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LASER FIELD EFFECT ON THE NONLINEAR OPTICAL PROPERTIES OF

QUANTUM DOTS

ABSTRACT

In this thesis, we have investigated theoretically the nonlinear optical properties

of a two-dimensional Gaussian quantum dot system under a high-frequency intense

laser field. The effect of non-resonant monochromatic intense laser field with circular

polarization has been taken into account within the framework of non-perturbative

approach. The time-dependent Schrödinger equation described the system has been

transformed to time-independent form by using the Kramers-Henneberger unitary

translational transformation and Fourier-Floquet serial expansion. These approaches

lead us to the laser-dressed form of the Gaussian confinement potential.

The compact-density matrix approach and iterative procedure have been used to

obtain the nonlinear optical properties of the system. We have studied the laser

field effect on the linear and third-order nonlinear optical absorption coefficients

and refractive index changes. In order to get numerical solution of the Schrödinger

equation, we have used the finite element method with Galerkin approximation.

Numerical results reveal that the structure of the confinement potential is modified

remarkably by the laser field. Accordingly, the nonlinear optical properties of the

system show a strong dependence on the strength of the high-frequency intense laser

field. Moreover, optical absorption coefficients and refractive index changes are

affected by the structural parameters.

Keywords: Quantum dot, intense laser field, nonlinear optics, finite element method.
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KUANTUM NOKTALARIN LİNEER OLMAYAN OPTİK ÖZELLİKLERİ

ÜZERİNE LAZER ALAN ETKİSİ

ÖZ

Bu tezde, yüksek-frekanslı yoğun lazer alanı altındaki iki-boyutlu Gaussian kuantum

nokta sisteminin lineer olmayan optik özelliklerini teorik olarak inceledik. Dairesel

polarizasyonlu rezonant-olmayan monokromatik yoğun lazer alanının etkisi pertürbatif

olmayan yaklaşım çerçevesinde ele alındı. Sistemi tanımlayan zamana-bağlı Schrödin-

ger denklemi, Kramers-Henneberger üniter öteleme dönüşümü ve Fourier-Floquet seri

açılımı kullanılarak zamandan-bağımsız forma dönüştürüldü. Bu yaklaşımlar bizi

Gaussian hapsetme potansiyelinin lazer-giydirilmiş formuna götürür.

Kompakt-yoğunluk matrisi yaklaşımı ve iteratif şema sistemin lineer olmayan optik

özelliklerini elde etmek için kullanıldı. Lineer ve üçüncü-derece lineer olmayan optik

soğurma katsayıları ve kırılma indisi değişimleri üzerine lazer alan etkisini çalıştık.

Schrödinger denkleminin nümerik çözümlerini elde etmek için Galerkin yaklaşımlı

sonlu elemanlar yöntemini kullandık.

Nümerik sonuçlar, lazer alanının hapsetme potansiyelinin yapısını önemli ölçüde

değiştirdiğini ortaya koymaktadır. Buna bağlı olarak, sistemin lineer olmayan optik

özellikleri yüksek-frekanslı yoğun lazer alanın şiddetine güçlü bir bağlılık gösterir.

Ayrıca, optik soğurma katsayıları ve kırılma indisi değişimleri yapısal parametreler

tarafından etkilenirler.

Anahtar kelimeler : Kuantum nokta, yoğun lazer alanı, lineer olmayan optik, sonlu

elemanlar metodu.
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CHAPTER ONE

INTRODUCTION

Investigation of electronic and optical properties of low-dimensional semiconductor

systems, such as quantum wells, quantum wires, and quantum dots (QDs) has had

an enormous interest on account of their importance for practical applications in

optoelectronic devices. Especially, owing to their potential application in microelectronics

and future laser technology, QDs have reached considerable theoretical and experimental

attention (Xie, 2011). The confinement of charge carriers in the low-dimensional

semiconductors leads to novel electronic and optical properties which are considerably

different from those of the bulk materials. QDs can be selected from low-dimensional

semiconductors as a potential candidate for fabricating nanosized devices. The

potential applications involve biological probes, lasing media, optical amplifiers,

optical sensors and infrared photo-detectors (Saravanamoorthy et al., 2014).

From the point of view of quantum confinement, engineering the electronic

structure of materials by means of shape and size control, offers the possibility of

tailoring the energy spectrum to fabricate desirable optical transitions (Xie, 2008a).

The influence of spatial confinement, which can be formed by introduction of a

confinement potential, on the energy spectra of physical systems is one of the most

interesting properties to be researched in the study of confined systems (Lu et al.,

2011b). When a dot is small (i.e. when its radius is comparable to the characteristic

length of the variation of the potential near the edge), a smooth potential such as

a Gaussian potential presents a better and more reasonable approximation. The

Gaussian potential dot is smooth at the QDs boundaries, which allows us to model

a compositional modulation within the QDs (Ehsanfard & Vahdani, 2015).

With the advent of strong coherent tunable laser sources, new possibilities for

the study of the interaction of intense laser field (ILF) with nanostructures have

emerged. Potential of an electronic system irradiated by an ILF is modified strongly

which causes remarkable changes in the electronic and optical properties of the

system. The performance of the optoelectronic devices depends on the charge carrier-
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electromagnetic radiation interaction. Therefore, it is noteworthy to explore the

influence of high-frequency ILF on the optical characteristics in QDs.

