COMPUTER AIDED
ANTENNA CONTROL UNIT DESIGN
USING STEPPER MOTORS

Ebru (AYVAZ)TASCI

September,1998
IZMIR

COMPUTER AIDED
ANTENNA CONTROL UNIT DESIGN
USING STEPPER MOTORS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for
the Degree of Master of Science in Electrical-Electronics

Engineering, Electronics-Telecommunication Program

By

Ebru (AYVAZ) TASCI

September,1998

IZMiR

ii

ii

M.Se¢ THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

- \Mv{éww /

Assoc.Prof.Dr.Eyiip Akpinar
(Advisor)

=

(Committee Member)

e, L. UNGAN

(Committee Member)

Approved by the
Graduate School of Natural and Applied

Sciences

Prof.Dr. Cahit Helvac:

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Assoc.Prof.Dr. Eylip Akpinar for his kind
supervision, supports and valuable comments.

I wish to thank Tiirk Telekom Satellite Communication Centre Tiirksat Satellites
Ground Control Station for the facilities provided that made this work possible.

I wish to thank my dear husband Alper Tagc1 for his never-lasting encouragement
and guidance at all stages of this work and to my parents for their supports.

I wish to thank my dear friend and colleague Sinan Ozcan for his help in the design

of the system software and my dear colleague Y.Goksel Eren for his valuable comments.

ABSTRACT

The object of this thesis is to design and implement computer aided satellite antenna

control unit system for open loop control of its motion in two axis.

In order to control the direction of satellite antenna in this system, stepper motors
are used. The motions of the stepper motors are controlled according to the commands

directed from a computer via parallel port.

In this design, software has a great importance on the system performance. In order
to control the motion of stepper motors and to make the necessary calculations and the
visual design, the system software has been prepared. The programming language Borland

C 5.0++ for Windows95 is used. The system software consists of three sections.

In first section, the coordinates (longitude and latitude) of any selected point in
Turkey map are calculated. In second section, azimuth and elevation angles which antenna
will rotate in the same point are calculated by using longitude and latitude values. In last
section, two stepper motors are rotated according to the calculated azimuth and elevation
angles. The antenna must have been set to a reference position before and after every

installation for making the proper rotation.

vi

OZET

Bu tezde, uydu anteninin iki boyuttaki hareketinin ag¢ik dongii denetimi igin
bilgisayar destekli uydu anteni kontrol iinitesinin tasarlanmasi ve gergeklestirilmesi

amaclanmgstir.

Bu sistemde, uydu antenini hareket ettirebilmek i¢in step motorlar kullanilmugtir.
Step motorlarin hareketi, paralel port araciligi ile bilgisayardan gonderilen komutlar
tarafindan kontrol edilmektedir.

Bu tasarimda yazilim, sistem performansi iizerinde biiyiik bir 6nem tasir. Step
motorlarin hareketini kontrol etmek, gerekli hesaplamalar1 ve yazilimm gorsel tasarimim
yapmak amaciyla sistem yazilimi hazirlanmigtir. Sistem yazilimi igin, Windows95
ortaminda Borland C 5.0++ programlama dili kullanilmigtir. Sistem yazilimi ti¢ b6liimden
olusmaktadir. Birinci bélimde, Tiirkiye haritasinda segilen herhangi bir noktanin
koordinatlar (enlem ve boylam) hesaplanir. ikinci bsliimde, segilen aym noktada enlem ve
boylam degerleri kullanilarak antenin dénecegi azimuth ve elevation agilari hesaplanir. Son
bolimde, step motorlar hesaplanan azimuth ve elevation agilarma dondiiriiliir. Antenin
dogru pozisyona dénebilmesi igin, sistem her kurulma asamasinin dncesinde ve sonrasinda

resetlenir.

CONTENTS
Page
Acknowledgements.o.vuiuinieriiiitiiiie et aeaans v
ADSITACE. . ottt e et A%
L0 7/ VI
17031113 11 TR VII
List Of Tables...ouvueneiiiuiiiniiiiiiiiiririii it X
LSt OF FiUIES . e eueveeeneneitietrnerteneenerieaconenseneenenionssncnesaesassnnss XI
ADDBIEVIAtiONS. ... vvveit ittt e e XIII
Chapter One
INTRODUCTION
1. INTRODUCTION 1
1.1. STEPPER MOTOR ADVANTAGES AND DISADVANTAGES. 2
1.2. STEPPER MOTOR TYPES.... .ottt 4
1.2.1. Variable Reluctance Stepper Motors......o.oeeevneieeieinennnn 4
1.2.2. Permanent Magnet Stepper Motor...........ccvvvvevniininninnnn 5
1.2.3. Hybrid Stepper Motor........ovviviiriiieiienieneieneeeiieenennen. 5
1.2.4. Comparison of Stepper Motor Types.......c.cccoovveveinininnnn 6
1.3. BASICS OF STEPPER MOTORS......c.oceiiiiiiiiiiiiiniiinenn, 7
1.3.1. The Rotating Magnetic Field............cocevevveriieiiiiiniani. 7
1.3.2. Torque Generation..........cceuveeieneeneneenenenenenerneneneenennn 8
1.3.3. Phases, Poles and Step Angles..........cccovviiiiiiiiniiiinnnne. 9
1.3.4. Stepping Modes.....c.vueuiiiieiiiiiianneenienieine ceeenneneneens 10
1.3.4.1. Wave DIIVe....c.vvviirnieiiineeiieececeeieaeas 11
1.3.4.2. Full Step Drive....coeveiieiiiiiiiieiiiiieeeeeeieeeaas 11
1.3.4.3. Half StepDrive........cccovieiiiiiiiiiiiiiiiiiiinnn, 11
1.3.4.4. Microstepping Drive.........c.cccvviviiiiiiiiniiiiinininn, 12

vii

1.4.STEPPER MOTOR PHYSICS............
1.4.1, StatiCs...ovniiiiiiiieeeeeenenn,

.................................

.................................

1.4.1.1. Torque vs. Angle Characteristics..........cccecvvieeennnne.

1.4.1.2. Step Angle Accuracy.........

.................................

1.4.1.3. Mechanical Parameters, Load, Friction, Inertia............

142, DYNAMICS. .t eiutteninieeinerreteneteeaeeeeeareaneneenenaensensans

1.4.2.1. Torque vs. Speed Characteristics........covoeveeerrenennnen

1.4.2.2. Single Step Response.........

.................................

1.4, 2.3, RESOMANCE. v vrererreererererrnenrseesseneessssesesesennnnnns

1 .5. STEPPER MOTOR DRIVING...........

1.5.1. Winding Resistance and Inductance............c.cocevneeeinen.n.
1.6. STEPPER MOTOR DRIVE CIRCUIT SCHEMES....................

1.6.1. Flux Direction Control..............
1.6.1.1. Unipolar Drive.................
1.6.1.2. Bipolar Drive...................

1.6.2.Current Control...............ccc......

.................................

.................................

................................

.................................

1.6.2.1 Resistance Limitation of the Current...............ccccuuenn.

1.6.2.2.The Bilevel L/R Drive.........

1.6.2.3.Chopper Control........o.vievevinneiienininiiieenenenennenen.
1.7.OUTLINE OF THESIS.oitiiiiiiiireiiereerenene v eenenes

.................................

Chapter Two
THE DESIGN OF ANTENNA CONTROL UNIT

2. THE DESIGN OF ANTENNA CONTROL

IJNII

2.1. HARDWARE DESIGNccciiviiiiiniiiiiiiiiin,

2.1.1.Electromechanical Design
2.1.1.1.Stepper Motors...............

2.1.2.Electronic Design.......ccovvuiviieiiiriineiiiiiinenneneieneens

2.1.2.1. Stepper Motor Driver Circuit........cccooevvvernrnenene.

2.1.2.2. Power Supplies...............
2.1.2.3. Interfacing to the Computer

12
12
12
14
14
14
14
16
17
18
18
20
21
21
22
24
24
25
26
28

29

30
30
30

33
33
40
41

viii

2.1.3. Mechanical Design..........c..ovveveiiriiiiiiiiieiiieeenann,

2.2. SOFTWARE DESIGN......cceoiiiiiiiiiiiiiiiieiieeieeeeeeee,

2.2.1. Main SeCtiON.......coeverirreneneninreereienreneenrerrenenenennns
2.2.1.1. Antenna.cpp File.......ccooovviieiiiiiiiiiiniina,

2.2.1.2. Antenna.rc File.........oooviviiiniiininininininininenann

2.2.1.3. Antennah File.......coooviiiiiniiininiiiienncie,

2.2.1.4. Dtostring.cpp File......cccooviiiiiiiiiiiiiiiiiiiinnn,

2.2.2. Functional Sections..........cccveveviiiniinininininiiinienenenan,
2221 FleI/ O
2222 . Hardware I/ O....covvviviiiiiiiiiiiiiiiiiiiiiiiene,
2.2.2.3. Map Reading & Location Finding.....................
2.2.2.4. Azimuth & Elevation Calculation.....................

2.3. FLOWC

HARTS OF SOFTWARE PROGRAMME...............

Chapter Three

43
44
46
46
46
47
47
48
48
48
50
50
57

MOUNTING AND OPERATING THE ANTENNA CONTROL UNIT

3. MOUNTING AND OPERATING THE ANTENNA CONTROL UNIT

3 L. MOUNTING. ..ottt e rer e e ras e e eeans
3.2. OPERATING THE SYSTEM......cuititiiiiiiieiinenineneninennenenennns
3.3. HOW TO USE THE SYSTEM SOFTWARE.........c.ccccvvevinnnnrnnnn.

Chapter Four

CONCLUSIONS
4. CONCLUSIONS. .. ettt ereeter e ereeenraeaeeaeieneenenaanns
REFERENCES.ottt e e e
APPENDIX A. ..ot et e e

APPENDIX B

..

64
64
66
67

70
72
73

L

IST OF TABLES

Table 1.1. Excitation sequences for different drive modes...............

Table 2.1. Characteristics of Kollmorgen stepper motors.................

Table 3.1. Satellite Spacing

LIST OF FIGURES

Figurel.l. A typical Stepper MOtOr.......o.oviieieieneieneneininiieneennnn
Figurel.2. Cross section through a variable reluctance stepper motor....
Figurel.3. Cross section through a permanent magnet stepper motor....
Figurel.4. A cross section of hybrid stepper motor...................ceueee
Figure 1.5. Exploded drawing illustrating the tooth pitch off-set..........
Figure 1.6. Magnetic flux path through a two-pole stepper motor.........
Figure 1.7. Unipolar and bipolar wound stepper motors....................
Figure 1.8. Torque versus angular position...........ccceveveiveiinernnnnn

Figure 1.9. A typical speed —torque curve of a stepper motor..............

Figure 1.10. Single step response versus time.........coceueeeinernennennnn.

Figure 1.11. Current waveform in an inductive-resistive circuit............

Figure 1.12. Current waveform in an inductive-resistive circuit............

Figure 1.13. Bipolar and unipolar drive schemes to control the current

and the flux direction in the phase winding.....................

Figure 1.14. Basic unipolar drive........cooevevieiiiiiiniiiiiiiiiniinane.

Figure 1.15. Unipolar drive using 8-lead motor.............cccevvevneennn.n.

Figure 1.16. Simple bipolar drive.........cccooeiiiiiiiiniiiniiinicnennn..

Figure 1.17. Bipolar bridge.........cccoviiiviiirninniniiiniiiiiiniiceenene,

Figure 1.18. Different winding configurations for bipolar drive

Figure 1.19. Resistance limitation of the current................cocevvvenennen.
Figure 1.20. The bilevel drive..........cccooevviiiiiiiieiiiiiiiiiinenns
Figure 1.21. Chopper Control..........cccoeviniiiiiiniieniiiiiiinininenen
Figure 2.1. Block Diagram of ACU System and Subsystems Design......
Figure 2.2. Performance curves of Kollmorgen stepper motors.............
Figure 2.3. Wave drive excitation chart...........cooevevvennvinniniienannn.
Figure 2.4. Half step drive excitation chart.............c.c..oevvevniiniennn.t.

Figure 2.5. Unipolar wiring diagram for Kollmorgen stepper motors.....

21
22
2
23
23
24
25
27
30
31
32
32
32

xi

Figure 2.6. The functional diagram of Kollmorgen driver 7026M.........

Figure 2.7. The pin configuration..........................

Figure 2.8. PWM output current waveform...............
Figure 2.9. PWM control(Run mode)..........cooeveiieiiiiiiiiiinnnnnnnn.n.

Figure 2.10. The motor driver circuit diagram of ACU.

Figure 2.11. The configuration of power supply box.........................

Figure 2.12. 25-way Female D-Type Connector.........

Figure 2.13. The Data Configuration of Parallel Port........................

Figure 2.14. A General Block Diagram of The System.

Figure 2.15. The Functional Diagram of The System Software............
Figure 2.16. The Data Configurations of Azimuth Positioning.............

Figure 2.17. The Data Configurations of Elevation Positioning............

Figure 2.18. Azimuth and elevation........................

Figure 2.19. The Azimuth angles with respect to subsatellite point.......
Figure 2.20. Triangle TSO.........iiiiiiiiiiiiiiiiiicrcieiceee e

Figure 2.21. Triangle to calculate elevation...............

Figure 2.22. Comparison of elevation angles.............

Figure 2.23. Comparison of azimuth angles..............

Figure 3.1. AZ/EL Mount...........c..ccccoeeeeieinnnnnn..
Figure 3.2. AZ / EL Mount GEOmetry.........c.ovuvurinenrnnrneneneninenennnn.

Figure 3.3. The Photograph of Antenna Control Unit...
Figure 3.4. The Visual Design of The System Software

34
34
35
35
38
41
42
42
45
45
49
49
51
52
53
53
55
56
65
66
66
69

xii

PWM:
EIRP :

E,EL:
I/0:
CWw:
CCW:

%8> <BEF

ABBREVIATIONS

Variable Reluctance
Permanent Magnet

Hybrid

Volt

Inductance

Amper

Kilo Ohm

Pico Farad

Pulse Width Modulation
Effective Isotropic Radiated Power
Resistance and Capacitance
Transmit

Receive

Ground

Azimuth

Elevation

Input / Output

Clock Wise

Counter Clock Wise

xiii

CHAPTER ONE

INTRODUCTION

Stepper motors are electromechanical devices which convert digital pulses into
discrete mechanical movements.A stepper motor essentially a digital input-discrete
motion output device, particularly well suited to the application where control signals
appear as pulse trains rather than analog voltages.The shaft or spindle of a stepper
motor rotates in discrete step increments when electrical command pulses are applied
to it in the proper sequence.The motor’s rotation has the following several direct

relationships to these applied input pulses:

a)The sequence of the applied pulses is directly related to the direction of
motor shafts rotation,

b)The motor’s rotation speed is directly related to the frequency of the input
pulses,

c)The length of rotation is directly related to the number of input pulses applied

(Ericsson).

Figure 1.1. A typical Stepper Motor

The first known stepper motors were used in the British Navy in the early 1930°s
in a remote positioning system for transmitting shaft rotations.The system was later
adapted by the U.S. Navy and used widely in World War II. During the same period,
rotary solenoids were used for steering torpedoes, using a serial pulse train.Stepper
motors are inherently low-efficiency electromagnetic energy conversion devices
when compared with conventional AC and DC motors. However, the advances made
in the recent years in the field of digital technology have made stepper motors very
desirable devices in many control applications and their performance has been
considerable improved in the past years.Today stepper motors are found in many
control systems used in industry.Relatively large quantities are being used in the
most types of computer peripheral equipment, such as printers, plotters, hard disk
drives and memory access mechanizms. Stepper motors are also used in numerical
control systems, machine tool controls, process control systems, and in medical and
office equipments, automotive and aerospace industry and many more

(Ozdamar,1976).

The object of this thesis is to design computer aided satellite antenna control
system capable of pointing the satellite antenna to the desired satellite (particularly
TURKSAT satellites) in the selected location of TURKEY map. In this way,
satellite antenna will be controlled in two axis using stepper motors, stepper motors

will rotate according to the commands directed from a computer via parallel port.

Before going into the details of the designed satellite antenna control unit system,
a brief summary of the stepper motors and the drive citcuits of the stepper motors

will be given.

1.1. STEPPER MOTOR ADVANTAGES AND DISADVANTAGES

One of the most significant advantages of a stepper motor is its ability to be
accurately controlled in an open loop system. In open loop control, no feedback

information about position is needed. This type of control eliminates the need for

expensive sensing and feedback devices such as optical encoders. The position is
known simply by keeping track of the input step pulses. A stepper motor can be good
choice whenever controlled movement is required. It can be used to have advantage
in applications where we need to control rotation angle, speed, position and
synchronism. For that reason, in many applications simpler stepper motor and driver
systems are taking place of the sophisticated servo systems. But as a result of
extensive study on these motors many disadvantages may be altered in the near

future. The advantages and disadvantages of stepper motor are listed below.

Stepper motor have the following advantages:
1.The rotation angle of the motor is proportional to the input pulse,
2.The motor has full torque at standstill (if the windings are energized)
3.Precise positioning and repeatability of movement since good stepper
motors have an accuracy of 3-5%of a step and this error is non cumulative
from one step to the next.
4 Excellent response to starting/stopping/reversing.
5.Excellent torque at low speeds.
6.Very reliable since there are no contact brushes in the motor.Therefore
the life of the motor is simply dependant on the life of the bearing.
7.The motors response to digital input pulses provides open loop control,
making the motor simpler and less costly to control.
8.It is possible to achive very low speed synchronous rotation with a load
that is directly coupled to the shaft.
9.The speed of rotation is proportional to the frequency of the input pulses.

10.Stepper motor is mechanically simple, requires little or no maintenance.

Stepper motor have the following disadvantages:
1.Resonances can occur if not properly controlled.

2.Not easy to operate at extremely high speed (Ericsson).

1.2. STEPPER MOTOR TYPES

Although various types of stepper motor have been developed, they all fall
into three basic categories:
1. Variable Reluctance (VR)
2. Permanent Magnet(PM or tin can)
3. Hybrid (HB)

1.2.1.Variable Reluctance Stepper Motor

This type of stepper motor has been used for a long time.Figure 1.2 shows a cross
section of a typical V.R.stepper motor.This type of motor consists of a soft iron
multi-toothed rotor and a wound stator. When the stator windings are energized with
DC current the poles become magnetized. Rotation occurs when the rotor teeth are
attracted to the energized stator poles. As the rotor does not have a permanent

magnet it rotates freely i.e. it has no detent torque.

Figurel.2. Cross section through a variable reluctance stepper motor

1.2.2. Permanent Magnet (PM or tin can) Stepper Motor

Often referred to as a “tin can” or “canstock™ motor the permanent magnet stepper
motor is a low cost and low resolution type motor with typical step angles of 7.5° to
15°. Figure 1.3 shows a cross section of a typical PM stepper motor. PM motors have
permanent magnets added to the motor structure. The rotor no longer has teeth as
with the VR motor. Instead the rotor is magnetized with alternating north and south
poles situated in a straight line parallel to the rotor shaft. These magnetized rotor
poles provide increased magnetic flux intensity and because of this the PM motor

exhibits improved torque characteristics when compared with the VR type.

Figure 1.3 Cross section through a permanent magnet stepper motor

1.2.3. Hybrid (HB) Stepper Motor

Another type of stepper motors that has a permanent-magnet rotor is called the
hybrid stepper motor. The term hybrid comes from the fact that the motor torque is
produced both due to the permanent magnet and variable reluctance action. Figure
1.4 shows a cross section of a typical HB stepper motor. The hybrid stepper motor
combines the best features of both the PM and VR type stepper motors. The rotor is
multi-toothed like the VR motor and contains an axially magnetized concentric
magnet around its shaft, with the opposing teeth off-set by half of one tooth pitch
(Figure 1.5) to enable a high resolution of steps. The teeth on the rotor provide an

even better path, which helps guide the magnetic flux to preferred locations in the air

gap. This further increases the detent, holding and dynamic torque characteristics of
the motor when compared with VR and PM types. Hybrid stepper motors have high
detent torque and excellent holding and dynamic torques, and they can operate high

stepping speeds (Jennings, 1996).

Figure 1.4. A cross section of hybrid stepper motor.

Figure 1.5. Exploded drawing illustrating the tooth pitch off-set
1.2.4.Comparison of Stepper Motor Types

The hybrid stepper motor is probably the most widely used of all stepper motors.
It is more expensive than the other types of stepper motors but provides better
performance with respect to step resolution, torque and speed. Hybrid stepper motors
have a small step length (typically in the range from 3.6° to 0.9°), which can be great
advantage when high resolution angular positioning is required. The torque

producing capability is greater in the hybrid than in the variable reluctance and

permanent-magnet motors, so the hybrid stepper motor is the best choice of

applications requiring a small step length and high torque.

