Adar Index" method 

def adamicAdarIndex(): 

    print("Evaluating the \"Adamic/Adar Index\" method......... ", end='', 

flush=True) 
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    startingTime = time.time() 

 

    # First compute the Adamic/Adar scores 

    i = 0 

    j = 0 

    chunkSetOfPossibleLinks = [] 

    topAAScores = [] 

    chunkCounter = 0 

    for i in range(len(setOfNodes)): 

        for j in range(i+1, len(setOfNodes)): 

            chunkSetOfPossibleLinks.append((setOfNodes[i], setOfNodes[j])) 

            if len(chunkSetOfPossibleLinks) == chunkSize: 

                chunkAAScores = list(nx.adamic_adar_index(trainingSet, 

chunkSetOfPossibleLinks)) 

 

# Combine the top nodes with maximum AA scores found so far with the 

onescomputed for the current chunk 

                combined = topAAScores + chunkAAScores 

 

# Choose the new top nodes with maximum AA scores 

                sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

                topAAScores = sortedCombined[0:chunkSize] 

 

                # Empty the set of possible links so that a fresh start 

can be done for the next chunk 

                chunkSetOfPossibleLinks = [] 

 

                chunkCounter += 1 

 

# If there's a remaining chunk, smaller than the predetermined size, 

process it as well 

    if len(chunkSetOfPossibleLinks) > 0: 

        chunkAAScores = list(nx.adamic_adar_index(trainingSet, 

chunkSetOfPossibleLinks)) 

 

        combined = topAAScores + chunkAAScores 

        sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

        topAAScores = sortedCombined[0:chunkSize] 

 

        chunkCounter += 1 

 

# Now that the top Adamic/Adar scores are computed, evaluate the method 

for different number of picks 

    aaPrecisionValues.append(0) 

    aaRecallValues.append(0) 

    aaF1ScoreValues.append(0) 

    aaTPValues.append(0) 

    aaFPValues.append(0) 

    aaFNValues.append(0) 

 

    for k in range(1, maxNoOfPicks+1): 

        # Consider only the top-k predictions 

        pickedPredictions = topAAScores[0:k] 

 

        # Reformat for the comparisons 
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        positivePredictions = [] 

        for i in range(len(pickedPredictions)): 

            data = str(pickedPredictions[i][0]) + str(separators[0]) + 

str(pickedPredictions[i][1]) 

            positivePredictions.append(data) 

 

# Compute the accuracy for the predictions (for top numberOfTopLinks 

links) 

        results = computeAccuracy(positivePredictions, k, actualPositives) 

 

        aaPrecisionValues.append(results[0]) 

        aaRecallValues.append(results[1]) 

        aaF1ScoreValues.append(results[2]) 

        aaTPValues.append(results[3]) 

        aaFPValues.append(results[4]) 

        aaFNValues.append(results[5]) 

 

    endingTime = time.time() 

    elapsedTime = endingTime - startingTime 

 

    print("Done! (in %3.2f seconds)" % (elapsedTime), flush=True) 

 

# Computation and evaluation of the predictions according to the 

"Preferential Attachment" method 

def preferentialAttachment(): 

    print("Evaluating the \"Preferential Attachment\" method... ", end='', 

flush=True) 

 

    startingTime = time.time() 

 

    # First compute the degree scores 

    i = 0 

    j = 0 

    chunkSetOfPossibleLinks = [] 

    topDegreeScores = [] 

    chunkCounter = 0 

    for i in range(len(setOfNodes)): 

        for j in range(i+1, len(setOfNodes)): 

            chunkSetOfPossibleLinks.append((setOfNodes[i], setOfNodes[j])) 

            if len(chunkSetOfPossibleLinks) == chunkSize: 

                chunkDegreeScores = 

list(nx.preferential_attachment(trainingSet, chunkSetOfPossibleLinks)) 

 

# Combine the top nodes with maximum degree scores found so far with the 

ones 

# computed for the current chunk 

                combined = topDegreeScores + chunkDegreeScores 

 

# Choose the new top nodes with maximum degree scores 

                sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

                topDegreeScores = sortedCombined[0:chunkSize] 

 

# Empty the set of possible links so that a fresh start can be done for 

the next chunk 

                chunkSetOfPossibleLinks = [] 
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                chunkCounter += 1 

 

# If there's a remaining chunk, smaller than the predetermined size, 

process it as well 

    if len(chunkSetOfPossibleLinks) > 0: 

        chunkDegreeScores = list(nx.preferential_attachment(trainingSet, 

chunkSetOfPossibleLinks)) 

 

        combined = topDegreeScores + chunkDegreeScores 

        sortedCombined = sorted(combined, key=lambda x: x[2], 

reverse=True) 

        topDegreeScores = sortedCombined[0:chunkSize] 