Based on the non-perturbative theory that has been developed to describe the atomic

behavior in intense high-frequency laser field, several works reported the effects of

laser field on the nonlinear optical properties of quantum structures. Generally the

presence of an ILF with linear polarization is taken into account through the laser-

dressed potential. Even though considerable attention has been paid to explore the

linearly polarized ILF, less amount of work has been devoted to the effects of circularly

polarized ILF-nanostructure interaction.

In this thesis, we survey the effects of circularly polarized high-frequency intense

laser field on the optical absorption coefficients (AC) and refractive index changes

(RI) of a two-dimensional Gaussian potential quantum dot (2DGPQD). The electronic

structure of the system has been calculated by using the finite element method. The

nonlinear optical properties have been investigated by using the compact-density

matrix approach and iterative procedure. The rest of the thesis is organized as follows:

In Chapter 2, low-dimensional heterostructures have been introduced. The theoretical

background have been submitted in Chapter 3. In following chapter, the information

about the system and the formalism used in this work have been given. In Chapter 5,

the numerical results of the system have been demonstrated. Finally, the conclusions

has been presented in Chapter 6.
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CHAPTER TWO

LOW-DIMENSIONAL HETEROSTRUCTURES

2.1 Introduction to Low-Dimensional Heterostructures

In nanometer scale structures, the motion of an electron can be restricted in one or

more directions in space. When only one dimension is confined while the other two

remain free the system is called as a quantum well. The structure named quantum

wire is formed by a restriction of the electron’s motion in two dimensions. Quantum

dot is a nanostructure where the charge carriers are restricted in all three dimensions

which means zero-degree of freedom. These nanostructures are commonly called low-

dimensional quantum structures.

Progress in semiconductor crystal growth technology, such as liquid phase epitaxy,

molecular beam epitaxy, metalorganic chemical vapor deposition, has made it possible

to control with atomic scale precision the dimensions of semiconductor structures

and thus to achieve low-dimensional quantum structures through the formation of

heterojunctions or heterostructures. A semiconductor heterojunction is created when

two different semiconducting materials are brought into direct contact with each

other, while heterostructures can be described as materials that incorporate one or

more heterojunctions and can define more complicated device constructions (Razeghi,

2009).

The latest development in the production technology performs the perfect fabrication

of dimensional semiconductor quantum nanostructures possible layer by layer in

intended geometry. These structures have found a large area of application in

many branches of science comprising chemistry, biology, medicine, engineering, and

physics. Such materials draw attention of the researchers thanks to their amazing

physical properties. Thus, these structures are extensively studied both theoretically

and experimentally (Kavruk et al., 2013)
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The optical properties of low-dimensional quantum structures, emerging from their

peculiar density of states, are often put to use in semiconductor optoelectronic devices,

such as semiconductor laser diodes and quantum dot infrared photodetectors. Such

low-dimensional structures are generated in practice using a succession of processes

including epitaxy, lithography and etc. An illustration of principle of quantum wells,

wires and dots is shown in Figure 2.1.

Figure 2.1 Illustration of (a) quantum well, (b) quantum wire, and (c) quantum dot.

Low-dimensional quantum structures have for example been most useful for

semiconductor laser diodes, leading to low threshold current (minimum necessary

current for lasing), high power and weak temperature dependence devices. These

properties, in conjunction with their small size, have made laser diodes attractive

for applications including densely packed laser arrays. This implements also to the

monolithic integration of lasers with low power electronics such as computer optical

interconnects, optoelectronic signal processing and optical computing (Razeghi, 2009).

2.2 Two-Dimensional Structures: Quantum Wells

A quantum well is formed when the motion of electrons is confined in one direction

(e.g. x), while it remains free to move in the other two directions (y, z). This situation is

most easily obtained by sandwiching a thin and flat film semiconductor crystal between

two crystals of another semiconductor material in such a way that a potential step is

produced, as shown in Figure 2.2. The electrons are restricted in the region −Lx/2 <

x < Lx/2. This potential energy profile can be acquired by sandwiching a thin and flat

semiconductor of material between two semiconductor crystals of another material.
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Figure 2.2 Potential energy profile of quantum well.

The potential in the x-direction is similar to the case of a particle in a finite potential

well. The height of the potential barrier is now the difference between the conduction

band energies in the different semiconductors, which is named the conduction band

offset. The contribution to potential in the y- and z-directions is constant and is chosen

to be zero, analogous to the case of a free particle. The total potential is given by:

V (⃗r) =

 0, for |x| < Lx/2;

V0 > 0, for |x| > Lx/2.
(2.1)

where r⃗ includes x-, y- and z-directions. The shape of the potential in Equation 2.1

means that the motion in the x-direction and that in the (y, z)-plane are independent (Razeghi,

2009). The time-independent Schrödinger equation defining the motion of an electron

can be written as (Ungan et al., 2010):

(
− h̄2

2m∗
∇⃗2+V (⃗r)

)
ψ(⃗r) = Eψ(⃗r) (2.2)

where m∗ is the electron effective mass. Electronic energies and eigenfunctions can be

calculated via the solution of Equation 2.2.
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2.3 One-Dimensional Structures: Quantum Wires

A quantum wire is composed when the motion of electrons in the conduction band

is confined in two dimensions, while it remains free to move in the remaining direction.

This nanostructure can be produced by starting from the result of a quantum well. With

a further confinement of quantum well, motion of the charge carriers is allowed only in

one dimension. Therefore, one-dimensional quantum structures are obtained (Razeghi,

2009).