In PM and HB stepper motors, due to the permanent magnet there is a “detent”
torque developed in the motor even when stator windings are not excited. Although
the detent torque is less than the energised torque, it can be a useful feature in
applications where the rotor position must be preserved during a power failure. In
VR stepper motor, the rotor teeth have a little residual magnetism, as found in PM
and Hybrid motors, so there is no detent torque on the rotor when the stator is not

energised.

VR stepper motors have two important advantages when the load must be moved
a considerable distance. Firstly, typical step lengths (15 degrees) are longer than in
the hybrid type so less steps are required to move a given distance. A reduction in the
number of steps implies less excitation changes. The speed of excitation changes can
ultimately limit the time taken to move the required distance. A further advantage is
that VR stepper motor has a lower motor mechanical inertia than the hybrid and PM
stepper motors, because there is no permanent magnet on its rotor. Therefore, this
significant reduction in total inertial load on the motor permits faster acceleration
(Acarnley, 1984).

1.3. BASICS OF STEPPER MOTORS

1.3.1 The Rotating Magnetic Field

When a phase winding of a stepper motor is energised with current a magnetic
flux is developed in the stator. The direction of this flux is determined by the “Right
Hand Rule” which states:

“If the coil is grasped in the right hand with the fingers pointing in the direction
of the current in the winding (the thumb is extended at a 90° angle to the fingers),

then the thumb will point in the direction of the magnetic field.”

Figure 1.6. shows the magnetic flux path developed when phase B is energised
with winding current in the direction shown .The rotor then aligns itself so that the
flux opposition is minimised. In this figure, the motor would rotate clockwise so that
its south pole aligns with the north pole of the stator B at position 2 and its north pole
aligns with the south pole of stator B at position 6. To get the motor to rotate we can
see that we must provide a sequence of energising the stator windings in such a way
that provides a rotating magnetic field, which the rotor follows due to magnetic

attraction.

i r"?
[y

(RN LV AV

Fhase A ;

0

C]_Z__
Stator A\

Stator B 1Béu T
Phase B

Figurel.6. Magnetic flux path through a two-pole stepper motor with

a lag between the rotor and stator.

1.3.2.Torque Generation

The torque produced by a stepper motor depends on the following factors:

e The step rate

e The drive current in the windings

e The type of driver

In a stepper motor a torque is developed when the magnetic fluxes of the rotor and

stator are displaced from each other. The stator is made up of a high permeability

magnetic material. The presence of this high permeability material causes the
magnetic flux to be confined for the most part to the paths defined by the stator
structure. This serves to concentrate the flux at the stator poles. The torque output
produced by the motor is proportional to the intensity of the magnetic flux generated

when the winding is energised.

The basic relationship that defines the intensity of the magnetic flux is defined by:
H=(Nxi)/l
Where:
N = The number of winding turns
i = Current
H = Magnetic field intensity
1 = Magnetic flux path length
This relationship shows that the magnetic flux intensity and consequently the
torque is proportional to the number of winding turns and the current and inversely

proportional to the length of the magnetic flux path.
1.3.3.Phases, Poles and Step Angles

Usually stepper motors have two phases, but three- and five- phase motors also
exist. A bipolar motor with two phases has one winding per phase and a unipolar
motor has one winding, with a centre tab per phase. Sometimes the unipolar stepper

motor is referred to as a * four-phase motor”, even though it only has two phases.

A pole can be defined as one of the regions in a magnetised body where the
magnetic flux density is concentrated. Both the rotor and the stator of a stepper motor
have poles. Figure 1.6. shows a picture of a two-phase stepper motor having 2 poles
for each phase on the stator, and 2 poles on the rotor. In reality several more poles
are added to both the rotor and stator structure in order to increase the number of
steps per revolution of the motor, or in other words to provide a smaller stepping

angles.

10

It is the relationship between the number of rotor poles and the equivalent stator
poles, and the number of phases that determines the full-step angle of a stepper

motor.

Step Angle =360/ (Nph XPh)=360/N

Nrn = Number of equivalent poles per phase = number of rotor poles
Ph = Number of phases
N = Total number of poles for all phases together.

1.3.4.Stepping Modes

There are four commonly used excitation modes. These excitation sequences for
the following drive modes are summarised in Table 1.1.

e Wave Drive

e Full Step Drive

e Half Step Drive

e Microstepping

/7 NJ | /
O~ b &
Phase A ‘c_ \ , % o
:) I ' ! i S
Vi _C?;C_ /$l; ‘Dt‘i"{\ E‘l\ Phase A 1,
Phase A 9 F I
o \ O
Stator ﬁ\ Stator AN
\ A WAl Pu;l / 2
Stator B [Ty 0 (5 Stator B A7
o Al _ 84
Phase B Wy Phase B Phase B

Figure 1.7. Unipolar and bipolar wound stepper motors.

11

1.3.4.1. Wave Drive:

In wave drive, only one winding is energised at any given time. The stator is
energised according to the sequence A — B — A' — B' and the rotor steps from
position 8—2—4—6 referring to Figure 1.7. For unipolar and bipolar wound motors
with the same winding parameters this excitation mode would result in the same
mechanical position. The disadvantage of this drive mode is that in the unipolar
wound motor the energy used is 25% and in the bipolar motor the energy used is
50% of the total motor winding at any given time. This means that the maximum
torque output from the motor is not got. Therefore, This mode is only used where
torque and speed performances are not important, i.e. where the motor is operated at
a fixed speed and load conditions are well defined. Problems with resonance can

preclude operation at some speeds.

1.3.4.2, Full Step Drive:

Two phases are energised at any given time. The stator is energised according to
the sequence AB — A'B— A'B' »AB' and the rotor steps from position 1—3—5—7
referring to Figurel.7. Full step mode results in the same angular movement as wave
drive but one half of a full step offsets mechanical position. The torque output of the
unipolar wound motor is lower than the bipolar motor since the unipolar motor uses
only 50% of the available winding while the bipolar motor uses the entire winding.
Therefore, this mode provides good torque and speed performance with a minimum

resonance problems.

1.3.4.3. Half Step Drive:

Half step drive combines both wave and full step drive modes. The stator is
energised according to the sequence AB—B—A'B— A'— A'B'—B'—A B'—A and
the rotor steps from position 1—2—3—4—5—6—7—8.This results in angular
movements that are half of normal step size. Half-stepping can reduce resonance,

which can be experienced in wave and full step drive modes.

12

1.3.4.4. Microstepping Drive:

In Microstepping drive the currents in the windings are continuously varying to be
able to break up one full step into many smaller discrete steps. For example, a
standard 1.8° motor has 200 steps/revolution. If the motor is micro-stepped with a
‘divide-by-10’, then each micro-step would move the motor 0.18° and there would be
2000 steps/revolution. Typically, micro-step modes range from divide-by-10 to
divide-by-256 (51200steps/rev for 1.8° motor). The micro-steps are produced by
proportioning the current in the two windings according to sine and cosine functions.
This mode is only used where smoother motion or more resolution is required
(Ericsson).

Table 1.1. Excitation sequences for different drive modes

Normal
Wave Drive full step Half-step drive
Phase 1 2 3 4 1234 12345678
A ® » . . * =
B L * @ *® o @
E » » L ® L] L
B ® * @ * » @

1.4.Stepper Motor Physics
1.4.1. Statics

1.4.1.1. Torque versus Angle Characteristics

The torque versus angle characteristics of a stepper motor are the relationship
between the displacement of the rotor and the torque which applies to the rotor shaft
when the stepper motor is energised at its rated voltage. An ideal stepper motor has a
sinusoidal torque versus rotor angular position as shown Figure 1.8. The actual shape
of this curve depends on the pole geometry of both rotor and stator, and neither this

curve nor the geometry information is given in the motor data sheets

13

e
Stable | Unstable Stable
Point Paint « Point

Figure 1.8. Torque versus angular position

Positions A and C represent stable equilibrium points when no external force
or load is applied to the rotor shaft. When we apply an external force Ta to the motor
shaft we in essence create an angular displacement, 8a. This angular displacement,
0a, is referred to as lead or lag angle depending on whether the motor is actively
accelerating or decelerating. When the rotor stops with an applied load it will come
to rest at the position defined by this displacement angle. The motor develops a
torque, Ta, in opposition to the applied external force in order to balance the load. As
the load is increased the displacement angle also increases until it reaches the
maximum holding torque, TH, of the motor. Once TH is exceeded the motor enters an
unstable region. In this region, a torque in the opposite direction is created and the
rotor jumps over the unstable point to the next stable point. The displacement angle

is determined by the following relationship:

X=(Z+2n) xsin(Ta+THu) where:
Z =rotor tooth pitch
Ta = load torque
T = motors rated holding torque

X =displacement angle

14

1.4.1.2. Step Angle Accuracy

One reason why the stepper motor has achieved such popularity as a positioning
device is its accuracy and repeatability. Typically stepper motors will have a step
angle accuracy of 3 — 5 % of one step. This error is also non-cumulative from one
step to step. The accuracy of the stepper motor is mainly a function of the

mechanical precision of its parts and assembly.

1.4.1.3 Mechanical Parameters, Load, Friction, Inertia

The performance of a stepper motor system (motor and driver) is also highly
dependent on the mechanical parameters of the load. The load is defined as what the

motor drives. It is typically frictional, inertial or a combination of the two.

Friction is the resistance to motion due to the unevenness of surfaces, which rub
together. Friction is constant with velocity. A minimum torque level is required
throughout the step in over to overcome this friction (at least equal to the friction).
Increasing a frictional load lowers the top speed, lowers the acceleration and

increases the positional error. The converse is true if the frictional load is lowered.

Inertia is the resistance to changes in speed. A high inertial load requires a high
inertial starting torque and the same would apply for braking. Increasing an inertial
load will increase speed stability, increase the amount of time it takes to reach a
desired speed and decrease the maximum self start pulse rate. The converse is true if

the inertia is decreased.

1.4.2.Dynamics

1.4.2.1.Torque versus Speed Characteristics

Under full dynamic conditions, the performance of the motor is described by the
torque-speed curve as shown in the Figure 1.9. To get better understanding of this

curve it will be useful to define the different aspect of this curve.

15

Holding Torque:

The maximum torque produced by the motor at standstill.

Detent Torque:
The maximum torque that can be applied to the shaft of an unexcited motor
without causing continuous rotation. The detent torque appears only in motors

having a permanent magnet.

Pull-in Curve:
The pull-in curve defines an area referred to as the start stop region. This is the
maximum frequency at which the motor can start/stop instantancously, with a load

applied, without loss of synchronism.

Maximum Pull-In Rate (Start Rate):

The maximum starting step frequency with no load applied.

Pull-Out Curve:
The pull out curve defines an area referred to as the slew region. It defines the

maximum frequency at which the motor can operate without losing synchronism.

Maximum Pull-Out Rate (Slew Rate):

The maximum operating frequency of the motor with no load applied.

16

STEPPER MOTOR CHARACTERISTICS

ame &=pull- aattargque
omve B=gull-in torgze

N

slewregion

| G

pull -inxate (speed) | | L pull- ut rate(speed) max pull - out Tade

uax .pull - inrate (speed)

Figure 1.9. A typical speed — torque curve of a stepper motor

As shown in the Figure 1.9, there are two operating ranges, the start /stop (or pull
in) region and the slew (pull out) region. Within the start/stop region, the motor can
be started or stopped by applying pulses at constant frequency. At speeds within this
range, the motor has sufficient torque to accelerate its own inertia. Clearly, if an
inertial load is added, this speed range is reduced. So the start/stop speed range

depends on the load inertia.

It can be seen from the shape of the curve that step rate affects the torque output
capability of stepper motor. The torque output decreases as the speed increases. To
operate the motor at faster speeds, it is necessary to start at a speed within the
start/stop region and then accelerate the motor into the slew region. Similarly, when
stopping the motor, it must be decelerated back into the start/stop range. Using
acceleration and deceleration “ramping” allows much higher speeds to be achieved

(Parker Automation).

1.4.2.2.Single Step Response

The single step response characteristics of a stepper motor is shown in Figure

1.10.When one step pulse is applied to a stepper motor, the rotor behaves in a

17

manner as defined by the curve in the figure. The step time t is the time it takes the
motor shaft to rotate one step angle once the first step pulse is applied.

Since the torque is a function of the displacement it follows that the acceleration
will also be. Therefore, when moving in large steps a high torque is developed and
consequently a high acceleration. This can cause overshots and ringing as shown.
The settling time T is the time it takes these oscillations or ringing to cease. In
applications, this phenomena can be undesirable. It is possible to reduce or eliminate

this behaviour by microstepping.

Brvgh

Figure 1.10. Single Step Response versus time

1.4.2.3. Resonance

Stepper motors can often exhibit a phenomena referred to as resonance at certain
step rates. This can be seen as a sudden loss or drop in torque at certain speeds which
can result in missed steps or loss of synchronism. It occurs when the input step pulse
rate coincides with the natural oscillation frequency of the rotor. Often there is a
resonance area around the 100-200 pps region and also one in the high step pulse rate
region. The resonance phenomenon of a stepper motor comes from its basic
construction and therefore it is not possible to eliminate it completely. It is also
dependent on the load conditions. It can be reduced by driving the motor in half or

micro step driving.

18

1.5.STEPPER MOTOR DRIVING

In this section, basic electrical characteristics of a stepper motor winding and the

various types of stepper motor drivers are discussed.
1.5.1. Winding Resistance and Inductance

Resistance and inductance are two inherent physical properties of the winding of a
stepper motor. These two basic factors limit the possible performance of the motor.
The resistance of the windings is responsible for the major share of the power loss

and heat up of the motor. The power loss is given by:

- 2
pr«a =R- iM

Inductance makes the motor winding oppose current changes, and therefore limits
high-speed operation. Figure 1.11. shows the electrical characteristic of an inductive-
resistive circuit. When a voltage is connected to the winding the current rises

according to the equation:

) = (V/R)-(1-g T Ry
Initially the current increases at a rate of

g (0) = V/L

The rise rate decreases as the current approaches the final level:

IMAI{ =V/R
The value of = =L / R is defined as the electrical time constant of the circuit. e is

the time until the current reaches 63% (1 —1/e) of its final value. When the
inductive-resistive circuit is disconnected at the instant t = t1, the current starts to

decrease:

I(t) = { V/R). (o0} R/

19

at an initial rate of I(t)=-V /L

Current
Fa
; a =T
Lanax
L
Te= .=}
/ 63 %
' ¥

tag— T':—- e Te_'" % Time
=0 1=1,

Figure 1.11 Current waveform in an inductive- resistive circuit

When a square wave voltage is applied to the winding, which is the case when
full stepping a stepper motor, the current waveform will be smoothed. Figure 1.12

shows the current at a certain frequency that the current reaches its maximum value.

20

, Current

AWAWAWAS
1NNV T

Figure 1.12. Current wave form in an inductive-resistive circuit.

E P

As the torque of the motor is approximately proportional to the current, the
maximum torque is reduced as the stepping frequency increases. To overcome the
inductance and gain high-speed performance of the motor two possibilities exist:

- Increase the current rise rate (V/L)
- Decrease the time constant

If the resistance is increased, the power loss increases. It is preferably the ratio V /
L that should be increased to gain high-speed performance. To drive current through
the winding, we should:

- use as high voltage as possible
- keep the inductance low.

So, a low inductance/resistance motor has a higher current rating. As the
maximum current is limited by the driver, we find that high performance is highly
dependent on the choice of driver. The limiting factor of the motor is the power
dissipation, and not the current itself. To use the motor efficiently, power dissipation

should be at the maximum allowed level (Ericsson).

1.6. STEPPER MOTOR DRIVE CIRCUIT SCHEMES

The stepper motor driver circuit has two major tasks:
e To change the current and flux direction in the phase windings

e Todrive a controllable amount of current through the windings

21

1.6.1. Flux Direction Control

Stepping of the stepper motor requires a change of the flux direction,
independently in each phase. The direction change is done by changing the current
direction, and may be done in two different ways, using a bipolar or a unipolar drive.

Figure 1.13 shows the two schemes.

Bipolar drive

—, .

!
— N\ =

vy

Figure 1.13 Bipolar and unipolar drive schemes to control the current and the

flux direction in the phase winding.

1.6.1.1. Unipolar Drive

—
ST —— U™
(l«g) TR

Figure 1.14 Basic Unipolar Drive

22

The unipolar drive principle requires a winding with a centre-tab, or two separate
windings per phase. (See Figure 1.7.) Flux direction is reversed by moving the
current from one half of the winding to the other half. A drawback of the unipolar
drive is its inability to utilize all the coils on the motor. At any time, there will only
be current flowing in one half of each winding. If we could utilize both sections at
the same time, we could get a 40% increase in torque for the same power dissipation
in the motor. The unipolar motor has three leads per phase. A motor having two
separate windings per phase is usually referred to as 8-lead motor (See Figure 1.15)

(Parker Automation)

U™

Unipolar
4 windings / 8 leads

Figurel.15 Unipolar drive using an 8-lead motor

1.6.1.2. Bipolar Drive

[g TR

Iﬂg) TRe ”

Figure 1.16 Simple Bipolar Driver

23

In bipolar drive circuit, shown in the Figure 1.16, two power supplies are used
together with a pair of switching transistors. Bipolar drive refers to the principle
where the current direction in one winding is changed by shifting the voltage polarity
across the winding terminals. Current can be made to flow in either direction through
the winding by turning on one transistor or the other. However, there are distinct
drawbacks to this scheme. First, two power supplies are needed. When all the current
is coming from one supply the other is doing nothing at all, so the power supply
utilization is poor. Second, the transistors must be rated at double the voltage that can
be applied across the motor, requiring the use of costly components. The standard
arrangement used in bipolar motor drives is the bridge system shown in Figure 1.17.
Although this uses an extra pair of switching transistors, the problems associated
with the previous configuration are overcome and only one power supply is needed

(Parker Automation).

e’

([:; EES| TRI @

7
3
?

J— o

Figure 1.17 Bipolar Bridge

The bipolar drive method requires one winding per phase. A two-phase motor

will have two windings and accordingly four connecting leads. (See Figure 1.18)

Bipolar, paralisl connection Bipolar, series connection
4 windings / 8 leads 4 windings / 8 leads

Figure 1.18 Different configurations for bipolar drive using an 8-lead motor.

24

1.6.2. Current Control

To control the torque as well as to limit the power dissipation in the winding
resistance, the current must be controlled or limited. Two principles to limit the
current are described here, the resistance limited drive and the chopper drive. Any of

the methods may be realised as a unipolar or bipolar driver.
1.6.2.1. Resistance limitation of the current (L /R drive)

In this basic method the current is limited by supply voltage and the resistance of

the winding, and an additional external resistance (dropping resistor):
I'M. = Vﬁmppljff({ R+ B‘em)

For a given motor, increasing the supply voltage increases high-speed
performance. An increased supply voltage in the resistance limited drive must be
accompanied by an additional resistor (R ext) in series with the winding to limit the
current to the previous level. The time constant:

. S]
TEMI" {R + Rem)

decreases, which shortens the current rise time (See Fig.1.19). The drawback of

using this method is the power loss in the additional external resistors.

. H
5‘? +|_°
. (i 5
1
o |
i]
:jl. :

25

‘Curfem V. 2y
hax™ B “oR

max —+ —|— -+
L
1 I e
3% — =R

| |
Tez e

Figure 1.19. Resistance limitation of the current
1.6.2.2. The Bilevel L / R — Drive

The bilevel L/R drive provides a solution to the power waste using dropping
resistors. In the beginning of the current build-up period, the winding is connected to
a secondary high voltage supply. When the current has reached its nominal level, the

second level supply is disconnected. (See Figure 1.20.)
The disadvantage of bilevel drive is the need of a second level power supply. So

this method costs very much.

_e‘*“ei
© ¥

26

‘Current
2y 1 -
R

b Te
Figure 1.20. The Bilevel Drive

1.6.2.3. Chopper Control

Another method of current control used in most stepper drives is the chopper
control. (Figure 1.21.) Chopper driver provides an optimal solution to current
control. This approach consists of the four-transistor bridge, recirculation diodes and
a sense resistor. The resistor is of low value (typically 0.1Q) and provides a feedback

voltage proportional to the current in the motor.

27

TRt TR J}]) TR1 TR3

TR2 B1 b2 { TR4 R? 0 D2 TR4

— - V3 = Vs

Vi |

A\

L

Rs

"_\/A\;
]

Injection Rechculation

Motor current

Figure 1. 21. Chopper Control

Current is injected into the winding by turning on one top switch and one bottom
switch, and this applies the full supply voltage across the motor. Current will rise in
an almost linear and this current can be monitored by looking across the sense
resistor. When the required current level has been reached, the top switch is turned
off and the stored energy in the coil keeps the current circulating via the bottom
switch and the diode. Losses in the system cause this current to slow decay, and
when pre-set lower threshold is reached, the top switch is turned back on and the
cycle repeats. The current is therefore maintained at the correct average value by

switching or “ chopping” the supply to the motor.