 

        chunkCounter += 1 

 

# Now that the top degree scores are computed, evaluate the method for 

different number of picks 

    paPrecisionValues.append(0) 

    paRecallValues.append(0) 

    paF1ScoreValues.append(0) 

    paTPValues.append(0) 

    paFPValues.append(0) 

    paFNValues.append(0) 

 

    for k in range(1, maxNoOfPicks+1): 

        # Consider only the top-k predictions 

        pickedPredictions = topDegreeScores[0:k] 

 

        # Reformat for the comparisons 

        positivePredictions = [] 

        for i in range(len(pickedPredictions)): 

            data = str(pickedPredictions[i][0]) + str(separators[0]) + 

str(pickedPredictions[i][1]) 

            positivePredictions.append(data) 

 

# Compute the accuracy for the predictions (for top numberOfTopLinks 

links) 

        results = computeAccuracy(positivePredictions, k, actualPositives) 

 

        paPrecisionValues.append(results[0]) 

        paRecallValues.append(results[1]) 

        paF1ScoreValues.append(results[2]) 

        paTPValues.append(results[3]) 

        paFPValues.append(results[4]) 

        paFNValues.append(results[5]) 

 

    endingTime = time.time() 

    elapsedTime = endingTime - startingTime 

 

    print("Done! (in %3.2f seconds)" % (elapsedTime), flush=True) 

 

# Computation and evaluation of the predictions according to the 

"Popularity" method 

 

def popularityMethod(): 

    print("Evaluating the \"Popularity\" method.......... ", end='', 

flush=True) 
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    startingTime = time.time() 

 

    linkCount = [] 

    for n in setOfNodes: 

        count = trainingSet.degree[n] 

        linkCount.append((n, count)) 

 

    sortedLinkCount = sorted(linkCount, key=lambda x: x[1], reverse=True) 

 

    length = len(sortedLinkCount) 

    combined = [] 

    for i in range(length-1): 

        n1 = sortedLinkCount[i][0] 

        c1 = sortedLinkCount[i][1] 

 

        for j in range(i+1, length-1): 

            n2 = sortedLinkCount[j][0] 

            c2 = sortedLinkCount[j][1] 

            diff = abs(c1 - c2) 

            combined.append((n1, n2, diff)) 

 

    sortedPMScores = sorted(combined, key=lambda x: x[2], reverse=True) 

    topPMScores = sortedPMScores[0:chunkSize] 

 

# Now that the top P.M. scores are computed, evaluate the method for 

different number of picks 

 

    pmPrecisionValues.append(0) 

    pmRecallValues.append(0) 

    pmF1ScoreValues.append(0) 

    pmTPValues.append(0) 

    pmFPValues.append(0) 

    pmFNValues.append(0) 

    for k in range(1, maxNoOfPicks+1): 

        # Consider only the top-k predictions 

        pickedPredictions = topPMScores[0:k] 

 

        # Reformat for the comparisons 

        positivePredictions = [] 

        for i in range(len(pickedPredictions)): 

            data = str(pickedPredictions[i][0]) + str(separators[0]) + 

str(pickedPredictions[i][1]) 

            positivePredictions.append(data) 

 

# Compute the accuracy for the predictions (for top numberOfTopLinks 

links) 

        results = computeAccuracy(positivePredictions, k, actualPositives) 

 

        pmPrecisionValues.append(results[0]) 

        pmRecallValues.append(results[1]) 

        pmF1ScoreValues.append(results[2]) 

        pmTPValues.append(results[3]) 

        pmFPValues.append(results[4]) 

        pmFNValues.append(results[5]) 

 

    endingTime = time.time() 
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    elapsedTime = endingTime - startingTime 

 

    print("Done! (in %3.2f seconds)" % (elapsedTime), flush=True) 

 

# EXECUTION 

# Reading the input networks 

 

print("Reading input networks...", end=' ', flush=True) 

 

# Training Network 

trainingNetwork = nx.read_edgelist("email-Eu_train.txt", 

create_using=nx.Graph()) 

conCompsInTraining = sorted(nx.connected_components(trainingNetwork), 

key=len, reverse=True) 

trainingSet = trainingNetwork.subgraph(conCompsInTraining[0]).copy() 

 

# Test Network 

testNetwork = nx.read_edgelist("email-Eu_test.txt", 

create_using=nx.Graph()) 

testSet = testNetwork.copy() 

 

# Eliminate nodes that are not common to both networks 

trainingSet.remove_nodes_from(n for n in trainingNetwork if n not in 

testSet) 

testSet.remove_nodes_from(n for n in testNetwork if n not in trainingSet) 

 

# Islands may come into existence in the trainingSet after the above step 

(e.g., when a node that exists in the testSet but not in the trainingSet -

i.e., a node that had been added over time- has been removed from the 

trainingSet). Such cases destroy the assumption of giant component being 

connected, thus, it's necessary to make sure that no such case arises. If 

such a case has been detected, then the trainingSet and the testSet must 

be re-computed to obey this requirement. 