2.4 Zero-Dimensional Structures: Quantum Dots

Among the low-dimensional semiconductor structures, a significant attention has

been dedicated to the physics of the quantum dots (Khordad, 2012). Quantum dots are

nanostructures where the charge carriers are restricted in all three space dimensions and

their size, shape and other properties can be controlled in experiments (Xie, 2008b).

Modern crystal growth techniques, such as molecular beam epitaxy and metal oxide

chemical vapor deposition, have allowed the production of quantum dots with very

small dimensions (Khordad, 2012).

Quantum dots have also been named “artificial atoms” because their electronic

structures and properties resemble those of natural atoms. The reason of this simile

is limitation of electrons in quantum dots and atoms due to potential barriers and the

Coulomb attraction of the nucleus, respectively (Gomez & Romero, 2009).

Quantum dots confine electrons in all three spatial dimensions and the many-body 

effects of electron-electron interactions indicate a broad range of electronic structures 

similar to those of real atoms. Single-electron capacitance spectroscopy offers indirect 

measurement of the energy levels of a single dot. Since they allow the possibility 

of applications in future optoelectronic devices and optical memories, it is most 

interesting to study the electronic structure of QDs (Wen-Fang, 2007; Xie, 2008b).
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CHAPTER THREE

THEORETICAL BACKGROUND

3.1 Theory of Intense Laser Field

The study of the interaction of light with atoms, molecules and condensed-matter

systems has been the issue of intense research work. The design of new efficient

optoelectronic devices depends on understanding of the basic physics of the interaction

process. The laser interaction with semiconductor heterostructures has had a private

importance in laser works (Brandi et al., 2004).

An atom trapped in a super intense laser field undergoes extreme contortion which

results in emergence of exotic appearance. These could not be figured out by using

perturbative framework, and requires new (nonperturbative) ideas to be introduced.

Considerable progress has thus been devoted to bring out the generation of new atomic

structure by means of the high intensities. Along with its fundamental interest, this

effort has interesting potential applications (Gavrila, 2002).

To obtain high-intensities one needs to tighten the largest amount of energy possible

into the shortest period of time possible (Protopapas et al., 1997). The request

for higher and higher laser pulse intensities is driven by some examples, such as

nuclear fusion by using lasers. Shorter pulses are required to study fast atomic

processes directly in the time domain. As femtosecond (1fs=10−15s) laser technology

revolutionized chemistry, the hope is that attosecond (1as=10−18s) laser pulses give a

new twist on good old atomic physics (Bauer, 2006).

To examine the motion of particle under radiation field, we need to solve the time-

dependent Schrödinger equation that can be expressed as:

( p⃗+ eA⃗)2

2m∗
+V (⃗r)

ψ(⃗r, t) = ih̄
∂ψ(⃗r, t)
∂t

(3.1)

where p⃗ = −ih̄∇⃗ is the momentum operator and A⃗ = A⃗(⃗r, t) is the vector potential for

7



the electromagnetic field. For fields that do not vary considerably in the physically

important region of space, the dipole approximation can be used which leads to

A⃗(⃗r, t) ≈ A⃗(t). For any oscillatory A⃗(t), we can perform the Kramers-Henneberger

unitary translation transformation on Equation 3.1 so as to transfer the time dependence

from the kinetic to the potential term in the Hamiltonian of this equation. This unitary

transformation is obviously given by the operator (Lima et al., 2009):

U = exp
[
− i

h̄

(
e

m∗

∫
A⃗ · p⃗dt+

e2

2m∗

∫
A⃗2dt

)]
(3.2)

This operator can be separated as U = U1U2, where U1 = exp
[
− i

h̄

(
e

m∗
∫

A⃗. p⃗dt
)]

is

a translation operator and U2 = exp
[
− i

h̄

(
e2

2m∗
∫

A⃗2dt
)]

is an operator that generates a

gauge transformation corresponding to the A⃗2 term in the Hamiltonian in Equation 3.1.

Within the dipole approximation, however, this term is just a function of t; thus, it

has no physical conclusions and can be transformed away by a shift in the phase of

ψ(⃗r, t) (Lima et al., 2008). With these operators, the alterations φ(⃗r, t) = U+ψ(⃗r, t) and

H̃ = U+HU lead to:

(
p⃗2

2m∗
+V

(⃗
r+ α⃗(t)

))
φ(⃗r, t) = ih̄

∂φ(⃗r, t)
∂t

(3.3)

where V
(⃗
r+ α⃗(t)

)
is the “dressed potential” energy and α⃗(t) is commented as a vector

corresponding to the classical displacement, along the polarization direction, of the

relative particle from its oscillation center. It is expressed as (Sakiroğlu et al., 2012):

α⃗(t) =
e

m∗

∫ t
A⃗(t)dt. (3.4)

The dressed potential can be expanded in Fourier-Floquet series. For sufficiently

high frequency, the zeroth order Floquet term dominates. For the zeroth Floquet

component φ(⃗r), the system degrades to the time-independent Schrödinger equation (Lu

et al., 2011b):

− h̄2

2m∗
∇2φ(⃗r)+ ⟨Vd (⃗r,α0)⟩φ(⃗r) = Eφ(⃗r) (3.5)
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where ⟨Vd (⃗r,α0)⟩ is the laser-dressed potential given by:

⟨Vd (⃗r,α0)⟩ = 1
T

∫ T

0
V (⃗r+ α⃗(t))dt (3.6)

where T = 2π/ω is the period of the laser field (Lima et al., 2009).