This method of current control is very efficient because very little power is
dissipated in the switching transistors other than during the transient switching state.
A variant of this current is the regenerative chopper. In this drive, the supply voltage
is applied across the motor winding in alternating directions, causing the current to

ramp up and down at approximately equal rates. This technique tends to require

28

fewer components and is consequently lower in cost; however, the associated ripple

current in the motor is usually greater and increases motor heating.

The chopper control is very efficient since it does not waste power by dropping
voltage through a resistor. However, good current control in the motor is essential to
deliver optimum rotor power. Pulse width modulation (PWM) and threshold
modulation are two types of chopper control techniques. PWM controls the average
of the motor current and is very good for precise current control. Threshold
modulation controls current to a peak level. Threshold modulation can be applied to
a wider range of motors, but it does suffer greater loss of performance than PWM.
Both chopper control techniques improves the power dissipation in the motor and
drive and overall system efficiency. As system performance increases, the

complexity and cost of the drive increases. (Parker Automation)

1.7. OUTLINE OF THESIS

In this chapter a brief introduction to stepper motors is given. The type of stepper
motors, its advantages and disadvantages, its static and dynamic characteristics are
investigated. Furthermore, drive circuit basics, drive circuit schemes are studied in
some detail.

In Chapter 2, the design criteria for the Antenna Control Unit system will be given
and its basic structure will be introduced.

Chapter 3 is concerned with the mounting and operating of the system and
software. Chapter 4 is also concerned with the general conclusions and discussions
on the overall control system.

The circuit diagrams of power supplies, wiring diagram of all units, some

technical drawings and lists of system software are presented in the appendices.

29

CHAPTER TWO

THE DESIGN OF ANTENNA CONTROL UNIT

Today, almost all TV and radio broadcastings and data communications in the
world are provided by satellites. These satellites describe a circular orbit on the
equatorial plane at an altitude of 35786 km. This distance is very important, because
the period of revolution of these satellites around the centre of the Earth results in 24-
hour in this altitude. They are thus synchronous with the Earth’s rotation and appear
relatively motionless in relation to a reference point on the Earth’s surface. This
characteristic enables the satellite to provide permanent coverage area for a given

region. They are consequently called Geostationary Orbit Satellites (Tri, 1990).

These satellites receive the signals which are directed from the Earth stations,
amplify, convert its frequency and send the signals to the fixed coverage areas. In
order to receive the signals on the Earth, the diameter of satellite dish antenna, which
will be used, shall be calculated according to the downlink EIRP parameter of the
satellites. For example, In Turkey, to receive satellite broadcastings will require
60cm. diameter for Turksat satellites and 90-120 cm. diameter antenna for Eutelsat
and Arabsat satellites. In the same way, in Sweden, one shall use 2.5m. diameter

antenna to receive the broadcastings of Turksat satellites.

Whatever diameter of antenna is, in order to receive signals of good quality, our
satellite antenna on the Earth must have been absolutely focused to the satellite
antenna. If we want to receive broadcastings from more than one satellite, we must
rotate our antenna to focus to the desired satellite. This manual adjustment process
wastes time and effort. Therefore, the antenna control unit has been designed to
control the position of satellite dish antenna. This designed system is controlled via
parallel port of the computer and is focused to the desired satellite automatically with

stepper motors.

30

In previous chapter, a brief summary on stepper motors and detailed explanation
of stepper motor driver circuits are given. In this chapter, the main features and
structure of the designed system will be explained. The sub-systems of designed

system are shown in the following Figure 2.1.

ANTENNA CONTROL UNIT SYSTEM DESIGN

] |

Hardware Software
| | | |
Mep Rezding Azimuth Motor Rotation
Mechanic Eleciromechanic Electronic Ltmtio:ﬁn ding E evztion Software
} Software Software
C 1T 1
! = i
o0 . - g 2
& g | gllo|los
2 2 ol 8|82
a g 5| allEs
3 g R= 8 -
i =
|
i

Figure 2.1. Block Diagram of Antenna Control Unit System and Subsystems

Design

2.1.HARDWARE DESIGN
2.1.1. Electromechanical Design

2.1.1.1.Stepper Motors

In this project, two hybrid stepper motors are chosen and used. While one of these
motors is used for positioning the system in azimuth angle, the other one is used for
the positioning the system in elevation angle. The reasons of the selection of hybrid
type stepper motors have been discussed in Chapter 1.2.3. These selected motors are

Kollmorgen PJT55-A1W and PJT80-A1W. Their characteristics and performance

31

curves are given in Table 2.1. and Figure 2.2, respectively. Technical drawings of

the stepper motors are also presented in Appendix A. This selection has been done by

the support of Kollmorgen Motion Technologies Group to operate safely with the

defined inertia and friction, and also to use these motors for other purposes.

Table 2.1. Characteristics of Kollmorgen Stepper motors

Models PJTSS5-A1W PJT80-A1W
Step Angles (°) 1.8 1.8
Step Angle Accuracy (%) +5 +5
Number of leads 8 8
Steps per Revolution 200 200
Winding Type unipolar or bipolar | unipolar or bipolar
DC operating Voltage 0% 3.4 3.36
Operating Current (A/9) 2 2
Winding Resistance (Q2/9) 1.7 1.68
Winding Inductance (mH/Q) 1.7 2.2
Holding Torque (0z-in) 83.3 111.1
Rotor Inertia (oz-in?) 70.3x10 2 132.6x10 2
Ambient Temp Range, Operating (C°) -10 ~+60 -10 ~+60
Temperature Rise (€9 70 70
Weight (oz) 18.3 29.3
PJT55-A1W Unipolar Chopper PIT80-A1W Unipolar Chopper
150 180
—— ™~
= 100 — £ 120
3 50 g 60
e e
0 50 100 500 1000 5000 10000 0 50 100 500 1000 5000 10000

Pulse Rate (pps)

Pulse Rate (pps)

Figure 2.2. Performance Curves of Kollmorgen Stepper Motors

32

As shown in the Figure 2.2., the stepper motors will not be operated with a
rotational speed larger than 1000 steps/second. This graphic shows the start/stop
speed range of the motors. (Start/stop speed rate of a stepper motor are the speed
values where the motor can start and stop directly without losing any step.)
Therefore, any speed value can easily be obtained with staying in start/ stop range of

the used stepper motors.

As shown in Table2.1, the stepper motors have 8 leads. This feature allows greater
flexibility. The motors can be run as six-lead motor with unipolar drives. With
bipolar drives, the windings can then be connected in either series or parallel. The
stepper motors used in this project are unipolar wound for unipolar chopper driving.
The unipolar connection diagram is shown in Figure2.5. In addition to this, “ Wave
Drive “ for Azimuth motor and “ Half Step Drive” for Elevation motor are selected
and used. The usage of “ Half Step Drive” has increased the sensitivity of motion in
elevation angle and given smoother movement to the Elevation motor. Wave Drive

and Half Step Drive excitation charts are shown in the Figures 2.3 and

2.4.(Kollmorgen).
8 nil;-:eo?gr 8Leads | G1A| Z2B| @3A| @4F| Common |Direction of
Color | Brown | Red | Orange | Yellow Rotation
(¢1) Brown Sep 1| On | OF | OF | Of White CCW
2] OF | O« | OF | OF |L_ Bl
3| Of | Of | On Off Black
(Com.)White 7] OF | OF | OF | On | [Green
(Com.)Blue 1] On | OF | OF Off CW
Figure 2.3. Wave Drive Excitation Chart
®3) 0 8 Leads J14A @2B @3 A @4B
range Colour Brown Red Orange Yellow
(22) Red Step 1 On Off Off Off
2 On On Off Off
' 3 Off On Off Off
(Com.)Black g gg 8{‘; g 8g
(Com.)Green 5 Off OFf On On
7 Off Off Off On
C 8 Cn Off Off On
(24) Yeliow 1.1 On Off Off Off

Figure 2.4, Half Step Drive Excitation Chart
Figure 2.5. Unipolar Wiring Diagram for Kollmorgen Stepper Motors

33

The stepper motor winding may be considered as an inductance in series with a
resistance. The time constant (t) of the winding is L / R. It is typically of the order of
10 milliseconds. For the motors used, the time constants are 1milliseconds and 1.3
milliseconds, respectively. Therefore, if a voltage source is applied across the
winding, 95% of full current is reached in 3 time constants. To make sure that the
winding current reaches 95% of full current at each step, the pulse rate for the used
motors must not be exceed the values:

1 1
= 166.6 steps/second —— =147.5 steps/second
3x2x 103 3x2x1.13 103
In most cases, as in this system, such a severe limitation on motor speed is
not acceptable. So it is necessary to build up the winding current more rapidly. (See
Chapter 1.5.1. for more details) (Ozdeslik, 1982).

2.1.2.Electronic Design
2.1.2.1.Stepper Motor Driver Circuit

When designing a stepper motor system, it is important to select the right motor
and driver type to get the best performance. In the design of this project, at first, the
hybrid stepper motors were selected. After that, due to that the motor current is 2A,
Kollmorgen 7026M unipolar chopper driver was selected. Because it can drive
maximum output current of 3A. Two drivers are used in the system. One driver is
used for each motor. The specifications and technical drawings of the drivers are
presented in Appendix A. The motor driver circuit diagram used in this system is

also given in the Figure 2.10.

The functional diagram of driver 7026M is given in the Figure2.6. The pin
configuration is shown in the Figure 2.7. Drivers are rated for an absolute maximum
limit 46V (Vcc) and utilise NMOS FETs for the high-current, high-voltage driver
outputs. These FETs provide excellent ON resistance, improved body diodes, and
very-fast switching. PWM current is regulated by appropriately choosing current-

sensing resistors, a voltage reference, a voltage divider, and RC timing networks.

34

The RC components limit the OFF interval and control current decay. Inputs are
compatible with 5V logic. Complete application information is given in the

following page (Kollmorgen, Allegro MicroSystems).

2

[
]
z
[+
m

(O cranneL AP numBERS
(O cHanneL B PINNUMBERS v, P05

Note that channels A and B are electrically Isolated.

Figure2.6. The functional diagram of Kollmorgen driver 7026M

&

CONTROULOGIC

-

Ng [

ouTa
OFF DELAY a [™
SENSE 5
OFF DELAY g
GROUNDB [|

REFERENCEA [w]
CNTRLSPLYg [B_ | Vec

CNTRL SPLY p

Figure2.7. The Pin Configuration

35

The regulated PWM output current Iour (motor coil current) waveform is
illustrated in Figure2.8. Setting the PWM current trip point requires various external
components. Using Figure 2.8. the following variables will be selected.

Vb = Reference supply (typically 5V)

R1, R2 = Voltage-divider resistors in the reference supply circuit

Rs = Current sensing resistor(s)

Vr=VbxR2/R1+R2 =5x 100/ 610 = 0.82

Note that the maximum allowable Vr input voltage is 2.0V.

— |
PHASE A / /
O L {]
]
]
PHASE A |
- .-----'-- h-_--——-
Figure2.8. PWM output current waveform
Vi Voo INPUT Vgg
? O o @)
F# B
R4 Ra
B
c
R2 Rs L
i h td - T __A] a
]
= VREF CURRENT
PEAK PWM] conTROL
i CURRENT || OFFTiMe |[-] CONTROL &
i DETECTOR CONTROL LOGIC RECIRCULATING
| | | CURRENT
= | r CONTROL
Ca E
O ____I. _ ———_-J.SENSE ___ ____

Figure 2.9. PWM control (Run mode)

36

In normal PWM (Full-current/Running) mode, I our is set to meet the specified
running current for the motor (Figure 2.9.) and is determined by:
Iour=Vref/ Rs= 0.82/0.4=2.05 A
The Motor PWM Frequency is determined according to the following equation.
PWM OFF time fixed by R3 and C1 at input Td. The OFF time can be calculated as:
Toff = -R3xClxlog(1-2/Vb)
In the designed system, circuit constants and Toff are:
Vb =5V
R3 =47kQ
C1 =470pF
Toff=12us
When designing this system, the heatsink is not needed for the drivers. But, it
could be use for preventive. The basic constituents of conduction losses (internal
power dissipation) include:
a- FET output power dissipation (I out> x Rds(on) or Iout x V ds(on)),
b- FET body diode power dissipation (Vsd x Iout),

c- Control circuit power dissipation (Vee x Iec).

Device conduction losses are calculated based on the operating mode:
Wave Drive = 0.5 (I out? X Rds(on)) + 0.5 (Vsd x Iout) + (Vee X Iec)
Half-step Drive = 0.75 (I out* x Rds(on)) + 0.75 (Vsd x Iout) + (Vee x Icc)

In the system designed, wave drive operation mode is used for the azimuth motor.
Half-step drive is used for the elevation motor. The following necessary values are
electrical characteristics of the 7026M driver that are shown in appendix A. In
addition to this, the current and voltage graphics of the motor phases A and B are
shown in Appendix A.

Iout =2.05 A, Icc =10mA (typical)

R ds (on) =285 mQ

Vsd =0.9 V (typical value)

Vee =34.4 V (Control Supply Voltage.)

37

The power dissipation in Azimuth motor driver:
P=0.5(2.052x285mQ)+ 0.5 (0.9 x2.05) + (34,4 x 10mA)
=19W,
and the power dissipation in Elevation motor driver:
P =0.75(2.052x 285 mQ) + 0.75 (0.9 x 2.05) + (34 x 10mA)
= 2.6 W.

Thus, it can be seen that half-step operation mode wastes more power than the

wave drive operation mode in the driver.

+5V

+B5V

AN

/ - STROBE—
—D0
AUTOSEED | 14 2
ERROR |15 3 |—D1
wNr_f1e D2
SELNPUTI 47) o
—GND-A—{ 18
6 D4
—GND-B—{ 19
L GND-C—]{ 20 7 D5
—GND-D— 21 06
|-eNDE— 22
9 —o7
—GND-F—{ 23
[GND-G— 24 10 |—AcCK
—ONDH— 25 | ey
12|-PAPEREN
N\—SELECT—
" IBMPARALLEL PORT

47K

4.7K

47K

38

D4
D5
D6
D7

Figure 2.10. The motor driver circuit diagram of Antenna Control Unit System

24V-48V(max)

AN

100 H“

e

- C5 +

i

N

e

- C5+

s (o

B? 176
5
B2

4 12 :{ 1 18 11

VSA VSB OUTA' OUTA OUTB' OUTH

INA
INB
INA'
INB'

TdA

7026M

TdB

GA GB RSB REFB REFA RS/

39

+5V

Y I |_14 3 | e
c4 c3 =
o
R8,
—_— AN/
—AA\N-
R6
—AN\VN
c4 L?a R5
4 1510—|F14 € R

GA GB RSB REFB REFA RSA|

[Na
INA' 7026M TdA
[e TdB

VSA VSB OUTA' OUTA OUTE' OU

712|a 1] 18] 11

5_/@

D4 s
D5 $—1
D6
D? 16
24V-46V/(max)
AN gl
100 H ” L ! ;l:
é -
' ¥
i

R1

pa|
&/\J
yac] Pl
@

R3

R2

R1510Q
R2 10012
R3 47KQ
R4 47KQ
R5 2.4KQ
R6 2.4KD
R7 1.2Q
Rs 0.4Q

=

|I°

C1 470pF
C2 470pF
C3 2200 pF
C4 2200 pF
C510 F
C610 F

40

2.1.2.2.Power Supplies

For all chopper drivers, regulated power supplies are normally required. Because,
the over-all system efficiency decreases due to the losses in the power supply. This
increases transformer cost and heating problems. If unregulated supplies are used,
the supply voltage affects holding and pullout torque. So, in this project, two

regulated power supplies are selected and used.

The power requirements of the designed system are +5 V DC. as reference voltage
and +34,4 V DC. as control supply voltage for stepper motors and motor driver
circuits. The circuit diagram of +5 V DC. power supply is given in appendix A. The
control supply voltage should not exceed +46 V DC. maximum (It is the maximum
rating of the IC 7026M). The value of the control supply voltage only affects the
pullout torque and the speed of rotation. At the power supply unit, two power
supplies have been built in one box. 0 — 17 V DC. adjustable and regulated supply
(max. 1A. output current) has been used for +5 V DC. reference voltage. It has been
adjusted the output voltage to +5 V DC. A 120 VA transformer is connected to this
power supply unit. The output of 12 V AC. of the secondary part of the transformer
is connected to the AC. inputs of the supply unit. So the maximum DC. output value
equals to 12V2=16,92 V DC.

For the control supply voltage, another supply of 34.4 V DC. output voltage has
been used. The power supply has been tested due to different load resistors. The test
results are presented in appendix. The configuration of power supply box is as

follows in the Figure 2.11.

41

SV DG |]+svDe
+
— [220v |TRANSFORMER| 12v POWER SUPPLY

i — |erouND

4

:I +34.4V DC
+34.4 VDC

POWER SUPPLY

| GrounD

Figure 2.11. The Configuration of Power Supply Box

2.1.2.3.Interfacing to the computer

Serial and parallel communications are methods of transferring data from a
computer to a remote unit such as Antenna Control Unit. In this case, the data
consists of parameters such as azimuth or elevation angle. Both communication
techniques are generally bi-directional allowing the computer to both transmit and

receive information from a remote unit.

Serial communication transmits data one bit at a time on a single data line. Single
data bits are grouped together into a byte and transmitted at a predetermined baud
rate. Serial commuriication links can be as simple as 3-line connection; transmit (Tx),
receive (Rx) and ground (G). This is an advantage from a cost viewpoint, but usually
results in slower communications than parallel communications. Common serial
interfaces include RS-232, RS-422, RS-485, and RS-423.

Parallel communication transmits data one byte (8 bits) at a time. The advantage
of communicating in parallel versus serial is faster communications. However, since
parallel communications more communication lines, the cost can be higher than
serial communications. Parallel bus structures include IEEE-488, IBM PC, VME,
and STD.

42

The original IBM-PC's Parallel Printer Port has a total of 12 digital outputs and 5
digital inputs accessed via 3 consecutive 8-bit ports in the processor's I/O space. The

pinout configuration is shown in Figure 2.12 (Parker Automation).

e 8 output pins accessed via the DATA Port
e 5 input pins (one inverted) accessed via the STATUS Port
® 4 output pins (three inverted) accessed via the CONTROL Port

e The remaining 8 pins are grounded

D7|D6|D5|D4|D3|D2|D1| DO

000000000/

C3|C2|C1|CD

Figure2.12. 25-way Female D-Type Connector

In this designed system, data is transferred from computer to motor driver circuit
via parallel port. The first four bit have been used for transferring data to Azimuth
motor and the next four bit have been used for transferring data to Elevation motor.

(Figure2.13.)

D7 D6 D5 D4 D3 D2 D1 DO

Elevation Motor Data Azimuth Motor Data
Figure 2.13. The data configuration of parallel port

43

In the system, at first Azimuth motor is rotated , after that elevation motor is
rotated. This means that two data is not sent to the parallel port at the same time.
Therefore, while azimuth data is sent to port, elevation data is equal to “0” and “0” is
sent to port. In the same way, while elevation data is sent to port, azimuth data is “0”

and “0” is sent to port.

2.1.3.Mechanical Design

Mechanical design of the parts which form the antenna control unit is very
important. Better performance can only be achived with a good mechanical design.
To work with electromechanical parts (i.e. stepper motors) in a harmony, the design
of mechanical parts and connections should be done carefully. Mechanical design of
the system consists of iron and aluminium plates which are used to fix stepper

motors and antenna to the system, bearings, gear drive, some screws and antenna.

Geosyncronous satellites shares a limited space within the arc of
geostationary orbit. An antenna on the earth must be directed to satellite exactly.
Because, 0.01° deviation in direction of antenna causes a decrease in signal strength
and broadcast quality. In other words, the pointing accuracy or sensitivity is an
important criterion for an antenna. The characteristics of the antennae which are

existing in Tiirksat Ground Control Station are given in Appendix A.

In order to provide sensitive system, gear drive and hybrid stepper motors
which have small step angles are used. In the system designed, gear drive, which is
originally a scrap, provides to reduce the step angle of azimuth motor and to amplify
the output torque. The usage of gear system provides that the step angle of azimuth
motor is divided by 100 . In the system, when the azimuth motor is rotated one step
(1.8°), the output of gear system and antenna rotates 0.018°. The sensitivity in

azimuth direction can be calculated.

In order to rotate the antenna 90°, the rotor of motor must rotate 90/ 1.8 = 50

steps. and gear system must move 90/ 0.018 = 5000 steps.

44

Sensitivity = 50/ 5000 = 0.01 °
This sensitivity value is excellent result, because, pointing accuracy values of
11m. diameter Full Motion Antenna and 9m. diameter Limited Motion Antenna

which are existing in Tiirksat Ground Control Station are 0.01°.

In the system designed, the output of elevation motor provides the rotation of
antenna directly. In order to increase sensitivity in elevation direction, elevation
motor is excited in “Half-step drive” mode. So, the step angle of elevation motor is
0.9°. In this case, the sensitivitiy is 0.9° and this value is greater than the

characteristics of antennae in Tiirksat Ground Control Station.