 

conCompsInTraining = sorted(nx.connected_components(trainingSet), key=len, 

reverse=True) 

giantComponent = trainingSet.subgraph(conCompsInTraining[0]).copy() 

 

if len(trainingSet.nodes) != len(giantComponent.nodes): 

    trainingSet = giantComponent 

    testSet.remove_nodes_from(n for n in testNetwork if n not in 

trainingSet) 

 

print("Done!", flush=True) 

 

print("TRAIN SET: Nodes: " + str(len(trainingSet.nodes)) + ", Edges: " + 

str(len(trainingSet.edges)), flush=True) 

print("TEST SET : Nodes: " + str(len(testSet.nodes)) + ", Edges: " + 

str(len(testSet.edges)), flush=True) 

 

# Computation of the metrics for the training and the test sets 

 

# the set of nodes 

setOfNodes = list(trainingSet.nodes()) 

 

separators = ['#'] 
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# change these values as you wish 

chunkSize = 17000 

maxNoOfPicks = 1000 

 

print("Parsing the actual positive links...", end=' ', flush=True) 

# Dictionary that reflects the links in the test set 

existingLinksInTestSet = list(testSet.edges) 

 

actualPositives = [] 

for i in range(len(existingLinksInTestSet)): 

    data = str(existingLinksInTestSet[i][0]) + str(separators[0]) + 

str(existingLinksInTestSet[i][1]) 

    actualPositives.append(data) 

    data = str(existingLinksInTestSet[i][1]) + str(separators[0]) + 

str(existingLinksInTestSet[i][0]) 

    actualPositives.append(data) 

 

print("Done!", flush=True) 

 

# Running the Methods 

 

cnPrecisionValues = [] 

cnRecallValues = [] 

cnF1ScoreValues = [] 

cnTPValues = [] 

cnFPValues = [] 

cnFNValues = [] 

 

jcPrecisionValues = [] 

jcRecallValues = [] 

jcF1ScoreValues = [] 

jcTPValues = [] 

jcFPValues = [] 

jcFNValues = [] 

 

aaPrecisionValues = [] 

aaRecallValues = [] 

aaF1ScoreValues = [] 

aaTPValues = [] 

aaFPValues = [] 

aaFNValues = [] 

 

paPrecisionValues = [] 

paRecallValues = [] 

paF1ScoreValues = [] 

paTPValues = [] 

paFPValues = [] 

paFNValues = [] 

 

pmPrecisionValues = [] 

pmRecallValues = [] 

pmF1ScoreValues = [] 

pmTPValues = [] 

pmFPValues = [] 

pmFNValues = [] 

 

commonNeighborhood() 
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jaccardCoefficient() 

adamicAdarIndex() 

preferentialAttachment() 

popularityMethod() 

 

# Generating the resulting charts 

 

print("Generating the resulting charts... ", end='', flush=True) 

 

fileName = "eu-core" + ".xlsx" 

writer = pd.ExcelWriter(fileName, engine='xlsxwriter') 

 

plotChart(cnRecallValues,    jcRecallValues,    aaRecallValues,    

paRecallValues, pmRecallValues, writer, "Recall") 

plotChart(cnPrecisionValues, jcPrecisionValues, aaPrecisionValues, 

paPrecisionValues, pmPrecisionValues, writer, "Precision") 

plotChart(cnF1ScoreValues,   jcF1ScoreValues,   aaF1ScoreValues,   

paF1ScoreValues, pmF1ScoreValues, writer, "F1.score") 

 

plotDetailedChart(cnPrecisionValues, cnTPValues, cnFPValues, cnFNValues, 

"CN-Precision", writer, "CN-Precision") 

plotDetailedChart(jcPrecisionValues, jcTPValues, jcFPValues, jcFNValues, 

"JC-Precision", writer, "JC-Precision") 

plotDetailedChart(aaPrecisionValues, aaTPValues, aaFPValues, aaFNValues, 

"AA-Precision", writer, "AA-Precision") 

plotDetailedChart(paPrecisionValues, paTPValues, paFPValues, paFNValues, 

"PA-Precision", writer, "PA-Precision") 

plotDetailedChart(pmPrecisionValues, pmTPValues, pmFPValues, pmFNValues, 

"PM-Precision", writer, "PM-Precision") 

 

writer.save() 

 

print("Done!", flush=True) 