3.2 Finite Element Method

In this section, the fundamental methodology of finite element analysis will be

introduced. The finite element method can be used so as to analyze various kinds

of problems such as structural analysis, heat transfer, fluid flow, mass transport

and electromagnetic potential. Especially, any complex shape of problem domain

with prescribed conditions can be handled with case utilizing the finite element

method (Young W. Kwon, 1997). Derivation of the finite element equations is shown

on a second-order differential equation benefiting the Galerkin approach in a one-

dimensional case (Nikishkov, 2010).

The Finite Element Method (FEM) is a procedure for the numerical solution of the

equations that govern the problems taken part in nature. Usually the behavior of nature

can be described by equations stated in differential or integral form. For this reason,

the FEM is understood in mathematical circles as a numerical technique for analyzing

partial differential or integral equations. In general, the FEM lets user to obtain the

evolution in space and/or time of one or more variables representing the behavior of a

physical system (Onate, 2009).

FEM discretization of the problem results in solution of simultaneous algebraic

equations. These numerical methods give approximate values of the unknowns at

discrete numbers of points in the continuum. Therefore, this process of modeling

a body by separating it into in equivalent system of smarter bodies or units (finite

elements) interconnected at points common to two or more elements (nodal points

or nodes) and/or boundary lines and/or surfaces is called discretization. By using
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FEM, we formulate the equations for each finite element and join them to obtain the

solution of the entire body instead of resolving the problem for the whole body in one

operation (Logan, 2007).

The basic concepts of finite element analysis will be introduced following (Buchanan,

1995):

Interpolation Function:

The basic concept of the finite element method is that a continuous function can

be approximated utilizing a discrete model. The discrete model is composed of one

or more interpolation polynomials, and the continuous function is separated into finite

pieces called elements. Each element is defined using an interpolation function to

describe its attitude between its end points. The end points of the finite element are

called as nodes.

Shape Functions:

The shape function is generally denoted by the letter N and is usually the coefficient

that seems in the interpolation polynomial. A shape function is written for each

individual node of a finite element and has the property that its magnitude is 1 at

that node and 0 for all other nodes in the element (θi(x j) = δi j). The terminology is

frequently interchanged between interpolation polynomial and shape function.

3.2.1 Solution of Restricted Quantum Systems with FEM

The Hamiltonian of a charge carrier restricted into a QD, in effective mass

approximation, is given by:

H = − h̄2

2m∗
∇⃗2+V (⃗r) (3.7)

where m∗ is the effective mass of the charge carrier and V (⃗r) is the confinement

potential (Khordad, 2012). The Bohr radius and effective Hartree energy was

used in order to obtain the dimensionless form of Hamiltonian. Consequently, the
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dimensionless Hamiltonian is given by:

H = −1
2
∇⃗2

d +V (⃗r) (3.8)

where the subscript “d” represents the dimension of the system. The eigenvalue

equation is known as:

HΨ(⃗r) = EΨ(⃗r). (3.9)

To find the energy eigenvalues of this equation, we need a trial wave function that

defines the physical system. By taking the trial wave function ψ(⃗r) instead of the wave

function Ψ(⃗r), the Schrödinger equation is translated to:

Ψ(⃗r)→ ψ(⃗r) ⇒ Hψ(⃗r) = Eψ(⃗r)

(H −E) ψ(⃗r) � 0 .
(3.10)

The numerical solution of the Equation 3.10 is found by FEM. The first step is that

dividing the region of the physical system into subregion. Thus, the wave function

is described as a complete set of basis functions (θi(⃗r)) that span the corresponding

domain:

ψ(⃗r) =
Nntn∑
i=1

ψi θi(⃗r) (3.11)

where Nntn is the number of total nodes in divided work space. The basis functions

(also called shape function or interpolation functions) which span the whole space

are often polynomials that are derived using interpolation theory in FEM. The

representation of square, column and row matrixes that are used in FEM is shown

in Table 3.1.

Table 3.1 Matrix representation in FEM notation.

FEM

Matrix A =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 {{A}}

Column Matrix A =

 ∗∗∗
 {A}

Row Matrix A =
(
∗ ∗ ∗

)
{A}T
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The matrix representation of the Equation 3.11 can be written:

ψ(⃗r) =
Nntn∑
i=1

ψi θi(⃗r) =
{
ψ1 ψ2 . . . ψNntn

}
·



θ1(⃗r)

θ2(⃗r)
...

θNntn (⃗r)


= {ψ}T {θ(⃗r)} (3.12)

ψ(⃗r) = {θ(⃗r)}T · {ψ} (3.13)

where

{θ(⃗r)}T = (
θ1(⃗r), θ2(⃗r), θ3(⃗r), . . . θNntn (⃗r)

)
(3.14)

{ψ}T = (
ψ1,ψ2,ψ3, . . . ,ψNntn

)
. (3.15)

The hermitian conjugate of the wave function is given by:

ψ†(⃗r) = {ψ}† · {θ(⃗r)} . (3.16)

In order to derive variational parameters (ψi(⃗r)), we can use "Galerkin’s Method" (Young

W. Kwon, 1997). We obtain G (Galerkian) as:

G =
∫
Ω

ψ†(⃗r)(H −EI)ψ(⃗r) dΩ (3.17)

where I is the unit matrix (Nntn ×Nntn). With using Equation 3.13 and Equation 3.16

in Equation 3.17 the following expression is obtained as:

G = {ψ}† ·


∫
Ω

{θ}(H −EI){θ}T dΩ

 · {ψ} . (3.18)

We use the variational method to decide the wave function by minimizing the G

expression. A set of wave functions that minimize the Galerkian G and the energy

of the system can be found as:

∂G
∂ψ†
= 0 ⇒


∫
Ω

{θ}(H −EI){θ}T dΩ

 · {ψ} = 0 (3.19)
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When the Hamiltonian expression in Equation 3.8 is inserted in Equation 3.19, we

obtain:
∫
Ω

dΩ
(
−1

2
{θ} · ∇⃗2

d{θ}
T + {θ}V (⃗r){θ}T

) · {ψ} = E


∫
Ω

dΩ{θ}{θ}T
 · {ψ} . (3.20)

After the necessary calculations are made, it reads to:
∫
Ω

dΩ
(
1
2
∇⃗d{θ} · ∇⃗d{θ}T + {θ}V (⃗r){θ}T

) · {ψ} = E


∫
Ω

dΩ{θ}{θ}T
 · {ψ} . (3.21)

The Equation 3.21 can be expressed in more compact notation as follows:

{{K}} · {ψ} = E {{M}} · {ψ} (3.22)

where {{K}} is “Stiffness Matrix” and {{M}} is “Mass Matrix”. A representation of

generalized eigenvalue equation of the system is shown in Equation 3.22. The stiffness

matrix {{K}} is a coefficient matrix whose elements do not contain the energy term,

while the mass matrix {{M}} is a coefficient matrix in the right hand side of the

generalized eigenvalue equation. The matrices are given by:

{{K}} =
∫
Ω

dΩ
(
1
2
∇⃗d{θ} · ∇⃗d{θ}T + {θ}V (⃗r){θ}T

)
(3.23)

{{M}} =
∫
Ω

dΩ{θ}{θ}T . (3.24)

With a division of the whole workspace into a global elements, the integral over the Ω

is written as a summation of the integrals over the subinterval space elements. That is:

∫
Ω

dΩ =
Ne∑

e=1

∫
Ωe

dΩe (3.25)

where Ne is the number of the global elements. Therefore, we define the stiffness and

mass matrices as:

{{K}} =
Ne∑

e=1

{{ke}} (3.26)
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{{ke}} =
∫
Ωe

dΩe

(
1
2
∇⃗d{N} · ∇⃗d{N}T + {N}V (⃗r){N}T

)
. (3.27)

In Equation 3.27, {{ke}} matrix contains both the kinetic and potential energy term.

{{ke}} = {{ke,kin}}+ {{ke,pot}}

{{ke,kin}} =
∫
Ωe

dΩe

(
1
2
∇⃗d{N}∇⃗d{N}T

)
(3.28)

{{ke,pot}} =
∫
Ωe

dΩe
(
{N}V{N}T

)
(3.29)

{{M}} =
Ne∑

e=1

{{me}} (3.30)

{{me}} =
∫
Ωe

dΩe {N}{N}T . (3.31)

where {N} represents the global element basis function (Sarıkurt, 2013).

3.3 Nonlinear Optics

Light seems to flow and propagate through empty space, as well as through solid

matters and maintains us with visual information about our planet. The similar effects

of reflection, refraction, diffraction, absorbtion and scattering identify a wide variety

of visual experiences common to us, from the focusing of light by a simple lens to

the colors seen in a rainbow. Significantly, these can be clarified by assigning a small

set of optical parameters to materials. Under the daily routine of every day life, these

parameters are constant, independent of the intensity of light that allows observation

of the optical phenomena. This is the fundamental of linear optics.

The optic researches at high intensities have been expanded with the invention of

laser sources. The high intensities of the laser field lead to new phenomena which is

not seen in ordinary light such as the generation of new colors from monochromatic

light in a transparent crystal or the self-focusing of an optical beam in a homogeneous
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liquid. At sufficiently strong intensities, the general optical parameters of matters can

not be considered as a constant anymore, much rather they become functions of the

light intensity. The optics in this form is called nonlinear optics (Sutherland, 2003).

Nonlinear optics is the study of phenomena that emerges as a consequence of

the modification of the optical properties in a system by the existence of the light.

Generally, only laser light is adequately intense to modify the optical properties of

a material system (Boyd, 2008). Nonlinear optics is the discipline in physics in

which the electric polarization density of the medium is searched as a nonlinear

function of the electromagnetic field of the light. Being a wide field of investigation

in electromagnetic wave propagation, nonlinear interaction between light and matter

leads to a wide spectrum of phenomena, such as optical frequency conversion, optical

solution, phase conjugation, and Raman scattering. Moreover, many of analytical

tools implemented in nonlinear optics are of general character, such as the perturbative

techniques and symmetry considerations, and can evenly well be implemented in other

disciplines in nonlinear dynamics (Jonsson, 2003). Practical nonlinear optical tools

in semiconductors are on the verge of becoming a reality, as switches, modulators,

converters and sensors (Garmire & Kost, 1999).

The theory of nonlinear optics constructs on the well-understood theory of linear

optics. It is related to interaction of light and matter. Ordinary matter consists of a

combination of positively charged cores environed with negatively charged electrons.

Light interacts principally with the matter via the valence electrons in the outher

shells of electron orbitals which causes to an electronic polarization. This is the main

parameter for nonlinear optics. Expanding the description of this parameter to the

nonlinear regime consents the definition of a rich variety of optical phenomena at high

intensity (Sutherland, 2003).