2.2.SOFTWARE DESIGN

In the design and construction of antenna control unit system, system software
has a great importance on the overall system performance. The software has also
brought flexibility to the system functions and performance. The system software
has been prepared mainly for controlling the motion of two stepper motors in
elevation and azimuth directions, making the necessary calculations and visual
design. The programming language Borland C ++5.0 for Windows 95 has been used
for this system software.

In the system software, at first, the desired satellite or one of Tiirksat satellites
location is entered to the computer. The desired location in Turkey Map is selected
by the help of mouse. After that, The Calculate button in Functions Menu is pushed
to calculate azimuth and elevation angles which are the destination points of antenna.
When the Rotate button is pushed, the system software calculates the number of
steps for two stepper motors and using parallel port sends the required electrical
pulses to the drivers of motors. According to these pulses, motors make the proper

rotations in azimuth and elevation directions, respectively.

No feedback is normally required in this system. This feature is one of the

advantages of stepper motors. Today, stepper motors find their applications in speed

45

and position controls without expensive feedback loops. This driving method is

referred to as the open-loop drive. A general block diagram is shown in Figure 2.14.

(Takashi,1984)
Azimuth Mator
Motor Driver
> | Ciraut —>
Parallel Port
::> Motor Driver
Circuit :>
Computer
Flevation Maotar

Figure 2.14. A General Block Diagram of the System

In this chapter, system software and its main functions will be explained. All of
the system software is given in Appendix A. System software design consists of one

main and four functional sections as shown in the Figure 2.15.

Main Section
. Azimuth
Map Reading
& Elotion Hardware 1/0 File 1/0
Location Finding y Section Section
Calculation
Section Section

Figure 2.15. The Functional Diagram of the System Software

46

2.2.1. MAIN SECTION

Main section of the system software includes four program files. These are:

e Antenna. cpp file

e Antenna. rc file

e Antenna .h file

e Dtostring . cpp file

Main section of the system software controls the functional sections. In the

following chapters, the program files of main section will be explained.

2.2.1.1. ANTENNA . CPP FILE

This file is the main and most important file of main section of the system

software and has the following responsibilities:

- Verifying presence of Windows 95 operating system. On the contrary, system
software doesn’t work.

- Loading all the resources (bitmaps, dialog boxes, icons and buttons) which
are necessary for the visual design of the system software.

- Deleting the resources before exiting the software and freeing system
memory.

- Controlling the message loops for the system specific procedures with
WinMain and OpenDIgProc funtions.

- Calling the necessary functional sections, which are shown in the Figure 2.15.

2.2.1.2. ANTENNA .RC FILE

A resource is binary data that is linked to an application executable (.EXE).

Usually a resource defines one or more of the following user interface components:

- A dialog box, which is a pop-up window that uses labels, text boxes, buttons,
check boxes, scroll bars and other controls to give information to and receive

information from a user.

47

- A menu, which is a list of commands from which a user can choose.

- A bitmap, which is a graphic image, such as picture, logo, or other drawing.

- A cursor, which is a graphic image that shows the position of the mouse on
the screen and indicates the types of actions a user can perform.

- Anicon, which is a graphic image that represents a minimized window.

As shown in the Figure 3.4, the visual design of the system software depends on
the above-explained resources. These resources have been created using Resource

Workshop in Borland C ++ Compiler Packet.

ANTENNA.RC file is the resource file of our software and supports the visual
design of the system software. At the design time, the visual design of the system
software has been seen in a text manner with a text editor opening the
ANTENNA.RC file. The printout of this file is added the software in Appendix A.
The text in this file has a resource language specific type and notation. The extension
of this file is “.RC” . When this file is compiled, it becomes “.res” file that is linked

into our application.

2.2.1.3. ANTENNA .H FILE

Necessary variables and their types (extern, int, double, char, bool, struct),
necessary definitions (ID numbers of all objects of the system software which appear
on the monitor.), necessary included header files and prototypes of functions are
defined in this header file.

2.2.1.4. DTOSTRING.CPP FILE
All calculations in the system software are done with decimal numbers. In order to

show these numbers on the screen, DTOSTRING.CPP file converts these numbers to

characters.

48

2.2.2. FUNCTIONAL SECTIONS
2.2.2.1.FILEI/O

ANTENF.CPP has been written for file input / output processing. This file
realizes all operations of ANTENNA.TXT file, which saves the last coordinates
(azimuth and elevation angles) of the system and the last azimuth and elevation data,

which sent to the motor windings.

When the system software is run first time, it searches ANTENNA.TXT file, if it
hasn’t been created, it opens a new ANTENNA.TXT file. On the contrary of this
situation it reads the initial values of angles and data from precreated
ANTENNA.TXT file via ANTENF.CPP FILE. The initial values of the content of
ANTENNA.TXT file are as follows:

Azimuth Angle = 0°
Elevation Angle = 0°
Azimuth Data = 1
Elevation Data = 1

After every rotation of the motors, ANTENF.CPP file takes the new azimuth,
elevation angles and data from ANTENNA.CPP file and writes these values to
ANTENNA.TXT file.

2.2.2.2. HARDWARE 1/0

ROTATES. CPP has been written for communicating with parallel port of the
computer. This file provides to make proper rotation of the motors according to the
number of steps and datas which calculated in ANTENNA.CPP file. ROTATES.CPP
file sends the necessary pulses to parallel output port. This file consists of 6 different

sections.

49

- Sagadon function
This section has been written for azimuth positioning in CW direction. The

binary data is sent to parallel port according to the Figure 2.16.

(£

Figure 2.16. The Data Configurations of Azimuth Positioning

- Soladon Function

This function provides azimuth positioning in CCW (Counter Clock Wise)
direction. The binary data is sent to parallel port according to the Figure 2.16.

- Sagadonl Function

This function provides elevation positioning in CW direction. The binary data
is sent to according to the following Figure 2.17.

Figure 2.17. The Data Configurations of Elevation Positioning

50

- Soladonl function

This function provides elevation positioning in CCW direction. The binary data is
sent to parallel port according to the Figure 2.17.

- Gecikme Function

This function provides the necessary delay time between two azimuth data pulses.
The delay time is 10 milliseconds between azimuth data pulses.

- Gecikme 1 Function

This function provides the necessary delay time between two elevation data

pulses. The delay time is 100 milliseconds between elevation data pulses.

2.2.2.3. Map Reading & Location Finding

MAPS.CPP is written for calculating the coordinates (latitude and longitude
values) of the selected point on the map by the mouse pointer. MAPS.CPP provides

that the mouse works only in Turkey Map area for calculating the desired coordinates

properly.

When the user click the mouse on one point in the map, ANTENNA.CPP file calls
MAPS.CPP file. MAPS.CPP file calculates the latitude and longitude values of that
point and sends these coordinates to ANTENNA.CPP file. After that,
ANTENNA.CPP file provides to show these coordinates on the screen.

2.2.2.4. Azimuth & Elevation Calculation

AZIMELEV.CPP file is written for calculating the azimuth and elevation angles

of any selected point on the map by the help of mouse pointer.

51

2Zenith

Equator

s e
Satellite

Figure 2.18 Azimuth and elevation

The azimuth angle A and the elevation angle E can be calculated using knowledge
of antenna latitude 6 1 and longitude 0 1 and the satellite longitude 0s as shown in
the Figure 2.18. The azimuth angle is defined as the angle measured clockwise from
the true north to the intersection of the local horizontal plane TMP and the plane
TSO (passing through the antenna, the satellite and the earth’s center). The azimuth
angle A is 0 and 360°. Depending on the location of antenna with respect to the

subsatellite point (See Figure 2.19.) , the azimuth angle A is given by :

52

1- Northern Hemisphere

Antenna west of satellite: A=180"- A’
Antenna east of satellite : A=180"+ A"
2- Southern Hemisphere

Antenna west of satellite : A=A’
Antenna east of satellite : A =360 - A’

North

180 - A’] 180+A°
A’ 360 -A°
Subsatellite

Point
South

Figure 2.19. The Azimuth angles with respect to subsatellite point

A’ is the positive angle defined in Figure 2.18. In the system software, azimuth
angle has been calculated according to A=180+A” equation. The elevation angle E is
defined as the angle produced by the intersection of the local horizontal plane TMP
and the plane TSO with the line of sight between the antenna and the satellite. In the
following equations, we assume that the earth is a perfect sphere with radius Re.

From Figure 2.18, we have

4 = tan —I(MP)
MT

e tan -I(Mo tan |0 —9L|]
R, tan 0,

R
] (ecOS ﬁl)tanlgs_ng

A'= tan ~
R, tan 8,

A'= tan ! fanfs =0 95 -0,
sin 8,

53

To calculate the elevation angle E, let us consider the triangle TSO shown in

Figure 2.18. and redrawn in Figure 2.20.

Figure 2.20. Triangle TSO
The same triangle can be drawn as the following Figure 2.21.

A

Figure 2.21. Triangle to calculate elevation

According to the Figure 2.21,
E=B+8-90°
E=(90°-y)+5-90°
E=0-v

The angle y can be evaluated from the triangle TPO as follows:

y =cos™ N
oP

Since,

MO R,
coslfs —6,| cosé, cos

oP

HS_0L|

54

as seen from the triangles MPO and TMO, we have

y= cos™! (cos 9, COS'QS - 9L |)

To evaluate the angle § in Figure 2.21., we note that

— tan[SB
()
|- R, cosy
f=tan [R, siny J
_ 4 r=R, cosb coslfs 6,
A =tan (Re sinfcos ™ (cos 8, coslds —,|)|

Thus the elevation angle E can be expressed by

7 =R, cosb, coslfs — 6, |

E= tan'l[DJ —cos™(cosd), coslfs —6,)

R, sin|cos™ (cos 8, coslf; -6,

ANTENNA.CPP file sends the latitude and longitudes value of the selected point
on the map to AZIMELEV.CPP file. After that, AZIMELEV.CPP file calculates the
new azimuth and elevation angles using the above equations, which are shown, in
box and sends these new angles to ANTENNA.CPP file.

ANTENNA.CPP file reads the old azimuth and elevation angles which show the
last coordinates of the system from ANTENNA.TXT file and then compares the new

elevation and azimuth angles with the old values of them.

55

90°
CCwW
Old

N
\ New J oW

0° Elevation

Figure 2.22 Comparison of elevation angles

ANTENNA.CPP file compares elevation angles at first.(See Figure 2.22.) If
old elevation angle is greater than the new one, ANTENNA.CPP file calculates the

number of steps in elevation angle, which the rotor of motor will rotate according to

the following equation:

_ oldele —newele
0.9

N

N = Number of Steps
0.9 = Step angle of Elevation motor
oldele = old elevation angle

newele=new elevation angle

After calculation of number of steps, ANTENNA.CPP file calls Sagadonl
function, which provides elevation positioning in CW direction. If old elevation
angle is smaller than the new one, ANTENNA.CPP file calculates the number of

steps according to the following equation:

_ newele — oldele
0.9

N

56

and calls soladon] function, which provides elevation positioning in CCW direction.

0° Azimuth CCW
Old
New
Ccw

180°
Figure 2.23 Comparison of Azimuth Angles

After these all processing, ANTENNA.CPP file compares the new azimuth angle
with the old one. (See Figure 2.23) If the new azimuth angle is greater than the old
one, ANTENNA.CPP file calculates the number of steps according to the following

equation:

_ newazi — oldazi
0.018

newazi = new azimuth angle
oldazi = old azimuth angle
0.018 = step angle of output of the gear drive which is connected to rotor of
azimuth motor.
After this calculation, ANTENNA.CPP calls sagadon function, which provides
azimuth positioning in CW direction. If the new azimuth angle is smaller than the old

one, the number of steps are calculated by the following equation:

_ oldazi — newazi

0018
According to result of this calculation, ANTENNA.CPP file calls soladon

function which provides azimuth positioning in CCW direction.

57

2.3. THE FLOWCHARTS OF SOFTWARE PROGRAMME

The flowcharts of main program, fine tuning, reset and rotate functions have been

prepared during software design. These flowcharts are given in the following pages.

READ THE INITIAL (OLD VALUES) OF
THE AZIUMUTH & ELEVATION ANGLE'S

AND DATA’S FROM ANTENNA. TXT

58

OPERATE MAPS.CPP
PROGRAM FILE

DISPLAY “ENTER EARTH
STATION LATTITUDE &
LONGITUDE” MESSAGE

1S THE

“ABOUT” VES | |CALL “ABOUT”
BUTTON DIALOG PROCEDURE
PRESSEN?
NN |

18
FIOUONTP:SQ&T[? VFS _[OPERATE “T1B FOOTDLG”
BUTTON DIALOG PROCEDURE

OPERATE “T1CFOOTDLG”
DIALOG PROCEDURE

OPERATE “TIB HDLG”
DIALOG PROCEDURE

OPERATE “TIC HDLG”
DIALOG PROCEDURE

THE FLOWCHART OF MAIN PROGRAM

59

START

60

THE FLOWCHART OF FINE TUNING FUNCTION

18 THE AZIMUTH
CCW BUTTON
PRESSED ?

IS THE AZIMUTH CW
\UTTON PRESSED

NO
READ THE
AZIMUTH
y YES ANGLE & NO NO
DATA DATA=4
et L —p) DATA=8
ANTENNA.
TXT FILE
SEND “0x08" DATA TO SEND “0x01” DATA TO SEND “0x02" DATA TO SEND “0x04” DATA TO
PARALLEL PORT PARALLEL, PORT PARALLEL PORT PARALLEL PORT
: v v
DELAY | | DELAY I | DELAY | DELAY
vy DATA=4
I DATA=8] DATA=1 | I DATA=2 j
L AZIMUTH ANGLE = AZIMUTH ANGLE - 0.018
v
WRITE THE NEW AZIMUTH
ANGLE AND DATA TO THE
ANTENNA.TXT FILE
A
NO
READ THE
AZIMUTH
ANGLE AND
DATA FROM
ANTENNA.
YES | rxTFLE

NO NO NO
DATA=1 DATA=2 >/ Datass DATA=8
—p

SEND “0x02° DATA TO SEND “0x04” DATA TO SEND “0x08” DATA TO SEND “0x01” DATA TO
PARALLEL PORT PARALLEL PORT PARALLEL PORT PARALLEL PORT
A A A A
DELAY I DELAY | | DELAY I DELAY
A
DATA=2 DATA=4] | DATA=8 | I DATA =1

‘ AZIMUTH ANGLE = AZIMUTH ANGLE + 0.018

A 4

WRITE THE NEW AZIMUTH
ANGLE AND DATA TO THE
ANTENNA.TXT FILE

61

IS THE ELEVATIO]
CW BUTTON

READ
ELEVATION
ANGLE AND NO
DATA FROM DATA=6
ANTENNA.
TXT FILE
YES
SEND “0x90” DATA TO SEND “0x10” DATA TO SEND “0x30” DATA TO SEND “0x20” DATA TO
PARALLEL PORT PARALLEL PORT PARALLEL PORT PARALLEL PORT
| peLay | | peLay | DELAY DELAY
| DATA=9 | | DATA=1 | DATA=3 DATA=2
A
[NO
NO
DATA=4 DATA=12 DATA=8 _% DATA=9
YES
SEND “0x60” DATA TO SEND “0x40” DATA TO SEND “0OxC0” DATA TO SEND “0x80” DATA
PARALLEL PORT pmm PORT PARALLEL PORT PARALLEL PORT
y
ELEVATION ANGLE = ELEVATION ANGLE - 0.9 |
WRITE THE NEW ELEVATION
ANGLE AND DATA TO THE
ANTENNA.TXT FILE

READ

ELEVATION

ANGLE AND

DATA FROM

ANTENNA.TXT

FILE

SEND “0x30" DATA TO SEND “0x20” DATA TO SEND “0x50” DATA TO SEND “0x40" DATA

PARALLEL PORT PARALLEL PORT PARALLEL PORT 'ro PARALLEL PORT
(o] =] + ﬁ

| DATA =3 | | patA=2 | [DATA=6] I')ATA 2|

SEND “0xCO°DATATO | [SEND “0x80"DATATO | [SEND“0x90"DATATO | [SEND “0x10”DATATO
PARALLEL PORT PARALLEL PORT PARALLEL PORT PARALLEL PORT
DELAY | DeLar | | pEeay | DELAY
| paTA=12 | | pDATA=8 | | patA=9 | | DATA= 1 |
A
1l ELEVATION ANGLE = ELEVATION ANGLE + 0.9 |

WRITE THE NEW ELEVATION
ANGLES AND DATA'S TO THE 1
ANTENNA TXTFIL.R

THE FLOWCHART OF RESET FUNCTION

START

READ THE OLD
AZIMUTH &
ELEVATION ANGLES
AND DATA FROM
ANTENNA.TXT FILE

AZIMUTH ANGLE =0
ELEVATION ANGLE =0

CALL ROTATE
FUNCTION

AZIMUTH ANGLE =1
ELEVATION ANGLE =1

WRITE THE NEW
AZIMUTH &
ELEVATION ANGLES
AND DATA’S TO THE
ANTENNA.TXT FILE

RETURN

62

63

THE FLOWCHART OF ROTATE FUNCTION

START

Int datal,data2,don,donl
Double azim,elev
Struct Projedata step

SEND “0x00” DATA
TO PARALLEL PORT

Step.datl=azeld1.FILE_DATI1 I
Step.dat2=azeld1.FILE_DAT2 I

Datal = step.datl
Data2 = step.dat2

Step.oldele=azeld1 . FILE_ELEVATION D
Step.oldazi=azeld1 FILE_AZIMUTH D
Step.newele=azeldrotl. ELEVATION_ROT D
Step.newazi=azeldrot]. AZIMUTH ROT D

Step.oldele ; Step.newele elev = (step.oldele-step.newele)/0.9 |

Lelev = (step.newele-step.oldele)/O.91 '

| donl =soladon1(elev,data2) 1 L donl =sagadon!(elev,data2) I

\/

SEND “0x00” DATA SEND “0x00” DATA
TO PARALLEL PORT I TO PARALLEL PORT

IEim = (step.newele-step.oldele)/0.0181 Step.oldazi ; Step.newazi azim = (step.oldazi-step.newazi)/0.018 ‘

| donl =soladon(azim,datal) I

\

SEND “0x00” DATA ~ SEND “0x00” DATA
TO PARALLEL PORT Y TO PARALLEL PORT

| donl = sagadon(azim,datal) —|

Step.oldazi = Step.newazi
Step.datl = don
Step.oldele = Step.newele
Step.dat2 = donl
azeld1.FILE_DAT1_I = Step.datl %
azeld1.FILE_DAT2 I = Step.dat2
azeld1.FILE_ELEVATION_D = Step.oldele
Ezeldl.FILE.AZIMUTH_D = Step.oldazi

64

CHAPTER THREE

MOUNTING AND OPERATING
THE ANTENNA CONTROL UNIT

3.1. MOUNTING

The purpose of mounting is to aim antenna of the system towards a desired
satellite accurately and securely. Using a mount that provides stability and pointing
accuracy is critical in designing and installing a reception system, especially for Ku-
band antennae that have narrow beamwidths and thus target a very small portion of
the sky. Because, 0.01° deviation in direction of antenna causes the centre of antenna
vision to scan 75km. at the geosynchronous arc leading to a decrease in signal

strength and broadcast quality. (See Table 3.1.)

Table 3.1. Satellite Spacing

Angular Spacing Separatibn between Satellites
0.5 369 km.
1.0 739 km.
2.0 1477 km.
3.0 2216 km.
4.0 2955 km.

There are three principal classes of mounts: X-Y mount, AZ / EL mount and polar

mount. In this system, AZ / EL mount is used on every installation.

In AZ / EL mount, the location of a point on earth can be described by using the
azimuth over elevation coordination system. Azimuth is defined as an angle
produced by rotation about an axis, which is perpendicular to the local horizontal

plane. Elevation axis rotate in the local horizontal plane as azimuth angle rotates. A

65

change in the elevation angle will cause a rotation of antenna in the vertical plane
(Intelsat, 1995)

Installation of AZ / EL mount is simple and not very critical. Any communication
satellite is pointed by first moving the mount to the correct azimuth angle, which is
along a plane parallel to the surface of the earth, and then by rotating up to the
required elevation angle. (See Figures 3.1. and 3.2.) There is no tracking error so
each satellite can be perfectly targeted. This is an advantage of AZ / El mount
(Baylin, 1997).

AZ / EL mount is used in the construction of this system. On every installation,
the user must be sure about azimuth and elevation angles of the antenna are adjusted

correctly according to reference angles which are mentioned at Figure 3.2.