We assume that the interaction of polarized monochromatic electromagnetic field

with the 2DGPQD. The electric field vector of the optical wave is (Mills, 1998):

E⃗(t) = E⃗0 cos(ωt) = ⃗̃E e−iωt + ⃗̃E∗ e+iωt. (3.32)
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The time evolution of the matrix elements of one-electron density operator is given

by (Ehsanfard & Vahdani, 2015):

∂ρ̂

∂t
=

1
ih̄

[Ĥ0− e⃗r . E⃗(t), ρ̂]−Γ (ρ̂− ρ̂(0)) (3.33)

where Ĥ0 is the Hamiltonian of the system in the absence of electromagnetic field,

e is the electric charge, ρ̂ is the density matrix of single electron state, ρ̂(0) is the

unperturbed density operator, Γ is the phenomenological relaxation rate, caused by the

electron-phonon, the electron-electron and the other collision processes. Equation 3.33

can be solved using the iterative method by expanding ρ̂ (Gül, 2014):

ρ̂(t) =
∞∑

n=0

ρ̂(n) (3.34)

with

∂ρ̂(n+1)
i j

∂t
=

1
ih̄

{
[Ĥ0, ρ̂

(n+1)]i j− ih̄ Γi j ρ̂
(n+1)
i j

}
− 1

ih̄
[M̂, ρ̂(n)]i j . E⃗(t) (3.35)

can be found perturbation solution of Equation 3.33 and where M̂ = e⃗r is the electric

dipole moment operator (Liu et al., 2012).

The electronic polarization given by (Tiutiunnyk et al., 2014):

P(t) =
1
S

Tr(ρ̂M̂) = χ(ω)E(t) (3.36)

where χ(ω) is the dielectric susceptibility, S is the total area of the system and the

symbol Tr (trace) denotes summation over the diagonal elements of the matrix ρ̂M̂.

Hence, the polarization can be written as:

P(t) = ϵ0χ
(1)
(ω)Ẽeiωt + ϵ0χ

(2)
(2ω)Ẽ

2e2iωt + ϵ0χ
(3)
(3ω)Ẽ

3e3iωt + c.c (3.37)

where ϵ0 is the vacuum permittivity and χ(1)
(ω), χ

(2)
(2ω) and χ(3)

(3ω) are the linear, the

second-order and the third-order nonlinear optical susceptibilities, respectively. We

don’t consider the second-order nonlinear term because in geometries with reflective
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symmetry center the second order polarization is equal to zero and thus, in our

geometry the second order nonlinear optical properties are not anticipated (Safarpour

et al., 2014).

3.3.1 The Absorption Coefficients and Refractive Index Changes

Absorption is the basic physical process in the working of solar cells, infrared

photodetectors and many alike optical devices. Therefore, understanding of the optical

absorption in such structures is crucial in the production of new generation high

technology devices. For instance, the energy levels and depending on these, the

resonant absorption wavelength can be tuned via size of the QD or combinations of

the QD materials. Nonlinear optical properties are as significant as the linear ones in

the device fabrication (Kavruk et al., 2013).

To calculate the absorption coefficient for a dressed quantum dot corresponding

to an optical transition between two subbands we have utilized the compact density

matrix method and the usual iterative produce (Niculescu & Burileanu, 2010).

The optical susceptibility χ(ω) is related to the absorption coefficient α(ω) by (Xie,

2010a):

α(ω) = ω
√
µ

Im[ϵ0 χ(ω)] (3.38)
ϵR

where µ is the magnetic permeability of vacuum, and ϵR = nr
2ϵ0 is the real part of the 

permittivity. Therefore, the linear and nonlinear optical absorption coefficients (Ozturk 

& Sokmen, 2014; Duque et al., 2013; Ahn & Chuang, 1987):

α(1)(ω) = ω
√
µ

ϵR

σv h̄ Γi f |M f i|2

(E f i− h̄ ω)2+ (h̄ Γi f )2 (3.39)
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α(3)(ω, I) = −ω
√
µ

ϵR

I
2 ϵ0 nr c

σv h̄ Γi f |M f i|2[
(E f i− h̄ω)2+ (h̄Γi f )2

]2 (3.40)

x

4 |M f i|2−
|M f f −Mii|2

[
3 E2

f i−4 E f i h̄ ω+ h̄2(ω2−Γ2
i f )

]
E2

f i+ (h̄Γi f )2


where E f i = E f −Ei is the transition energy difference between the initial i and final f

energy states, M̂ f i = e⟨ f |⃗r|i⟩ is the electric dipole moment of the transition from i state

to f state, ϵ0 is the free-space dielectric permittivity, c is the speed of light in vacuum,

nr is the refractive index of the material, σv is the carrier density, and I = 2ϵ0nrc|E|2 is

the optical intensity of the incident electromagnetic wave. The total optical absorption

coefficient is given by:

α(T )(ω, I) = α(1)(ω)+α(3)(ω, I). (3.41)

The optical susceptibility χ(ω) is related to the change in the refractive index as (Lu

et al., 2011a):
∆n(ω)

nr
= Re

(
χ(ω)
2 n2

r

)
. (3.42)

Thus, the linear and nonlinear changes in the refractive index are written as (Ozturk &

Sokmen, 2014; Duque et al., 2013; Ahn & Chuang, 1987):

∆n(1)(ω)
nr

=
σv |M f i|2

2 ϵR

E f i− h̄ ω
(E f i− h̄ ω)2+ (h̄ Γi f )2 (3.43)

∆n(3)(ω, I)
nr

= −
σv µ c I |M f i|2

4 ϵR

E f i− h̄ ω[
(E f i− h̄ ω)2+ (h̄ Γi f )2

]2 (3.44)

x

4|M f i|2−
(M f f −Mii)2

E2
f i+ (h̄ Γi f )2

E f i(E f i− h̄ ω)− (h̄ Γi f )2−
(h̄ Γi f )2(2 E f i− h̄ω)

E f i− h̄ω


Accordingly, the total refractive index is that:

∆n(T )(ω, I)
nr

=
∆n(1)(ω)

nr
+
∆n(3)(ω, I)

nr
. (3.45)
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CHAPTER FOUR

THE SYSTEM AND METHODOLOGY

4.1 General Overview of The Problem

Laser field effect on the nonlinear optical properties of quantum dots is an

attractive research subject. Several works have been devoted to understand the optical

characteristics of quantum dots. Zhang et al. have investigated the influence of intense

laser field on the energy states and optical properties induced by sublevel transitions

of the cylinder quantum dot system considering the piezoelectric effect (Zhang et al.,

2011). Xie et al. have performed an investigation of the influence of a laser field

on the electron-hole excitations in disc-like quantum dot with parabolic potential.

They reported the absorption spectra and the refractive indexes by using the matrix

diagonalization and the compact density-matrix methods (Xie, 2011). Lu et al. have

theoretically searched the effects of intense laser fields on the nonlinear properties

of donor impurities in a quantum dot with Woods-Saxon potential within the matrix

diagonalization method with the use of the effective mass approximation. In their

work, the intense laser effects are taken into account through the Floquet method, by

modifying the confining potential associated to the heterostructure (Lu et al., 2011a).

Safarpour et al. have investigated the linear, third-order nonlinear and total optical

absorption coefficients and refractive index changes of a GaAs spherical quantum

dot placed at the center of a Ga1−xAlxAs cylindrical nano-wire. In this work, the

finite difference approximation is considered in calculation of the electronic structure

as well as compact density-matrix approach is applied to investigate the optical

properties (Safarpour et al., 2014). Lu et al. have researched optical properties of donor

impurities in quantum dots under the influence of a linearly polarized laser field with

Gaussian potential by using the matrix diagonalization method within the effective

mass approximation (Lu et al., 2011b).

In spite of different works about optical properties in quantum dots under laser field,

linearly polarized ILF is used in most of them. The nonlinear optical properties of
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two-dimensional Gaussian quantum dot system exposed to circularly polarized high-

frequency intense laser field have not been investigated so far. Therefore in this thesis,

we focus on the survey of optical properties of this structure.

4.2 Theory and Method

The approach used in the present calculation is based upon a non-perturbative theory

that has been developed to define the atomic behavior in intense high-frequency laser

fields. The radiation field can be offered by a monochromatic plane wave. We shall be

interested here in the case of circularly polarized laser field. The vector potential can

be taken as:

A⃗(t) = A0(x̂cosΩt− ŷsinΩt) (4.1)

and correspondingly the vector α⃗(t) calculated by using Equation 3.4 is:

α⃗(t) = α0(x̂sinΩt+ ŷcosΩt) . (4.2)

Here x̂ and ŷ are the unit vectors along the x- and y-axes, respectively, Ω is the angular

frequency of the laser field (Miyagi & Someda, 2009, Pont & Gavrila, 1990). α0 =

eA0
m∗cΩ , called as laser-dressing parameter, represents for the quiver motion of a classical

electron in the laser field and A0 is the amplitude of the vector potential (Ungan et al.,

2010).

The knowledge of confinement potential profile in QDs has an crucial role in

physics of semiconductor structures. Quantum confinement potentials which restrict

the charge carriers in QDs have various shapes depending on origin and structure of

the QD (Khordad, 2012). We choose the potential form of a quantum dot (QD) as a

Gaussian potential, which is given by (Xie, 2010b):

VG(r) = −V0 exp
(
− r

r0

)2

(4.3)

where V0 > 0 is the depth of the potential dot, r0 is the range of the confinement
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potential describing the radius of the QD, and r contains x and y coordinates. In order

to obtain the laser-dressed Gaussian potential, we apply initially the time-dependent

translation r⃗→ r⃗+ α⃗(t) to the potential. By simple algebra the potential is translated

to:

VG (⃗r+ α⃗(t)) = −V0 exp

−r2+2rα0 cos(u−ϕ)+α2
0

r2
0

 (4.4)

where u = Ωt is a variable chosen for simplicity and ϕ is angle between r⃗ and α⃗(t). If

Equation 4.4 is inserted in Equation 3.6, we obtain the laser-dressed Gaussian potential

as:

⟨VGdressed (⃗r,α0)⟩ = −V0

2π

∫ 2π

0
exp

− (r2+α2
0)

r2
0

exp

−2rα0 cos(u−ϕ)
r2

0

du (4.5)

Terms independent of variable u are taken in front of the integral which leads to:

⟨VGdressed (⃗r,α0)⟩ = −V0

2π
exp

−(r2+α2
0)

r2
0

∫ 2π

0
exp

−2rα0 cos(u−ϕ)
r2

0

du (4.6)