Figure 3.1 AZ /EL Mount

99

Juq) [onpuo)) euuduy jo ydeidojoyd ayq [, €°¢ 2n3ig

IWALSAS HHL ONLLVHHAdO ‘T€

A1pour0d9) JUNOIAl TH / ZV "T'€ 031y
HLHON

HLAWIZY

67

As it is seen from Figure 3.3. (Photograph), the elements of the system are as
follows:
+34.4 V DC Power Supply
+5 V DC Power Supply
Two Stepper Motors
Motor Driver Circuit
Computer (including Windows 95 operating system)
Parallel Port Cable

Stepper motor windings have the terminals named with brown, red, orange, and
yellow. These windings are connected to the driver circuit through these terminals.
The windings named white/blue common and black/green common are connected
34.4 V DC power supply. + 5V and +34.4VDC supplies are used to energize the
driver circuit and the motor windings, respectively. Computer is necessary for
operating the system software and controlling the motion of stepper motors. In order
to run the system software, computer must include Windows 95 operating system.
The stepper motor driver IC has pulse input terminals. These are connected to the
corresponding bits of the computer’s parallel output port. For this purpose, parallel
port cable that has 2.5.m. length.

3.3. HOW TO USE THE SYSTEM SOFTWARE

In this section the usage of the system software is explained. The procedure that
should be followed after the connections of the system elements is given below. The

visual design is also shown in Figure 3.4.

Step 1. Click one point by the left button of mouse on the map.
“Antenna Map Location” display will indicate the latitude and

longitude coordinates of that point on the map.

Step 2. Select one of Tiirksat satellites on “Satellite Selection” menu or enter the

location of the desired satellite on “Satellite Location” menu.

68

Step 3. Press “Calculate” button on “Functions” Menu.

Calculated values display will indicate the calculated azimuth and elevation

values.

Step 4. Press “Rotate” button on “Functions” Menu

Step 4.1. When the message about azimuth angle is appeared, press “OK”
button.

Azimuth motor starts to rotate after this command.

Step 4.2. When the message about elevation angle is appeared, press “OK”
button.

Elevation motor starts to rotate after this command.

Step 5. Press “Fine Tuning” button on “Functions” menu.
The message menu “Antenna Manual Adjustment” appears after this

command.

Step 5.1. Select the direction (CW or CCW) of azimuth motor on this menu
Step 5.2. Press “OK” button.

After this command, azimuth motor rotates one step (0.018°) in the

selected direction.

Step 5.3. Select the direction (CW or CCW) of elevation motor on” Antenna
Manual Adjustment” menu.

Step 5.4. Press “OK” button.

After this command, elevation motor rotates one step (0.9°) in the
selected direction.

Step 6. Press “Reset” button before exit the system software.
Step 6.1. When the message about azimuth angle is appeared, press “OK”
button.
Azimuth motor starts to rotate towards the reference direction.

Step 6.2. When the message about elevation angle is appeared, press “OK”

button.

69

Elevation motor starts to rotate towards the reference direction.

Step 7. Select one of Tiirksat satellites on “Foot Prints” menu, in order to see

footprints of the selected satellite.

Step 8. Select one of Tiirksat satellites on “Characteristics” menu, in order to see

characteristics and performances of the selected satellite.

Step9. Press “ Exit” button for terminating the system software.

'a Mn“nm o Baur

o a Limyit xomira G Kean
-4, Rapeiz €2 Mangenez
5 O Bk Braxy |
kit .
Luietog

Madenter TURKIYE

Figure 3.4. The Visual Design of the System Software
In order to maintain and preserve the antenna’s reference azimuth and elevation
angles which are adjusted at the first installation, for the later operation and proper

usage of the system, the user must reset the system before every exit from software.

70

CHAPTER FOUR
CONCLUSIONS

In this thesis, Computer Aided Satellite Antenna Control Unit System has been
designed and implemented using stepper motors. The system is aimed to be capable
of controlling the antenna in two axis (azimuth and elevation) using stepper motors

and pointing the antenna to the desired satellite.

To achive this aim, stepper motors and their types, stepper motor drive and
excitation methods have been investigated. The system includes hardware and
software designs. In the hardware designed, the right hybrid stepper motor and motor
driver ICs have been selected according to the load conditions of the system. Stepper
motor driver circuit and power supplies have been designed. Mechanical design is
important for getting the best performance of the system. In mechanical design, gear
drive is used for reducing the step angle of azimuth motor and amplifying the output
torque. In order to interface to the computer, parallel port is selected between the

computer and stepper motor driver circuit.

The system software has been written to provide the following main funtions:

- Reading map and finding the locations of the selected point on the map,

- Calculating azimuth and elevation angles according to the locations of
selected point,

- Rotating the stepper motors to calculated azimuth and elevation angles,

reseting of the antenna, fine tuning .

A satellite in a geostationary orbit appears to be stationary with respect to a point
on the earth. Therefore, if an antenna is within the coverage of the satellite, it can
receive the broadcasts of the satellite by simply pointing toward satellite. If the user
of antenna want to receive broadcasts from more than one satellite, the antenna must
be rotated to point the desired satellite. Manual adjusment of this process is difficult

and wastes time and effort. Therefore, the antenna control unit system has been

71

designed to control the position of antenna in this thesis. The designed system is used
for antennas which have small diameter. Even if the stepper motors are sufficient to
rotate the small diameter antennas, different technologies must be used to control the
antennae which have 11m. or 30m. diameters on the Earth Stations. The system
software is also a prototype of the softwares which control the mentioned big

antennae.

72

REFERENCES

Acarnley, P.P. (1984). Stepping Motor: A Guide to Modern Theory and Practice.
London; Peter Pregrinus Ltd.

Allegro MicroSystems, Inc. High-Current Unipolar Stepper Motor Controller /

Drivers.
Baylin, Frank.(1997) Digital Satellite TV (5 th Ed.). Baulder, Colorado; Baylin

Publications.

Ericsson. Industrial Circuits Databook and Stepper Motor Control Handbook

Application Notes.

INTELSAT (1995) Eart Station Technology (4th Ed.)

Jennings,S. (1996). Basics of Stepping Motors.

Kollmorgen. Step Motors and Controls. Radford, VA..USA

Kollmorgen , NP-7026M, 7024M, 2918M Unipolar & Bipolar Chopper Drive
Chips Databook. Radford, VA.USA.

Ozdamar, F. (1976) . A Two Dimensional Digital Position Control System.
METU.

Ozdeslik, M.(1982). Programmable Step Motor Drive. METU

Parker Automation. Compumotor Step Motor and Servo Motor Systems and

Controls Catalog. USA.

Takashi, Kenjo.(1984). Stepping motors and their microprocessor controls.

Kanagawa, Japan. Clarandon Press, Oxford.
Tri, T. Ha. (1990). Digital Satellite Communications (ond Edition).
McGraw — Hill Publishing Company

APPENDIX A

73

stepper Motor Drive IC NP-7026M Specifications

1. Gearel Specifications

~1 Product Hybrid IC.

-2 Constriuction ‘Transfer-mold

-3 Main application Stepper motor drive

-4 Excitation 2 phase or -2 phase

-5 Applicable metor 4 phase bi-filar wound stepper motors { 6- leads)

2. Max_ Absalute Ratings (Ta = 25°C)

[tam Symbel
Supply Yoltage YCC
FET Qutput Standing ¥DC
Control Supply Yoltage ¥s
TTL Input Yoltege ¥IN
Referance Yoltage ¥YREF
Qutput Current 10
Allowable Loss PD
Allowable Loss PD
Junction Temp. Td
Storage Temp. TST6

3. Electrical Charscteristics

-1 DC Characteristics

item Symbol
Control Supply Current Is
Control Supply Yoltage ¥S
FET ON Yoltage ¥0S
FET Drain-leak Current 0SS
TTL Input Current lIH
TTL Input Curreat h

TTL Input Yoltage(Active 'H') ¥H
TTL Input Yoltage(Active 'H') YL
TTL Input Yoltaga{Active ‘L") YiH
TTL input Yoltage(Active L) YiL
FET Dicde Order Yoltage ¥s0

-2 AC Characteristics

1243 Symbol
Switcaing Time TR
Switching Time T576

Switching Time iF

Standard

46 ¥ max

100 Y max

46 ¥ max

7Y max

2'Y max

3 A max

4.5 W max without radiating heat fan
35 W max {Te = 25°C)
150°C max
-40 to +150°C

Condition Ratings Unit

Min. Typ. Max.
YS=d4yY 10 18
10 24 44

o
©

ID=3A, Ys=10
¥D0S=100Y, YS=44¥
YiH=2.4Y, Y¥S=d4Y
YIL=0.4Y, YS=ddy¥
D=ZA 2.0
1DsS=100¥

IDSS=100¥ 2.0
ID=3A

1S0~324

o
[

5 8 g8e

r
[

Condition Ratings Ugmit
Min. Typ. Max.
Y5=24Y, D234 0.5 us
¥3=24Y, 10=3A 0.7 us
YS=24Y, {D=3A ‘ 0.1 s

4. Natss

The excitation input signal of NP-7026M can be applied by sither Active "H’ or Active °L’.

Howevsr, thars is the diffsrence on wiring hook-up.

Pin # 1 8 1 18
{aput signal Active "H" OUTA OUTA OUTB OUTB
Iaput signal Active 'L° OUTA OUTA OUTB OUTB

5. Circuit Disgram
Dutput Pin Assignment (Excitation Input Signal)

Pin # 1 8 11 18
Input signal Active ' OUTA OUTA OUTB OUTB
Inpuat sigeal Active 'L OUTA OUTA OUTB OUTB

|

} b' .

.?515 gﬁ—é
cg O 30 0F fQ 0f 20 0Oz OO
T ;— ! 1 5 7 12 17 16 18 1
Tl @)
! | § . N
T >
is J“"' -
X
14 13 1S EJ
OF QF 08 :
—a 5V
L_%Ta
fa Ca
\AA— ¢ AN _1, i Rs
lc:

e e U PTTLYRY e

- IR Y e

—o Ve

6. Stagdard Circaoit
-1 Excitation Timing Chart (Active 'H)
2 Phase axxitation
Clsck O 1 2 3 0 1
(i H L Lt H H (L
WA L H H L L H
INB H H L L H H

e L L H H L L

{ =2 Phase excitation

Clack O { 2 3 4 5 6 7 g 1
INA H H L L L L L H H H
" INA L L L H H H L L L L
INB L H H H L L L L L H
M8 L L L L L H H H L L
Voola8Y max)
C— —
i
L | !
= L0
B A
! '
S G I
s N
/REr SV 7l12] 3 1) 18 1l
T | jV9‘Jsa CUTZ CUTx QUTE OUTs
'Jé 7&? 3' i INa BB
H ! ! 1 =
R N L2
e Zn NP —-T026M 7
l ———iTus iNa 5
it el NG 2
T b’ : Rea FBega Agm Rss Ga Ga |
' R R S ERE
bers hrrd bre, : T“'e:("‘: T—;;—-'l | —
j ié‘i ‘;';' év % &
i gl j o
' berd | g
‘ |
| |

Iy 5108

[2 100Q(VR)
[3 47kQ

[a 47KQ

5 2.4kQ

[g 2.4kQ

C| 47ODF
C2 470pF

Ca 2200pF
Ca 2200pF
Rs 068Q(typ)1~2w

~2 Excitatien Timing Chart (Active 'L°)

2 Phese excitation

Cleck 0 t 2 3 0 1
A4 L H H L L H
A H L L H H L
M L L H H L L
e H H L L H H
{ =2 Phase excitation
Clock 0 1 2 3 4) 6 7 0 1
INA L L H H H H H L L L
A H H H L L L H H H H
M8 H L L L H H H H H L
& H H H H H L L L H H
Vee {48V max) 4
= J. L4
] 5 3
beza ’_\1 LY i ' [i]
Vrer(5V) 71120 8 11 18 n
O VaVsa OUTx OUT. OUTE OUTs
f;é hé {1 INa & -0
j ” INz |2— 0
—_— Ta NP—7026 M _—
G | C2 S . INB 16——0
= = r é Rss Rea Res. Ren Ga Gs
‘Cz LC‘@ e
I's rﬁ b_J
Rs | Bs
o

X e~ x>z = N

Ci

510Q -
100Q(VR)
47kQ
47KQ
2.4kQ
2.4kQ
470pF

C2 470pF

C3 2200pF

C. 2200pF

Rs 0582 (typ)1—~2w

,@;?‘&%w e

A o x e

. Dimeuzisns
-1 External Appeaiance

External apperance should be free of dirt, flaw or crack.
2 Dimensions

See below

3 Marking

Company symbol, product name & Tot No. should be marked with white ink.

¢3.2:OJS 24.4 02 $3.2 =0.1§ X 3.8

[ant <
N 67
S s ".—. Product name
o B & 4 i
— [+>]
o ey Lot No.
0.65+92]) 1282
—
17 X P1.68:%7=28 58 %!
, 31.3%92 ,
Unit m

4,810

1.7!0.1

R-End

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT PIOR NOTICE FOR IMPROYEMENT.

201 Rock Road
Radford, VA, 24141

otio

. Ph: 540-633-4173
Technologies Group Fax: 540-731-4519
and PQ Series, Unipolar
@1 @2 i 03 I 94 Common Direct_ion of
ds Brown Red Orange Yellow Rotation :
ds Brown Red QOrange Yellow . . CCw
! On On Off Off l—Wh;te White :
2 Off On On Off -Blue Black ;
3 Off Ooff | _On On [Block !
4 On Oft Off On” Green ;
1 On On Off Off Cw |
8 Lead
Unipolar Wiring Diagram
-{(®@1) Brown @) Unipolar 02)
Brown Red
. White Black
- (Com.)White ,
(®3) (e4)
- (Com.)Blue Orange Yellow
A
- (#3) Orange
-(22) Red
- (Com.)Black
- (Com.)Green
. (04)6Yellow
eries, Unipolar
21 22 23 24 Common_ Direct'ion of
is_| Black _ Orange Brown Yellow Retation |
L on 1 on o | of | Red | Cow
’ O On o Ono QT Red : i
O N« T B S G _ L ! |
On Off Off On \
On On Off Off } CW
O I SRS DR U [SOOI
Wiring Dagram
e e e e e
(01) Unipolar (62) ;
HI';("P“:) (T Ornnae - .

Red g'" Red

(23) C. (@9

[Brown Yellow

B

201 Rock Road
Radford, VA, 24141

) ; Ph: 540633417
dtion Technologies Group Con 940331 4

ar Series

.olor @1, 2 _j ¢S [_ ¢4 | Direction of
“Leads T % Rutation
nd PQ 4 Leads| Brown Red | Orange Yellow
nd PQ 8 Leads . R T CCwW
tep 1 1 On off 1 . COn _ | off |

2 | On off | Ofi On

3 Off On o On

4 off |- On | On off |

1 On Ooff Or Off CWw

Wiring bingrom
4 Lecos Bipolar
e

(¢1) Bl;\chi)t (@_’_’)
Brown) (Red
r

4

3«
@3)_ O (__ (@9

Orange Yellow

8 Leads Bipolar

Series Parglle! 1
(-— (9) 1) Brown -(!i __.____w-:} ‘

i j
¢ 5

: White- ~ ..)

L

Biue: e

U ij ')

.)

(o
7 i ' .
i (93} Doy & -

LTI S

{ k

- | !

? (: [l v 1)
; t Core i , |
|« G
[(. R
- ’ . i
(“'- (w1) Yellow -) [
B i

Unit: mm

n. |

(O A .

56.4
222

47.14 '
1.856

T

T

.

< b\' l
..j
@@

W 200£10

u} 7.872.30
'

5.2 2.205 THRU 4PL
8.C.D.£6.68 2.625

238.120.05
©1.50=.002

4
5.35 “Jo12 T

2.25 *Joos

e L]

20:0.5
4 .787:02

5
2

H._

mm in
PJTI9 | 29 |154
PJT42 | 42 1565
pJTs0 [s0 [1.97
PJT55 | 55 |2.17
PJT70 | 70 [2.75
PJT80 | 80 |3.15

TEST RESULTS FOR 35 V DC. POWER SUPPLY

SWITCHING POWER SUPPLY
PCB.

Connector Outputs

[o[9;8 71815 4131271
- . R

GND SRR . L v

GND i r l i } =235V,

GND D =35V

+8.73 V. r “5V.
-2V 4ot RS A
Voul Re Vou ('Output when load IL COMMENTS
(no load) (Load resistor) resistor connected) {Load current)
+24.5 Vg, 2200 244 Ve 102 mA OK.
+34.3 Vg 336 Q +34.3 Ve 101 mA OK.
+3.03 Ve 32.1Q +5.02 Vg 93.8 mA OK.
* +5.02 Vg 521Q +2.29 Vg 47 mA Low Current. (pin 5)

~12.10 Vg 1528 Q2 -12.08 Vg 78 mA OK.
+8.75 Ve 88.7Q +7.76 Vi 35 mA OK.

Note 1-) The measurements have been done under all connector outputs loaded with relevant R;.

Vout I V out (Output when load | Vi (Ripple voltage
(no load) (Driven current) resistor connected } occured at the output)
+24.5 Ve LA “242 Vg 200 mV,,,
+34.5 Vg [A. +33.4 Vg, 900 mV,.,

0.5 A. +33.9 Vg, 550 mV,.,

+5.03 Vg LA -4.92 V,, 110 mV,.,

* 4502 Vg 15.5 mA. +4.91 Vg 60 mV,,

25 mA. 4,79 Vg 70 mV,,

30 mA. ~4.66 Vg 80 mV,,,

35 mA. 4.3 Vg 500 mV,,

37 mA. +4.0 Vg 720 mV,,

-12.10 Vy, 150 mA. -12.01 Vg ot loaded 5o much since heat

+8.75 Vy 25 mA. ~7.93 Vg
50 mA. +7.83 Vy

75 mA. ~7.78 Ve 225mV,.,

150 mA. +7.68 Vy, 275 mV,,

Note 2-) All outputs are measured one by one. During the measurement of an output, all other
outputs are loaded with the relevant load resistors as mentioned above tables.

‘v' E T ?
. 0-35V
TIP 145 (0-3A)
BC 558C ;
I8

1IN821 w20

«®

1| l»—qp--»—

m‘ SRR T

ANKARA TT&C STATION

ANKARA ODTU STATION

ANTEMNA ZCORDINATES

LATITUDE ('N) 39°338+27-
LONGITUCE ("Bl 32°48°28°
HEIGHT 1045 m
ANTENNA TYPE 11 M Full 9 m Limiced 9 m Limiced

motion antenna

motion antenna

mozian ancanna

ANTENNA TRANSMIT GAIN

62.2 dBi

60.4 4Bi 60.4 dBi

(MIDBAND)
ANTENNA RECEIVE BAND 60.4 dBi 58.2 dBi 58.2 dBi
(MIDBAND) ’
G/T (MIDBAND) 36.4 4dB/K 35 da/k 33 48/K
EIR? 91 dsw 83 dBwW 81 daw
TRACKING MONOPULSE STEP-TRACK STEP-TRACK
MAX. SLEW RATE 0.5°/s g.08°/s 0.08°/s N
RMS PQINTING ACCURACY 0.01° rms .0.01" rms 3.01° rms
RMS TRACKING ACCURACY 0.003° rms 0.015° zms 0.013" rms
MINIMUM ELEVATION S S 3
POLARIZATION Linear Linear Linear orientabie

orientable orientable

Tracking linear/

circular
TRANSMIT FREQUENCY BAND 14-14.5 GHz 14-14.5 GHz 14-14.5 GHz

RECEIVE FREQUENCY BAND

10.95-11.70 GHz

10.95-11.70 GHz

10.95-11.70 GHz

3 dB BEAMWIDTH (")

Tx: 0.12°
Rx: 0.1S5°

™: 0.15°
Rx: 0.18°

™: 9.
Rx: 0.

|

@ v

ANTENNA RECEIVE & TRANSMIT TYPICAL
CHARACTERISTICS

APPENDIX B

Antenna.cpp File

#include "Antenna.h"
#include <windowsx.h>

bool azim elev_by_ map=FALSE;
bool testarea=FALSE;
MAPCOCR map_coor;

AZELD azeldl;

AZELDROT azeldrotl;

HBITMAP hMap Turkey:

HBITMAP hMap lcfoot;

HBITMAP hMap_ lbfoot;

HBITMAP hMap ebru;

HBITMAP hMap chlb;

HBITMAP hMap chlc;

HDC hDC;

HINSTANCE hInsAbout;
HINSTANCE hInsT1B;

HINSTANCE hInsTI1C;

HINSTANCE hInsManual;
HINSTANCE hInsT1BH; :
HINSTANCE hInsTI1CH;

HWND hDlgrot;

int data,d;

void autorotate(void)

{

HOut (0x378, 0x00) ;

int datal,data2,don,donl;
double azim,elev;

struct projedata step;

step.datl azeldl.FILE DAT1 I;
step.dat2 = azeldl.FILE_DAT2_ I;
step.oldele = azeldl.FILE ELEVATION_D;
step.oldazi = azeldl.FILE AZIMUTH D;
datal=step.datl;

data2=step.dat2;

step.newele = azeldrotl.ELEVATION ROT D;
step.newazi = azeldrotl.AZIMUTH_ROT_D;

if(step.oldele>step.newele)
{
MessageBox (hDlgrot, (LPSTR) "step.oldele > step.newele”,
(LPSTR) "Autorotate Function", MB OK |
MB ICONASTERISK) ; .
elev=(step.oldele-step.newele)/0.9;
donl=sagadonl (elev,data2);
HOut (0x378,0x00) ;
}
else
{
MessageBox (hDlgrot, (LPSTR) "step.oldele < step.newele",
(LPSTR) "Autorotate Function”, MB OK |
MB_ICONASTERISK) ;
elev=(step.newele-step.oldele)/0.9;
donl=soladonl(elev,data2);
HOut (0x378, 0x00) ;
}

if(step.oldazi>step.newazi)
{
MessageBox (hDlgrot, (LPSTR) "step.oldazi > step.newazi”,
(LPSTR) "Autorotate Function", MB OK |
MB _ICONASTERISK);

azim=(step.oldazi-step.newazi)/0.018;
don=soladon({azim,datal);

HOut (0x378, 0x00) ;

}

{
MessageBox (hDlgrot, (LPSTR) "step.oldazi < step.newazi",
(LPSTR) "Autorotate Function”, MB_OK |

else

MB_ICONASTERISK);
azim=(step.newazi~step.oldazi)/0.018;
don=sagadon (azim,datal);

HOut (0x378, 0x00) ;
}

step.oldazi=step.newazi;
step.datl=don;
step.oldele=step.newele;
step.dat2=donl;

azeldl.FILE_DAT1 I = step.datl;
azeldl.FILE DAT2_TI = step.dat2;
azeldl.FILE_ELEVATION D = step.oldele;

azeldl.FILE AZIMUTH D = step.oldazi;
}

BOOL CALLBACK AboutDlgProc (HWND hDlgAbout, UINT uMesg, WPARAM
wParama, LPARAM lParama)
{
switch (uMesg) ({
case WM INITDIALOG:
return (TRUE);

case WM _COMMAND:
switch (GET_WM_COMMAND ID(wParama, lParama))
{ case IDABOUTOK:
éndDialog(thgAbout, TRUE) ;
return}(TRUE);

}

break;

default:
return (FALSE) ;

return (TRUE) ;
}

o’
BOOL CALLBACK T1BHDlgProc(HWND hD1gT1BH, UINT uMesgbh, WPARAM
wParama, LPARAM lParama)
{
switch (uMesgbh) {
case WM_INITDIALOG:
return (TRUE);

case WM_COMMAND:
switch (GET_WM_COMMAND ID(wParama, lParama))
{
case IDOK:
{
EndDialog (hD1gT1BH, TRUE);

}
return (TRUE):;

break;

default:
return (FALSE) ;

return (TRUE) ;
}
BOOL CALLBACK T1CHDlgProc (HWND hD1gT1CH,
wParama, LPARAM lParama)
{

UINT uMesgch, WPARAM

switch (uMesgch) {
case WM INITDIALOG:

return (TRUE);

case WM_COMMAND:
switch (GET WM COMMAND ID(wParama, lParama))

{
case IDOK:

{
EndDialog (hD1gT1CH, TRUE});

}
return (TRUE);

}
break;

default:
return (FALSE) ;

return (TRUE) ;

}
BOOL CALLBACK ManualDlgProc (HWND hDlgManual, UINT uMesgm, WPARAM

wParama, LPARAM lParama)

{
switch (uMesgm) {
case WM INITDIALOG:

return (TRUE):;

case WM_COMMAND:
switch (GET_WM_COMMAND_ID(wParama, lParama))

{
case IDOK:

{
EndDialog(hDlgManual, TRUE);

}
return (TRUE);
case AZCCW:

{
ReadData (&azeldl.FILE AZIMUTH D, &azeldl.FILE

ELEVATION_D, &azeldl.FILE DAT1 I, &azeldl.FILE DAT2 I);
data = azeldl.FILE DAT1 I;

if(data==1)
{
HOut (0x378,0x08) ;
gecikmel ();
a=8;
}
if(data==2)
{
HOut (0x378, 0x01);
gecikmel (});

d=1;
}
if(data==4)
{

HOut (0x378,0x02) ;

gecikmel () ;
d=2;
}

if (data==8)
{
HOut (0x378, 0x04) ;
gecikmel () ;
d=4;

}

azeldl.FILE_AZIMUTH D =

azeldl.FILE AZIMUTH D - 0.018;
azeldl.FILE DAT1 I = d;

WriteData(azeldl.FILE _AZIMUTH D, azeldl.FILE _ELEV
ATION_D,azeldl.FILE DAT1 I,azeldl.FILE_ DAT2 _I):
HOut (0x378, 0x00) ;
}
return (TRUE);
case AZCW:

{
ReadDaﬁa(&azeldl FILE AZIMUTH_D, &azeldl.FILE

ELEVATION_D, &azeldl.FILE DAT1_I, &azeldl.FILE_ DAT2 _I):

data = azeldl.FILE DAT1 I;

if (data==1)
{
HOut (0x378,0x02) ;
gecikmel () ;
d=2;
}
if (data==2)
{
HOut (0x378,0x04) ;
gecikmel () ;
d=4;
}
if (data==4)
{
HOut (0x378, 0x08) ;
gecikmel () ;
d=8;
}
if (data==8)
{
HOut (0x378,0x01);
gecikmel () ;
d=1;
} Ed
azeldl.FILE_AZIMUTH_D =

azeldl.FILE AZIMUTH D + 0.018;
azeldl.FILE DAT1 I = d;

WriteData(azeldl.FILE AZIMUTH_D, azeldl.FILE _ELEV
ATION D,azeldl. FILE DAT1 I,azeldl. FILE_| DAT2 I
HOut (0x378, 0%00) ;

}
return (TRUE);
case ELCCW:

{
ReadData(&azeldl.FILE_AZIMUTH_D, &azeldl.FILE

ELEVATION D, §azeldl.FILE DAT1 I, &azeldl.FILE DAT2 I);

data = azeldl.FILE DAT2 I;
if(data==1)
{

HOut (0x378, 0x90) ;

gecikmel () ;
d=9;
}
if (data==3)
{
HOut (0x378, 0x10) ;
gecikmel();
d=1;
}
if (data==2)
{
HOut (0x378, 0x30) ;
gecikmel () ;
d=3;

if (data==6)

{
HOut (0x378, 0x20) ;
gecikmel () ;
d=2;
}
. if (data==4)

HOut (0x378, 0x60) ;
gecikmel();
d=6;

if (data==12)

{
HOut (0x378,0x40) ;

gecikmel();
d=4;
}

if (data==8)
{
HOut (0x378, 0xCO) ;
gecikmel () ;
d=12;
}

if (data==9)

HOut (0x378, 0x80) ;
gecikmel () ;

d=8;

}

azeldl.FILE_ELEVATION D =

azeldl.FILE_ELEVATION_D - 0.9;
’, azeldl.FILE DAT2 I = d;

WriteData(azeldl.FILE_AZIMUTH_D,azeldl.FILE ELEV
ATION_D,azeldl.FILE DAT1l I,azeldl.FILE DAT2 I);
HOut (0x378, 0x00) ;
}
return (TRUE);
case ELCW:
{

ReadData (&azeldl.FILE_AZIMUTH D, &azeldl.FILE_
ELEVATION D, &azeldl.FILE_DAT1 I, &azeldl.FILE DAT2 I);

data = azeldl.FILE DAT2 I;
if (data==1)
{
HOut (0x378, 0x30) ;
gecikmel () ;
d=3;

if (data==3)
{
HOut (0x378,0x20) ;
gecikmel () ;
d=2;
}
if (data==2)
{
HOut (0x378, 0x60) ;
gecikmel ();
d=6;
}
if(data==6)
{
HOut (0x378,0x40) ;
gecikmel () ;
d=4;

if({data==4)
{
HOut (0x378, 0xCO0) ;
gecikmel();
d=12;
}
if (data==12)
{
HOut (0x378, 0x80) ;
gecikmel () ;
d=8;
}
if(data==8)
{
HOut (0x378, 0x90) ;
gecikmel () ;
d=9;
}
if (data==9)
{
HOut (0x378,0x10) ;

gecikmel () ;
d=1;
}
azeldl.FILE_ELEVATION D =

azeldl.FILE _ELEVATION D + 0.9;
azeldl.FILE_DAT2 I = d;

WriteData&azeldl.FILE_AZIMUTH_D,azeldl.FILE_ELEV
ATION_D,azeldl.FILE_DATl I,azeldl.FILE DAT2 I);
HOut(Q3378,0x00);
}
return {(TRUE);

}
break;

default:
return(FALSE) ;.

return (TRUE) ;
}

BOOL CALLBACK TlBFootDlg(HWND hD1gT1B, UINT uMesgb, WPARAM wParama,

LPARAM lParama)
{
switch (uMesgb) {
case WM_INITDIALOG:

return (TRUE);

case WM_COMMAND:
switch (GET_WM_COMMAND ID(wParama, lParama))
{ case IDOK:
éndDialog(thngB, TRUE) ;
return}(TRUE);

}
break;

default:
return (FALSE) ;

return (TRUE) ;
}

BOOL CALLBACK T1CFootDlg (HWND hDl1gT1C, UINT uMesgc, WPARAM wParama,
LPARAM lParama)
{

switch (uMesgc) {
case WM_INITDIALOG:
return (TRUE);

case WM_COMMAND:
switch (GET_WM COMMAND ID(wParama, lParama))
{ case IDOK:
éndDialog(thngC, TRUE) ;
return}(TRUE);
breai;

default:
return (FALSE) ;

return (TRUE) ;
}

BOOL CALLBACK OpenDlgProc (HWND hDlg, UINT uMsg, WPARAM wParam, LPARAM
lParam)

{

char E_S LAT CHAR[20],E_S_LONG CHAR[ZO],

¢har SAT . _LAT CHAR[ZO] SAT LONG CHAR[ZO],

char ELEVATION | CHAR[20], AZIMUTH _CHAR[20];
hDlgrot = hDlg;

switch (uMsg) {
case WM_INITDIALOG:

ELEVATION_CHAR{0]= NULL;

AZIMUTH_CHAR[0]= NULL;

CheckRadioButton(hDlg, IC_AZ EL_SATELLITE T1B,
IC_AZ EL _ SATELLITE TlC,

IC_AZ _EL SATELLITE T1B)
strcpy(SAT LAT CHAR, "O") .
SetDlgItemText(thg,SAT LATITUDE, SAT_LAT CHAR);

strcpy (SAT_LONG_CHAR, "31.3");
SetDlgItemText(thg,SAT LONGITUDE, SAT _LONG_CHAR) ;
ReadData {&azeldl.FILE AZIMUTH D, &azeldl. FILE _ELEVAT

ION_D, &azeldl.FILE_DAT1_TI, &azeldl.FILE_DAT2 I);
return (TRUE);

// Sol Butona Basildiginda cursor coordinati alacak
case WM_LBUTTONDOWN:
testarea = Draw Map (hDlg, hDC, lParam, hMap _Turkey);
if (testarea == TRUE)
{
if (azim elev_by map == TRUE)
{

map_coor=Get Map_ Coor();
strcpy (E_S_LAT_CHAR,map_coor.latitude);
SetDlgItemText(thg,E STATION_LAT,E S L
AT CHAR);
strcpy (E_S_LONG_CHAR,map ccor.longitude

SetDlgItemText (hDlg, E_STATION_LONG,E_S_LONG C

break;

case WM _DESTROY:
PostQuitMessage (0} ;
break;

case WM_COMMAND:
switch (GET_WM_COMMAND ID(wParam, lParam))
{
case IC_AZ EL_SATELLITE T1B
strcpy (SAT_LAT CHAR,"0"):
SetDlgItemText(thg,SAT_LATITUDE,SAT_LAT_CHAR);

strcpy (SAT LONG_CHAR,"31.3");
SetDlgItemText(thg,SAT LONGITUDE, SAT_LONG_CH

break;

case IC_AZ_EL SATELLITE T1C :
strcpy(SAT LAT CHAR, "0");
SetDlgItemText (hDlg, SAT LATITUDE,SAT LAT CHAR);

strcpy (SAT_LONG_CHAR, "42.0");
SetDlgItemText(thg,SAT LONGITUDE, SAT_LONG_CH

break;

case IDOK:

{ .
E S LAT CHAR[0]=NULL;

GetDlgItemText (hDlg,E_STATION_LAT,E_S LAT CHAR,20);
if (E_S_LAT_CHAR[0]==NULL)
. MessageBox(thg, (LPSTR) "ENTER EARTH
STATION LATITUDE",
(LPSTR) "ENTER THE VALUE",MB OK |
MB_ICONASTERISK) ;

E_S LONG_CHAR[0]=NULL;

GetDlgItemText(thg,E STATION_LONG, E S LONG_CHAR, 20
)

if (E_S_LONG_CHAR[0]==NULL)
MessageBox (hDlg, (LPSTR) "ENTER EARTH
STATION LONGITUDE",
(LPSTR) "ENTER THE VALUE",MB_OK |

MB_ICONASTERISK) ;

SAT_LAT CHAR[0]=NULL;
GetDlgItemText (hDlg, SAT LATITUDE,SAT LAT CHAR,20);
if (SAT_LAT CHAR[0]==NULL)
MessageBox(thg,(LPSTR) "ENTER
SATELLITE LATITUDE",
(LPSTR) "ENTER THE VALUE", MB OK |
MB_ICONASTERISK); B

SAT_LONG_CHAR[0]=NULL;
GetDlgItemText (hDlg, SAT LONGITUDE, SAT LONG CHAR, 20)

if (SAT_LONG_CHAR[0]==NULL)
MessageBox (hDlg, (LPSTR) "ENTER
SATELLITE LONGITUDE",
(LPSTR) "ENTER THE VALUE", MB OK |
MB_ICONASTERISK);

strcpy (ELEVATION_ CHAR,calculate elevation(E S LAT C
HAR,E_S_LONG_CHAR, SAT_LAT CHAR,SAT_LONG_CHAR));

strcpy(AZIMUTH CHAR, calculate _azimuth (E_S_LAT_CHAR,
E_S LONG_CHAR, SAT_LAT_CHAR, SAT. LONG_CHAR)) ;

if ((E_S_LAT CHAR[0]!=NULL) &&
(E_S_LONG_CHAR[O] !=NULL) &&

(SAT_LAT_CHAR[O] !=NULL) &&
(SAT_LONG_CHAR[0] !=NULL))

{

SetDlgItemText(thg,ANTENNA_ELEVATION,ELEVATI
ON_CHAR) ;

SetDlgItemText (hD1lg,ANTENNA AZIMUTH,AZIMUTH C
HAR) ;

}

}
return (TRUE):;

case IDCANCEL:
EndDialog(hDlg, TRUE);
break;
case IDMANUAL:
DialogBox (hInsManual, MAKEINTRESOURCE (MANUALBOX),
hDlg, ManualDlgProc);
break;
case IDRESET:
ReadData(&azeldl.FILE _AZIMUTH D,&azeldl.FILE_ELEVAT
ION_D, &azeldl.FILE DAT1 I, &azeldl FILE DAT2 _I);
azeldrotl = Get AZELDROT(),
azeldrotl. ELEVATION ROT D = 0;
azeldrotl. AZIMUTH ROT D = (;
autorotate();
azeldl.FILE DAT1 I 1;
azeldl.FILE DAT2 I 1;
WriteData(azeldl.FILE AZIMUTH D,azeldl.FILE ELEVATION_
D,azeldl. FILE DATl I,azeldl. FILE DATZ I),

o

break;
case IDABOUT:
DialogBox (hInsAbout, MAKEINTRESOURCE (ABOUTBOX),
hDlg, AboutDlgProc);
break;
case T1BHISTORY:
DialogBox (hInsT1BH, MAKEINTRESOURCE (T1BHISTORYBOX),
hDlg, T1BHDlgProc):;
break;
case T1CHISTORY:

DialogBox (hInsT1CH, MAKEINTRESOURCE (T1CHISTORYBOX),
hDlg, T1CHDlgProc);
break;
case ID_1B:
DialogBox (hInsT1B, MAKEINTRESOURCE (T1BFOOTBOX),
hDlg, T1BFootDlg});
break;
case ID_I1C:
DialogBox (hInsT1C, MAKEINTRESOURCE (T1CFOOTBOX),
hDlg, T1CFootDlg);
break;
case IDROTATE:
ReadData (&azeldl.FILE AZIMUTH_D, &azeldl.FILE ELEVAT
ION D, &azeldl.FILE_DATl I, &azeldl.FILE_ DAT2 _I);
azeldrotl = Get AZELDROT()
autorotate();
WriteData(azeldl.FILE AZIMUTH D,azeldl.FILE_ELEVATION
D,azeldl.FILE DAT]1 I,azeldl.FILE_ DAT2 _TI);

break;
}

break; .

default:
return (FALSE) ;

return (TRUE) ;

#pragma argsused
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1lpCmdLine, int nCmdShow)
{
OSVERSIONINFO osVer; // for GetVersionEx()
// Verify presence of Windows 95
osVer.dwOSVersionInfoSize = sizeof (osVer);
if (!GetVersionEx(&osVer))
return (FALSE);

if (osVer.dwPlatformId != VER_PLATFORM_WIN32_WINDOWS)

{

MessageBox (NULL, "This example requires Windows 95.",
"Antenna Control Software"™, MB OK);

return (FALSE);

} .

azim_elev_by_map=TRUE; °

hMap _Turkey=LoadBitmap (hInstance, "TURKIYE") ;
hMap_lcfoot LoadBitmap (hInstance, "1CFOOT") ;
hMap lbfoot=LoadBitmap (hInstance, "1BFOOT") ;
hMap ebru=LoadBitmap (hInstance, "EBRU");
hMap chlb=LoadBitmap (hInstance, "CH1B");
hMap chlc=LoadBitmap (hInstance, "CHLC");

DialogBox (hInstance, MAKEINTRESOURCE (MYDLGBOX), NULL,
OpenDlgProc) ;

DeleteObject (hMap_Turkey);

DeleteObject (hMap_lbfoot):;

DeleteObject (hMap_lcfoot):;

DeleteObject (hMap_ebru);

DeleteObject (hMap_chlb);

DeleteObject (hMap_chlc);

return(FALSE) ;

/**
* Kk de Kk kodok Kk

antenna.rc

produced by Borland Resource Workshop

Kk k ok de R Kok Kok kg ok ok e e sk ek ke R ok R ke ke ke ke ke e e e vk e e ke ke Tk ke e ke e e e e e e e e S e e ke ke e ke ke e ke ke e sk e e ok e ke ok %
********/

#define IDC_GROUPBOXl 101
#define T1BHISTORYBOX 160
#define T1CHISTORYBOX 161

#define T1BHISTORY 162
#define T1CHISTORY 163
#define ELCW 156
#define ELCCW 155
#define AZCW 154
#define AZCCW 153

#define MANUALBOX 152
#define IDMANUAL 151
#define IDRESET 150

#define T1CFOOTBOX 118
#define T1BFOOTBOX 117
#define ID_1C 108
#define ID_1B 107

#define IDROTATE 102

#define IDABOUTOK 11

#define ABOUTBOX 101

#define IDABOUT 10

#define ANTENNA AZIMUTH 106

#define ANTENNA_ELEVATION 105
#define E_STATION_LONG 132

#define E_STATION_LAT 131

#define SAT_LONGITUDE 104

#define SAT LATITUDE 103

#define IC_AZ EL SATELLITE T1C 121
$define IC_AZ EL SATELLITE T1B 120
$#define MYDLGBOX 100

MYDLGBOX DIALOG O, 0, 425, 334
EXSTYLE WS_EX_DLGMODALFRAME
STYLE DS_MODALFRAME | DS_CENTER | WS_POPUP | WS_VISIBLE | WS_CAPTION
| WS_SYSMENU
CAPTION "Antenna Motion Control"

FONT 8, "MS Sans Serif"

{ ,
CONTROL "Exit", IDCANCEL, "BUTTON", BS_PUSHBUTTON | BS_CENTER |
WS_CHILD | WS_VISIBLE | WS_TABSTOP, 360, 310, 50, 14

CONTROL "turkiye", -1, "static", SS_BITMAP | SS_REALSIZEIMAGE |
WS_CHILD | WS_VISIBLE | WS_BORDER, 0, 0, 424, 205, WS_EX CLIENTEDGE
CONTROL "Satellite Sellection", 601, "button", BS_GROUPBOX |
WS _CHILD | WS_VISIBLE | WS_GROUP, 4, 215, 84, 52

CONTROL "Satellite Location", 602, "button", BS_GROUPBOX] WS_CHILD
| WS_VISIBLE | WS_GROUP, 4, 276, 84, 52

CONTROL "Antenna Map Location", 603, "button”, BS_GROUPBOX |
WS_CHILD | WS_VISIBLE | WS_GROUP, 96, 215, 1le6, 52

CONTROL "Calculated Values", 604, "button", BS_GROUPBOX | WS_CHILD |
WS_VISIBLE | WS_GROUP, 96, 276, 116, 52

CONTROL "Turksat T1C", IC_AZ_EL_SATELLITE_TIC, "button",
BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 12, 246, 56,
8

CONTROL "Turksat T1B", IC_AZ_EL_SATELLITE_TlB, "putton”,
BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 12, 228, 56,

9
CONTROL

"", SAT_LATITUDE, "edit", ES_LEFT | WS_CHILD | WS_VISIBLE |

WS_BORDER | WS_TABSTOP, 48, 293, 32, 9

CONTROL

WS BORDER | WS TABSTOP, 48,

CONTROL

"", SAT LONGITUDE, "edit", ES_LEFT | WS_CHILD | WS _VISIBLE |
310, 32, 9

"v, E STATION LAT, "edit", ES_LEFT | WS_CHILD | WS _VISIBLE |

WS_BORDER | WS_TABSTOP, 172, 228, 32, 9

CONTROL

"", E_STATION_LONG, "edit", ES_LEFT | WS_CHILD | WS_VISIBLE

| WS BORDER | WS TABSTOP, 172, 246, 32, 9

CONTROL
WS_CHILD
CONTROL
WS_CHILD
CONTROL
12, 293,
CONTROL
12, 310,
CONTROL

WS VISIBLE,

CONTROL

WS_VISIBLE,

CONTROL

WS VISIBLE,

CONTROL

WS _VISIBLE,

CONTROL
WS_CHILD
CONTROL
WS_CHILD
CONTROL
WS_CHILD
CONTROL
WS_CHILD
CONTROL
288, 202,
CONTROL
WS_CHILD
CONTROL

"

, ANTENNA ELEVATION, "edit", ES_LEFT | ES_READONLY |

| WS_VISIBLE | WS_BORDER | WS _TABSTOP, 172, 292, 32, 9

", ANTENNA AZIMUTH, "edit", ES_LEFT | ES_READONLY |

| WS_VISIBLE | WS_BORDER | WS_TABSTOP, 172, 310, 32, 9
"Lattitude", -1, "static", SS_LEFT | WS_CHILD | WS _VISIBLE,
32, 9

"Longitude", -1, "static", SS_LEFT | WS_CHILD | WS _VISIBLE,
32, 9

"Antenna Lattitude", -1, "static”, SS_LEFT | WS_CHILD |
104, 228, 60, 9

"Antenna Longitude”, -1, "static”, SS_LEFT | WS_CHILD |
104, 246, 60, 8 X

"Antenna Elevation", -1, "static", SS_LEFT | WS_CHILD |
104, 292, 64, 9
"Antenna Azimuth", -1,
104, 310, 60, 9
"Calculate", IDOK, "button", BS_PUSHBUTTON | BS CENTER |

| WS_VISIBLE | WS_TABSTOP, 228, 228, 50, 14

"About", IDABOUT, "button", BS_PUSHBUTTON | BS_ CENTER |

| WS_VISIBLE | WS_TABSTOP, 300, 310, 50, 14

"Antenna Motion Control and", -1, "static", SS_LEFT |

| WS_VISIBLE, 96, 202, 112, 8

"Azimuth - Elevation Calculation”, -1, "static", SS_LEFT |
| WS_VISIBLE, 188, 202, 100, 8

"Software.", -1, "static", SS_LEFT | WS_CHILD | WS _VISIBLE,
60, 8

"Rotate", IDROTATE, "button", BS PUSHBUTTON | BS_CENTER |

| WS_VISIBLE | WS_TABSTOP, 228, 254, 50, 14

"Foot Prints", 605, "button", BS_GROUPBOX | WS CHILD |

"static", SS_LEFT | WS_CHILD |

WS_VISIBLE | WS_GROUP, 292, 215, 128, 35

CONTROL
WS_CHILD
CONTROL
WS_CHILD
CONTROL
WS_CHILD
CONTROL

"Turksat 1B", ID_lB, "button", BS_PUSHBUTTON | BS_CENTER |
| WS_VISIBLE | WS_TABSTOP, 300, 228, 50, 14

"Turksat 1C", ID_lC, "button", BS_PUSHBUTTON | BS_CENTER |
| WS _VISIBLE | WS_TABSTOP, 360, 228, 50, 14
"Reset", IDRESET, "button", BS_PUSHBUTTON |
] WS_VISIBLE | WS_TABSTOP, 228, 306, 50, 14
"Fine Tunning", IDMANUAL, "button", BS PUSHBUTTON |

BS_CENTER |

BS_CENTER | WS_CHILD | WS_VISIBLE | WS_TABSTOP,—228, 280, 50, 14

CONTROL

"Turksat 1B", T1BHISTORY, "button", BS_PUSHBUTTON |

BS_CENTER | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 300, 276, 50, 14

CONTROL

"Turksat 1C", TICHISTORY, "button", BS PUSHBUTTON |

BS_CENTER | WS _CHILD | WS_VISIBLE | WS_TABSTOP,—360, 276, 50, 14

CONTROL

"Characteristics™, 606, "button", BS_GROUPBOX | WS_CHILD |

WS_VISIBLE | WS_GROUP, 292, 258, 128, 39

CONTROL

"Functions", 607, "button", BS_GROUPBOX | WS_CHILD |

WS_VISIBLE | WS_GROUP, 220, 215, 64, 113

}

turkiye BITMAP "turkiye.bmp"

ABOUTBOX

DIALOG 0, O, 209, 107

STYLE DS_MODALFRAME | DS_3DLOOK | DS_CENTER | DS_CONTEXTHELP |

WS POPUP

[WS_VISIBLE | WS_CAPTION

CAPTION " About"

FONT 8,

{
CONTROL

"MS Sans Serif"

"OK", IDABOUTOK, "BUTTON", BS_PUSHBUTTON | BS_CENTER |

WS_CHILD | WS_VISIBLE | WS_TABSTOP, 120, 82, 54, 14

CONTROL "Framel"”, -1, "static", SS_ETCHEDFRAME | WS_CHILD |
WS_VISIBLE, 4, 4, 200, 99

CONTROL "DokuzEylul Universitesi", -1, "static", SS_RIGHT | WS_CHILD
| WS_VISIBLE, 108, 26, 76, 9 -
CONTROL "Elektrik Elektronik Muhendisligi", -1, "static", SS_RIGHT
| WS_CHILD | WS_VISIBLE, 96, 39, 100, 9

CONTROL "Master Bitirme Projesi”, -1, "static", SS_RIGHT | WS _CHILD
| WS_VISIBLE, 104, 52, 76, 8

CONTROL "Ebru Tasci", -1, "static", SS_LEFT | WS_CHILD | WS_VISIBLE,
128, 13, 40, 8

CONTROL "Turksat 1998", -1, "static", SS_LEFT | WS_CHILD |
WS _VISIBLE, 124, 65, 52, 8

CONTROL "ebru", -1, "static", SS_BITMAP | SS_REALSIZEIMAGE |
WS_CHILD | WS_VISIBLE | WS_BORDER, 8, 8, 118, 144, WS_EX CLIENTEDGE

}

Antenico ICON "antenico.ico"

T1BFOOTBOX DIALOG 0, 0, 344, 145

STYLE DS_MODALFRAME | DS_3DLOOK | DS_CENTER | DS_CONTEXTHELP |
WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Turksat 1B Foot Print"

FONT 8, "MS Sans Serif"

{

CONTROL "OK", IDOK, "BUTTON", BS_PUSHBUTTON | BS_CENTER | WS _CHILD |
WS_VISIBLE | WS_TABSTOP, 148, 125, 50, 14

CONTROL "lbfoot", -1, "static", SS_BITMAP | SS_REALSIZEIMAGE |
WS_CHILD | WS_VISIBLE | WS_BORDER, 4, 4, 500, 174, WS_EX CLIENTEDGE
}

T1CFOOTBOX DIALOG 0, 0, 344, 145
STYLE DS_MODALFRAME | DS_3DLOOK | DS_CENTER | DS_CONTEXTHELP |
WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Turksat 1C Foot Print"

FONT 8, "MS Sans Serif"

{

CONTROL "OK", IDOK, "BUTTON", BS_PUSHBUTTON | BS_CENTER | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 144, 125, 50, 14

CONTROL "lcfoot", -1, "static", SS_BITMAP | SS_REALSIZEIMAGE |
WS_CHILD | WS_VISIBLE | WS_BORDER, 4, 4, 500, 176, WS_EX CLIENTEDGE
}

MANUALBOX DIALOG 0, 0, 287, 117
STYLE DS_MODALFRAME | DS_3DLOOK | DS_CENTER | DS_CONTEXTHELP |
WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Antenna Manual Adjustment"
FONT 8, "MS Sans Serif"

{

CONTROL "OK", IDOK, "BUTTON", BS_PUSHBUTTON | BS_CENTER | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 120, 95, 50, 14

CONTROL "Azimuth", 701, "button”, BS_GROUPBOX | WS _CHILD |
WS_VISIBLE |.WS_GROUP, 12, 13, 128, 70

CONTROL "Elevation", 702, "button", BS_GROUPBOX | WS_CHILD |
WS_VISIBLE | WS_GROUP, 148, 13, 128, 70

CONTROL "CCW", AZCCW, "button", BS_PUSHBUTTON | BS_CENTER | WS_CHILD
| WS_VISIBLE | WS_TABSTOP, 20, 52, 50, 14

CONTROL "CW", AZCW, "button", BS_PUSHBUTTON | BS_CENTER | WS_CHILD |
WS_VISIBLE | WS_TABSTOP, 80, 52, 50, 14

CONTROL "CCW", ELCCW, "button", BS_PUSHBUTTON | BS_CENTER | WS_CHILD
| WS_VISIBLE | WS_TABSTOP, 156, 52, 50, 14

CONTROL "CW", ELCW, "button", BS_PUSHBUTTON | BS_CENTER | WS CHILD |
WS_VISIBLE | WS_TABSTOP, 216, 52, 50, 14

CONTROL "0.018 degree for one step", -1, "static", SS_LEFT |
WS_CHILD | WS_VISIBLE, 20, 30, 96, 8

CONTROL "O.9 degree for one step", -1, "static", SS_LEFT | WS_CHILD
[WS_VISIBLE, 160, 30, 96, 8
}

lbfoot BITMAP "lbfoot.bmp”

lcfoot BITMAP "lcfoot.bmp"
ebru BITMAP "ebru.bmp”

TI1ICHISTORYBOX DIALOG 0, 1, 264, 178 .

STYLE DS _MCDALFRAME | DS_3DLCOK | DS _CENTER | DS_CONTEXTHELP |
WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "Turksat 1C Characteristics And Performance"

FONT 8, "MS Sans Serif"

{
CONTROL "OK", IDOK, "BUTTON", BS_PUSHBUTTON | BS_CENTER | WS_CHILD |

WS_VISIBLE | WS_TABSTOP, 108, 159, 50, 14
CONTROL "chle", -1, "static", SS_BITMAP | SS_REALSIZEIMAGE |
WS_CHILD | WS_VISIBLE | WS_BORDER, 4, 4, 20, 20, WS_EX CLIENTEDGE

}

T1BHISTORYBOX DIALOG 0, 0, 264, 179

STYLE DS_MODALFRAME | DS_3DLOOK | DS CENTER | DS_CONTEXTHELP |
WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "Turksat 1B Characteristics And Performance"

FONT 8, "MS Sans Serif"

{
CONTROL "OK", IDOK, "BUTTON", BS_PUSHBUTTON | BS_CENTER | WS CHILD |

WS_VISIBLE | WS_TABSTOP, 104, 159, 50, 14
CONTROL "chlb"™, -1, "static", SS_BITMAP | SS_REALSIZEIMAGE |
WS_CHILD | WS_VISIBLE | WS_BORDER, 4, 4, 18, 15, WS_EX CLIENTEDGE

}

chlb BITMAP "chlb.bmp"

chlc BITMAP "chlc.bmp"”

Antenna.

#define

h File

STRICT

#include <windows.h>

#pragma

hdrstop

#include <stdio.h>
#include <stdlib.h>
#include "iohw.h"

#include <conio.h>
#include <string.h>
#include <dos.h>

#define
#define
#define
#define
#define
#define
#define
$define
#define
#define
#define
#define
#define
#define
#define
#define
$define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

typedef

typedef

typedef

extern
extern
extern
extern
extern

MYDLGBOX 100

ABOUTBOX 101

T1BFOOTBOX 117

T1CFOOTBOX 118

IDROTATE 102

IDOK 1

IDABOUT 10

IDRESET 150

IDABOUTOK 11
IC_AZ_EL_SATELLITE T1B 120
IC AZ EL SATELLITE _T1C 121

E_STATION LAT 13T
E_STATION LONG 132

SAT LATITUDE 103
SAT_LONGITUDE 104
ANTENNA_ELEVATION 105
ANTENNA_AZIMUTH 106
ID 1B 107

ID_1C 108

IDMANUAL 151
MANUALBOX 152
AZCCW 153

AZCW 154

ELCCW 155

ELCW 156
T1BHISTORYBOX 160
T1CHISTORYBOX 161
T1BHISTORY 162
T1CHISTORY 163

struct tagAZELD({
double FILE ELEVATION D;
double FILE AZIMUTH D,
it FILE DATl _I;
int FILE DAT2 _I;
}AZELD;

struct tagAZELDROT {
double ELEVATION ROT_D;
double AZIMUTH_ ROT D,
}AZELDROT;

struct tagMAPCOOR({
char latitude([20];
char longitude([20];
}MAPCOOR;
char *calculate_elevation(char *,char *,char *,char *);
char *calculate_azimuth(char *, char *,char *,char *);
bool Draw Map(HWND , HDC , LPARAM , HBITMAP);
MAPCOCR Get_Map Coor();
char *string with_ dec_point (double source);

int WriteData (double, double, int, int);
extern AZELDROT Get_ AZELDROT();
extern int ReadData (double *,double *,int *,int *);
void autorotate (void);
void gecikme (void);
void gecikmel (void);
struct projedata ({

int datl;

int dat2;

double oldazi;

double oldele;

double newazi;

double newele;

}:

int soladon{int, int);
int soladonl (int, int);
int sagadon(int,int);
int sagadonl (int, int);

dtostring.cpp File

#include <string.h>
#include <stdlib.h>

char *string with_dec_point (double source)

{

char DESTINATION([20],DESTINATION1[20];

int dec,sign,ndig=3,1i;

int k:

strcpy (DESTINATION, fcvt (source,ndig, &dec, &sign));

i=0;
while (DESTINATION[i] !=NULL)
i++;

if (source < 0)
{ .
strcpy (DESTINATIONL, DESTINATION) ;
for (k=0; k<=i;k++) '
{
if (k<=3)
DESTINATION[i1~k+2]=DESTINATIONI1[i~k];

if (k==3)
DESTINATION[i-k+1]='.";

if (k>3)
DESTINATION([i-k+1]=DESTINATION1 [i-k];

if (k==1i)
DESTINATION[O]='-";

else

{
DESTINATION[i+1]=NULL;
DESTINATION[i]=DESTINATION([i-1];
DESTINATION[i-1]=DESTINATION[i-2];
DESTINATION[i-2]=DESTINATION[i-3];
DESTINATION[i-3]='.";

}

return (DESTINATION);
}

Antenf.cpp File
#include "antenna.h"
FILE *fin;

// returns next token as string from fin file
int GetNextToken{char *token)

{

int idx = 0;

char ch;

while (!feof(fin))
{
ch = fgetc(fin);
if ({(ch != 10) && (ch != 13) && (ch != ',"))
{
token[idx] = ch;
idx++;
}
else break;
}
token[idx] = 0; // null terminated string returns
return idx;

}

int ReadData(double *ffaz,double *ffel,int *ffdatl,int *ffdat2)
{
char mybuf[255];

if ((fin = fopen("ANTEN.TXT", "rt")) != NULL)
{
if (GetNextToken (&mybuf) > 0)
*ffaz=strtod (mybuf, NULL) ;
else *ffaz = 0;

if (GetNextToken (&mybuf) > 0)
*ffel=strtod(mybuf, NULL) ;
else *ffel = 0;

if (GetNextToken (&mybuf) > 0)
*ffdatl=atoi (&mybuf);
else *ffdatl= 0;

if (GetNextToken (&mybuf) > 0)
*ffdat2=atoi (&mybuf) ;
else *ffdat2= 0;

fclose (fin); 4

}

else

{
}

return 0;

}

WriteData(0,0,1,1);

int WriteData (double faz,double fel,int fdl,int £d2)
{

char wmybufa[20];

char wmybufe([20];

char wchdatl(4];

char wchdat2(4];

strcpy (wmybufa, string with _dec_point (faz));

strcpy (wmybufe, string with dec_point(fel)):
itoa(fdl,wchdatl, 10);

itoa(fd2,wchdat2,10);

if ((fin = fopen("ANTEN.TXT", "w+t")) != NULL)
{
int a=0;
while (wmybufal[a] != NULL)

{
fputc (wmybufafal, £fin);
at+;

}

fputc (', ', fin);

a = 0;

while (wmybufe[a] != NULL)

{
fputc (wmybufela], £in);
at+;

}

fpute(', ', fin);

a = 0; .

while {(wchdatl[a] != NULL)

{ \
fputc(wchdatl[a], fin);
at+;

}

fputc(',',fin);

a=0;

while (wchdat2([a] != NULL)

{
fputc(wchdat2[a], fin);
at+;

}

fputc (10, £in);
fputc (13, £fin);

fclose (fin);

}

return O;

}

Rotates.cpp File
$include "Antenna.h"
int z;

int sagadon (int puls,int sayi)
{
int i=0;
if (sayi==1){
while (i<puls) {
if (i<puls) {
HOut (0x378,0x02) ;
gecikme () ;
++1i;
z=2;
}
if (i<puls) {
HOut (0x378,0x04) ;
gecikme () ;
++1i;
z=4; t
}
if (i<puls) {
HCut (0x378,0x08) ;
gecikme () ;
++1i;
z=8;
}
if (i<puls) {
HOut (0x378, 0x01) ;
gecikme () ;
++1;
z=1;

}

}
if(sayi==2) {
while (i<puls) {
if (i<puls) {
HOut (0x378,0x04) ;
gecikme () ;
++1i;
z=4;
}
if (i<puls) {
HOut (0x378, 0x08) ;
gecikme () ;
++1.; .
z=8;

}

if (i<puls) {
HOut (0x378,0x01) ;
gecikme();
++1i;
z=1;
}

if (i<puls) {
HOut {0x378,0x02);
gecikme () ;
++i;
z=2;
}

}

}
if (sayi==4) {

while(i<puls) {
if (i<puls) {

HOut (0x378,0x08) ;
gecikme () ;
++1i;
z2=8;
}

if (i<puls) {
HOut (0x378,0x01) ;
gecikme () ;
++1;
z=1;
}

1f (i<puls) {
HOut (0x378,0x02) ;
gecikme();
++1i;
z2=2;
}

if (i<puls) { .
HOut (0x378,0x04) ;
gecikme();
++1;
z=4;

}
}
if (sayi==8) {
while (i<puls) {
if(i<puls) {

HOut (0x378, 0x01) ;
gecikme();
++1i;
z=1;

}
if (i<puls) {

HOut (0x378,0x02) ;
gecikme () ;
++1i;
z2=2;
}

if (i<puls) {
HOut (0x378, 0x04) ;
gecikme () ;
++i;
z=4;
}

if (i<puls) {
HOut (0x378, 0x08) ;
gecikme () ;
++1i;
z=8;

}
}

return(z);

}

int soladon{int puls,int sayi)
{
int i=0;
if (sayi==1){
while (i<puls) {
if (i<puls) {
HOut (0x378, 0x08) ;
gecikme () ;

}

if (sayi==2) {

++1i;
z=8;

}

if (i<puls) {

HOut {0x378, 0x04) ;
gecikme () ;

++1i;

z=4;

}

if (i<puls) {

HOut (0x378,0x02) ;
gecikme () ;

++i;

z=2;

}

if (i<puls) {

HOut (0x378, 0x01) ;
gecikme () ;

++1i;

z=1;

}

while (i<puls) {

}
if (sayi==4){

if (i<puls) {

HOut (0x378,0x01);
gecikme () ;

++1i;

z=1;

}

if (i<puls) {

HOut (0x378, 0x08) ;
gecikme () ;

++1i;

z=8;

}

if (i<puls) {

HOut (0x378,0x04) ;
gecikme () ;

++1i;

z=4;

}
if (i<puls) {

HOut (0x378,0x02) ;
gecikme() ;

++1i;

z=2;

} .

while (i<puls) {

if (i<puls) {

HOut (0x378,0x02) ;
gecikme () ;

++1i;

z=2;

}

if (i<puls) {

HOut (0x378,0x01) ;
gecikme () ;

++i;

z=1;

}

if (i<puls) {

HOut (0x378, 0x08) ;
gecikme () ;

++i;

z=8;

}

if (i<puls) {

}
1f(sayi==8) {

HOut (0x378, 0x04) ;
gecikme () ;

++1i;

z=4;

while (i<puls) {
if (i<puls){

if (i<puls) {

HOut (0x378, 0x04) ;
gecikme () ;

++1i;

z=4;

v

HOut (0x378,0x02) ;
gecikme () ;

++1;

z2=2;

}

if (i<puls) {

HOut (0x378,0x01) ;
gecikme () ;

++1i;

z=1;

}

if (i<puls) {

}

return(z);

}

HOut (0x378, 0x08) ;
gecikme () ;

++1i;

z=8;

}

int soladonl (int puls,int sayi)

{
int i=0;
if (sayi==1){

while (i<puls) { ’

if(i<puls) {

HOut (0x378,0x90) ;
gecikmel () ;

++1i;

z=9;

}

i1f (i<puls){

HOut (0x378,0x80) ;
gecikmel();

++1i;

z=8;

}

if{i<puls) {

HOut (0x378, 0xC0) ;
gecikmel();

++i;

2=12;

}
if (i<puls) {
HOut (0x378,0x40) ;
gecikmel();
++1i;
z=4;

if(i<puls) {
HOut (0x378, 0x60) ;
gecikmel();
++1;
z2=6;
}
if (i<puls) {
HOut (0x378, 0x20) ;
gecikmel () :
++1i;
z2=2;
}
if (i<puls) { .
HOut (0x378,0x30);
gecikmel(); '
++1i;
2=3;
}
if (i<puls) {
HOut (0x378,0x10) ;
gecikmel ();
++1;
z=1;

}

}
if (sayi==9) {
while (i<puls) {

if (i<puls) {
HOut (0x378, 0x80) ;
gecikmel () ;
++1i;
z=8;
}

if (i<puls) {
HOut (0x378, 0xCO) ;
gecikmel();
++1i;
z=12;
}

if (i<puls) {
HOut (0x378,0x40) ;
gecikmel () ;
++1;
z=4;
}

1f(i<puls) {
HOut (0x378, 0x60) ;

gecikmel();

++1;
z2=6;
}

if (i<puls) {
HOut (0x378, 0x20);
gecikmel();
++1i;
2=2;
}

if (i<puls) {

HOut (0x378, 0x30) ;
gecikmel();
++1i;
z=3;
}
if (i<puls) {
HOut (0x378,0x10);
gecikmel();
++1i;
z=1;
}
if (i<puls) {
HOut (0x378, 0x%80) ;
gecikmel () ;
++1i;
z=9;

}

}
if(sayi==8) {
while (i<puls) {
if (i<puls){ .
HOut (0x378, 0xCO) ;
gecikmel () ;
++1;
z=12;
}
1f (i<puls) {
HOut (0x378, 0x40) ;
gecikmel () ;
++1i;
z=4;
}
if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;
++1;
z=6;
}
if (i<puls) {
HOut (0x378,0x20);
gecikmel () ;
++i;
2=2;
}
if (i<puls){
HOut (0x378, 0x30) ;
gecikmel () ;
++1i; R
z=3;
}
if (i<puls) {
HOut (0x378,0x10) ;
gecikmel();
++1;
z=1;
}
if (i<puls) {
HOut (0x378,0x90) ;
gecikmel();
++1i;
z=9;
}
if (i<puls) {
HOut (0x378,0x80) ;
gecikmel();

}
if(sayi==12){
while (i<puls) {
if (i<puls) {
HOut (0x378,0x40) ;
gecikmel () ;
++1;
z=4;
}
if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;
++1i;
z=6;
}
if (i<puls) {)
HOut (0x378, 0x20) ;
gecikmel () ;
++1i;
z=2;
}
if (i<puls) {
HOut (0x378, 0x30) ;
gecikmel () ;
++1i;
z=3;
}
if (i<puls) {
HOut (0x378,0x10) ;
gecikmel () ;
++1;
z=1;
}
if (i<puls) {
HOut (0x378,0x90) ;
gecikmel ()
++1i;
z=9;
}
if (i<puls) {
HOut (0x378, 0x80) ;
gecikmel () ;
++1i;
z=8;
}
if (i<puls) {
HOut (0x378, 0xCO) ;
gecikmel () ;
++1i;
z=12;
}

}
if (sayi==4) {
while (i<puls) {
if (i<puls) {
HOut (0x378,0x60) ;
gecikmel () ;
++i;
z=6;
}
if (i<puls) {

HOut (0x378, 0x20) ;
gecikmel () ;

++1i;

z2=2;

}

if (i<puls) {

HOut (0x378,0x30) ;
gecikmel () ;

++i;

z2=3;

}

if (i<puls) {

HOut (0x378, 0x10) ;

gecikmel () ;

++1i;
z=1;

}

if (i<puls) {

HOut (0x378, 0x2%0);
gecikmel () ;

++1i;

z=9; \

}

if (i<puls) {

HOut (0x378,0x80) ;
gecikmel () ;

++1i;

z=8;

}

if (i<puls) {

HOut (0x378, 0xCO) ;
gecikmel () ;

++1;

z=12;

}

if (i<puls) {

}
if (sayi==6){

HOut (0x378,0x40) ;
gecikmel () ;

++1i;

z=4;

}

while (i<puls) {

if (i<puls) {

HOut (0x378, 0x20) ;
gecikmel () ;

++i;
z=2;

}

2

if (i<puls) {

HOut (0x378,0x30) ;
gecikmel();

++i;

z=3;

}
if (i<puls) {

HOut (0x378, 0x10);
gecikmel();

++i;

z=1;

}
if (i<puls) {

HOut (0x378, 0x90) ;
gecikmel () ;

++1i;
z=9;
}
if(i<puls) {
HOut (0x378,0x80) ;
gecikmel () ;
++1i;
z=8;
}
if (i<puls) {
HOut (0x378, 0xCO) ;
++1i;
z=12;
}
if (i<puls) {
HOut (0x378,0x40) ;
++1i;
z=4;
}
if(i<puls) { :
HOut (0x378,0x60) ;
++1i;
z2=6;

}

}
if (sayi==2) {
while (i<puls) {

if (i<puls) {
HOut (0x378, 0x30) ;
++1;
z2=3;
}

if (i<puls) {
HOut (0x378,0x10) ;
++1i;
z=1;
}

if (i<puls) {
HOut (0x378, 0x90) ;

++1i;

z=9;
}

if (i<puls) {
HOut (0x378, 0x80) ;
++1;
z=8;

}

HOut (0x378, 0xCO0) ;
++i;
z=12;

, }

if (i<puls) {
HOut (0x378, 0x40) ;
++1i;
z=4;
}

if(i<puls) {
HOut (0x378,0x60) ;
++1i;
z=6;
}

-1f(i<puls){
HOut (0x378, 0x20) ;
++1i;

’

if (i<puls) {

}
if (sayi==3) {

while (i<puls) {

if (i<puls) {
HOut (0x378, 0x10);
gecikmel () ;
++1i;
z=1;
}

if (i<puls) {
HOut (0x378, 0x90) ;
gecikmel () ;
++1i;
z=9;
}

if (i<puls) {
HOut (0x378,0x80) ;
gecikmel();
++1;
z=8;
}

if(i<puls) {
HOut (0x378, 0xC0Q) ;
gecikmel () ;
++1;
z=12;
}

if (i<puls) {
HOut (0x378, 0x40) ;
gecikmel () ;
++1;
z=4;
}

if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel();
++1i;
z=6;
}

if (i<puls){
HOut (0x378,0x20) ;
gecikmel ();
++1i;
z=2;
}

if(i<puls){
HOut (0x378,0x30) ;
++i;
z=3;

}

Pl

}

return(z);

}

int sagadonl (int puls,int sayi)
{ .
int i=0;
if (sayi==1){
while (i<puls) {
if (i<puls) {
HOut (0x378, 0x30) ;
gecikmel () ;

++1i;
z2=3;
}
if(i<puls) {
HOut (0x378, 0x20) ;
gecikmel () ;
++1;
z=2;
}
1f {i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;
++i;
z2=6;
}
if (i<puls) {
HOut (0x378, 0x40) ;
gecikmel () ;
++i;
z=4;
}
if (i<puls) { N
HOut (0x378, 0xCO0) ;
gecikmel();
++i;
z=12;
}
if (i<puls) {
HOut (0x378, 0x80) ;
gecikmel () ;
++1;
z=8;
}
if (i<puls) {
HOut (0x378, 0x90) ;
gecikmel () ;
++1;
z=9;
}
if (i<puls) {
HOut (0x378,0x10);
gecikmel () ;

++1;
z=1;
}
}
}
if (sayi==3){
while (i<puls) { *

if (i<puls) {
HOut (0x378,0x20) ;
gecikmel ();
++1;
z=2;
}
if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;
++i;
z=6;
}
if (i<puls) {
HOut (0x378, 0x40) ;
gecikmel () ;
++1i;
z=4;

}

if (i<puls) {

HOut (0x378, 0xCO) ;
gecikmel () ;

++1;

z=12;

}

if (i<puls) {

HOut (0x378,0x80) ;
gecikmel () ;

++i;

z=8;

}

if(i<puls) {

HOut (0x378, 0x20) ;
gecikmel () ;

++1i;

z=9;

}

if(i<puls) {

HOut (0x378,0x10) ;
gecikmel();
++1i;

z=1;

}

if (i<puls) {

}
if (sayi==2){

HOut (0x378, 0x30) ;
gecikmel () ;

++1i;

z=3;

}

while (i<puls) {
if (i<puls) {

HOut {(0x378, 0x60) ;
gecikmel();

++1i;

z=6;

}

if (i<puls) {

if (i<puls) {

HOut (0x378, 0x40) ;
gecikmel () ;

++i;

z=4;

}

HOut (0x378, 0xCO) ;
gecikmel();

++i;)

z=12;

}

if (i<puls) {

HOut (0x378, 0x80) ;
gecikmel();

++1i;

z=8;

}

if (i<puls) {

HOut (0x378,0x90) ;
gecikmel();

++1i;

z=9;

}

if (i<puls) {

HOut (0x378, 0x10) ;
gecikmel () ;
++1i;
z=1;

}

if (i<puls) {
HOut (0x378,0x30) ;
gecikmel () ;
++1i;
z=3;
}

if (i<puls) {
HOut (0x378, 0x20) ;
gecikmel () ;
++1i;
z=2;

}

}
1f (sayi==6) {
while (i<puls) {

if (i<puls) { .
HOut (0x378,0x40) ;
gecikmel () ;
++1i;
z=4;
}

if (i<puls) {
HOut (0x378, 0xCO) ;
gecikmel();
++1i;
z=12;
}

if (i<puls) {
HOut (0x378, 0x80) ;
gecikmel () ;
++i;
z=8;
}

1f (i<puls) {
HOut (0x378,0x90) ;
gecikmel () ;
++1i;
z2=9;
}

if (i<puls) { o
HOut (0x378,0x10);
gecikmel () ;
++1i;
z=1; !
}

if (i<puls) {
HOut (0x378, 0x30) ;
gecikmel();
++1i;
z=3;
}

if (i<puls) {
HOut (0x378, 0x20) ;
gecikmel () ;
++1;
z=2;
}

if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;

++i;
z=6;

}
if (sayi==4) {
while (i<puls) {
if(i<puls) {
HOut (0x378, 0xCO0) ;
gecikmel () ;
++1i;
z2=12;
}
if(i<puls) {
HOut (0x378, 0x80) ;
gecikmel ();
++1i;
z=8;
}
if (i<puls) { .
HOut (0x378,0x90) ;
gecikmel(); °
++1;
z=9;
}
if (i<puls) {
HOut (0x378,0x10) ;
gecikmel () ;
++1;
z=1;
}
if (i<puls) {
HOut (0x378,0x30);
gecikmel () ;
++1;
z=3;
}
if (i<puls) {
HOut (0x378, 0%20) ;
gecikmel();
++1i;
z=2;
}
if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel();
++1;
z2=6;
} '
if (i<puls) { .
HOut (0x378,0x40) ;
gecikmel () ;
++i;
z=4;
}
}
}
if (sayi==12) {
while (i<puls) {
if (i<puls) {
HOut (0x378, 0x80) ;
gecikmel():;
++1i;
z=8;

}
if (i<puls) {

HOut (0x378, 0x90) ;
gecikmel();

++1;

z=9;

}

if (i<puls) {

HOut (0x378,0x10);
gecikmel () ;

++1;

z=1;

}

if (i<puls) {

HOut (0x378, 0x30) ;
gecikmel () ;

++1;

z=3;

}

if(i<puls) {

HOut (0x378, 0x20) ;
gecikmel();

++1;

z2=2;

}

if (i<puls) {

HOut (0x378,0x60) ;
gecikmel();

++1i;

z2=06;

}

if (i<puls) {

HOut (0x378,0x40) ;
gecikmel();

++1;

z=4;

}

if (i<puls) {

}
if (sayi==8) {

HOut (0x378, 0xCO) ;
gecikmel();

++1;

z=12;

}

while (i<puls) {

if (i<puls){

HOut (0x378,0x°0);
gecikmel () ;)
++1; .

z=9;

}

if(i<puls) {

HOut (0x378, 0x10) ;
gecikmel();

++1i;

z=1;

}

if (i<puls) {

HOut (0x378,0x30) ;
gecikmel () ;

++1i;

z=3;

}

if (i<puls) {

HOut (0x378, 0x20) ;
gecikmel () ;

++i;
z=2;
}
if (i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;
++1i;
z=6;
}
if (i<puls) {
HOut (0x378, 0x40) ;
gecikmel();
++i;
z=4;
}
if{i<puls) {
HOut (0x378, 0xCO0) ;
gecikmel () ;
++1;
z=12; :
} .
if (i<puls) {
HOut (0x378,0x80) ;
gecikmel () ;
++i;
z=8;

}

}
if(sayi==9)
while (i<puls) {
if (i<puls) {
HOut (0x378,0x10) ;
gecikmel();
++1i;
z=1;
}
if (i<puls) {
HOut (0x378,0x30) ;
gecikmel();
++1i;
z=3;
}
if (i<puls) {
HOut (0x378,0x20);
gecikmel () ;
++1;
z=2;
}
if(i<puls) {
HOut (0x378, 0x60) ;
gecikmel () ;
++1i;
z2=6;
}
if (i<puls) {
HOut (0x378, 0x40) ;
gecikmel () ;
++1i;
z=4;
}
if (i<puls) {
HOut (0x378, 0xCO) ;
gecikmel () ;
++i;
z=12;

}
if (i<puls) {
HOut (0x378,0x80) ;
gecikmel () ;
++1;
z=8;
}
if (i<puls) {
HOut (0x378, 0x90) ;
gecikmel();
++1i;
z=9;

}
}

return(z);

}

void gecikme (void)
{

Sleep(10);

}

void gecikmel (void)
{

Sleep(100);

}

maps.cpp File
#include <windows.h>
float map_coor_x, map_coor_y;

typedef struct tagMAPCOOR({
char latitude[20};
char longitude[20];
}MAPCOOR;

extern char *string with_dec_point (double source);

BITMAP bm;
POINT pt,ptsc;

bool Draw_Map (HWND hDlgl, HDC hDC, LPARAM lParaml, HBITMAP hMap)
{

hDC=GetDC (hD1lgl) ;

GetObject (hMap, sizeof (BITMAP), (LPSTR) &bm);
pt.x=bm.bmWidth;

pt.y=bm.bmHeight; :

DPtoLP (hDC, &pt, 1):;

ptsc.x=LOWORD (1Paraml) ;
ptsc.y=HIWORD (lParaml);

if ((ptsc.x <= pt.x) && (ptsc.y <= pt.y))
{
ReleaseDC (hDlgl, hDC);
return (TRUE) ;
}
return (FALSE) ;
}

//MAPCOOR Get_Map Coor (HWND hDlg2, LPARAM lParam2)
MAPCOCOR Get_Map_ Coor ()
{
MAPCOOR map_coorl;
float map upper left_ x, map upper left vy,
map_lower_right x, map lower right_y,
X_map_aspect_ratio, y map aspect ratio;

map_upper left x=25.55;
map_upper left y=42.086956;
map_lower right x=45.11;
map lower right y=34.7826;
//636

//308 .

X_map_aspect_ratio=(map_lower right_x - map_ upper left x) / (pt.x);
y_map_aspect_ratio=(map_upper left_y - map_ lower right y) / (pt.y);

map_coor_x=map_upper_ left x + ((ptsc.x) * x_map_aspect_ratio);
map_coor_y=map_upper_ left_y - ((ptsc.y) * y map_aspect_ratio);

strcpy (map_coorl.longitude, string with_dec_point (map_coor_x));
strcpy (map_coorl.latitude, string with_dec_point (map_coor_y));
return map_coorl;

azimelev.cpp

#include <stdlib.h>
#include <string.h>
#include <math.h>

double ED,AD:;

typedef struct tagAZELDROT({
double ELEVATION_ ROT_D;
double AZIMUTH_ROT D;
}AZELDROT;

char *string with_dec_point (double source)
{
char DESTINATION[20];
int dec,sign,ndig=3,1i;

strcpy (DESTINATION, fcvt (source,ndig, &dec, &sign));

i=0; .
while (DESTINATION[i]!=NULL)
i++; .

DESTINATION{i+1]=NULL;
DESTINATION[i]=DESTINATION([i-1];
DESTINATION[i-1]=DESTINATION{[i-2];
DESTINATION[i-2]=DESTINATION[i-3]:
DESTINATION{[i-3]='."';

return (DESTINATION);

}

AZELDROT azeldrot2;

char *calculate_elevation(char *E_S LAT CHARl,char *E_S LONG_CHARI,
char *SAT . _LAT CHARl char *SAT LONG CHARI)

{
char ELEVATION CHAR1[20], *endptrl, *endptr2, *endptr3, *endptr4;
double E_S_LAT DOUBLE,E_S LONG_DOUBLE, ELEVATION DOUBLE,LONG_DIF;
double SAT LAT DOUBLE, SAT LONG _DOUBLE;

// double SAT LONG=31.232, SAT _LAT=0; /*for T1B*/

// double SAT LONG—41 994, SAT LAT 0; /*for TIC*/
double COS_ MULT;

E_S_LAT DOUBLE=strtod(E_S_LAT_ CHARI, &endptrl);
E_S_LONG _DOUBLE=strtod (E_S LONG_CHARl &endptr2);
// E_S_LAT_DOUBLE =39.639;
// E_S_LONG_DOUBLE=32.80151;
SAT LAT DOUBLE= =strtod (SAT LAT CHARIL, &endptr3);
SAT_LONG _DOUBLE=strtod (SAT _ LONG_CHAR1, sendptr4) ;

LONG_DIF=E S LONG__ DOUBLE-SAT __LONG_DOUBLE;
Ccos MULT cos(2 0 * M PI *E S _LAT DOUBLE/360 o) *
cos (2. O*M PI*L.ONG DIF/36O 0):

ELEVATION_DOUBLE=360.0 * (atan((COS_MULT-0.151) / sqrt(l-
pow (COS_MULT, 2))))/(2.0*M_PI);
strcpy(ELEVATION CHAR1, string with dec_point (ELEVATION_DOUBLE));
ED = ELEVATION_DOUBLE;
return (ELEVATION CHAR1);
}

char *calculate_azimuth(char *E_S_LAT_CHARZ2,char *E_S LONG CHARZ,
char *SAT "LAT CHARZ char *SAT _LONG CHARZ)
{

char AZIMUTH_CHAR1[20], *endptrl, *endptr2, *endptr3, *endptr4;
double E_S LAT_DOUBLE,E_S_LONG_DOUBLE,AZIMUTH_DOUBLE, LONG_DIF;

double SAT LAT DOUBLE,SAT LONG DOUBLE;
// double SAT LONG=31.232,SAT LAT=0; /*for T1B*/
// double SAT LONG=41.994,SAT LAT=0; /*for T1C*/

E S LAT DOUBLE=strtod(E_S LAT CHAR2, &endptrl);
E . S LONG DOUBLE= strtod(E LONG CHAR2, &endptr2) ;
// E S LAT DOUBLE=39.639;
// E . S LONG DOUBLE=32.80151;

SAT_LAT DOUBLE=strtod(SAT_LAT_CHARZ, &endptr3);
SAT LONG DOUBLE—strtod(SAT LONG CHARZ2, &endptrid) ;

LONG_DIF=E~S_LONG_DOUBLE—SAT_LONG_DOUBLE;

AZIMUTH_DOUBLE=180+(360.0 * (atan2(tan(2.0*M PI*LONG_DIF/360),
sin(2*M_ PI*E S LAT DOUBLE/360))) / (2*M_PI));

strcpy(AZIMUTH CHAR1, string with_ dec _point (AZIMUTH_DOUBLE)) ;

AD = AZIMUTH_DOUBLE;

return (AZIMUTH CHARI1);

}

AZELDROT Get_AZELDROT ()

{
azeldrot2.ELEVATION ROT D
azeldrot2.AZIMUTH_ROT_D =
return azeldrot2;

}

= ED;
AD;