Using the Jacobi-Anger expansion (Colton & Kress, 1998):

exp(izcosθ) =
∞∑

n=−∞
inJn(z)exp(inθ), (4.7)

and taking as a = 2rα0
r2

0
, we get:

⟨VGdressed (⃗r,α0)⟩ = −V0

2π
exp

− (r2+α2
0)

r2
0

 ∞∑
n=−∞

inJn(ia)2πe−inϕδn,0 (4.8)

δn,0 denotes kronecker delta operator. Hence, the summation in Equation 4.8 drops

which yields to the new form of the dressed potential:

⟨VGdressed (⃗r,α0)⟩ = −V0

2π
exp

− (r2+α2
0)

r2
0

2πJ0(ia) (4.9)

Modified Bessel function (Hanna & Rowland, 2008) is defined as:

Iα(x) = i−αJα(ix). (4.10)
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Using the relation between Bessel functions, the final form of the laser-dressed

Gaussian potential is obtained to be:

⟨VGdressed (⃗r,α0)⟩ = −V0 exp

− (r2+α2
0)

r2
0

 I0

2α0r
r2

0

 . (4.11)

Here, I0 is the modified Bessel function for α = 0.

4.3 Dimensionless Form of Hamiltonian

We need dimensionless form of Equation 3.5 for numerical solution of the system.

We use effective Hartree energy E∗h =
h̄2

m∗(a∗0)2 and effective Bohr radius a∗0 =
4πϵ0ϵrh̄2

m∗e2 as

the energy and length scales, respectively. Therefore, the variables and parameters in

the Hamiltonian can be written in terms of these units: r −→ a∗0r̃, V0 −→ E∗hṼ0 and

α0 −→ a∗0α̃0. The dimensionless form of laser-dressed Gaussian potential becomes:

⟨ṼGdressed(r̃, α̃0)⟩ = −Ṽ0 exp
[
− (r̃2+ α̃0

2)
r̃0

2

]
I0

(
2α̃0r̃
r̃0

2

)
. (4.12)

For convenience, we use the abbreviation ṼGD = ⟨ṼGdressed(r̃, α̃0)⟩. As taking Ẽ =

E/E∗h, dimensionless eigenvalue equation can express as:

H̃ψ(r̃, θ) = Ẽψ(r̃, θ) (4.13)

− 1
2
∇⃗2ψ(r̃, θ)+ ṼGDψ(r̃, θ) = Ẽψ(r̃, θ). (4.14)

The wavefunction ψ(r̃, θ) can be decomposed as ψ(r̃, θ) = R(r̃)Θ(θ). By solving the

equation for two-dimension, the new expression transform into:

− 1
2

[
1
r̃
∂

∂r̃

(
r̃
∂

∂r̃

)
+

1
r̃2

∂2

∂θ2

]
R(r̃)Θ(θ)+ ṼGDR(r̃)Θ(θ) = ẼR(r̃)Θ(θ). (4.15)

When the necessary operations are made, Equation 4.15 converts to:

− 1
2

[
1

r̃R(r̃)
d
dr̃

(
r̃

dR(r̃)
dr̃

)
+

1
r̃2Θ(θ)

d2Θ(θ)
dθ2

]
+ ṼGD = Ẽ (4.16)
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where Θ(θ) = 1√
2π

eimθ is the radial part of the two-dimensional wavefunction and m is

orbital angular momentum magnetic quantum number. By making some calculations,

consequently, the eigenvalue equation of the system is:

− 1
2

[
1
r̃

d
dr̃

r̃
d
dr̃
− m2

r̃2

]
R(r̃)+ ṼGDR(r̃) = ẼR(r̃). (4.17)

We have acquired numerical results for Equation 4.17 by utilizing FEM. In the

calculations, we work with 1000 nodes as a number of total nodes, and 10 nodes as a

number of global nodes.
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CHAPTER FIVE

RESULTS AND DISCUSSIONS

5.1 Effects of Intense Laser Field on The Confining Potential

In this section of the work, we discuss changes of the potential profile with respect

to the structure parameters. The potential profiles are demonstrated as a function of

radial coordinate r for different values of potential depth V0, range parameter r0 and

laser-dressing parameter α0.

−40 −30 −20 −10 0 10 20 30 40
−300

−250

−200

−150

−100

−50

0

r(nm)

V
(m

e
V
)

α0 = 0 nm

ro = 10 nm

(a)

 

 

V o = 200 meV

V o = 250 meV

V o = 300 meV

−40 −30 −20 −10 0 10 20 30 40
−250

−200

−150

−100

−50

0

r(nm)

V
(m

e
V
)

α0 = 0 nm

V o = 250 meV

(b)

 

 

ro = 7 nm

ro = 10 nm

ro = 15 nm

Figure 5.1 The confinement potential as a function of r for varying values of (a) depth of the potential

and (b) range parameter.

Figure 5.1 displays the confinement potential for different values of (a) V0 for r0 =

10 nm and (b) r0 for a constant V0 = 250 meV considering absence of intense laser

field (α0 = 0 nm). It shows clearly that for increasing V0 values the potential becomes

deeper while for increasing radius r0 the effective width of the confinement potential

expands.

In Figure 5.2, we have plotted variation of the Gaussian confining potential for

different values of laser-dressing parameter α0 for V0 = 200 meV and r0 = 7 nm. The

figure shows clearly that as the value of α0 increases the width of the confinement

potential expands and furthermore, the depth of potential decreases.
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Figure 5.2 The confinement potential as a function of r for different values of laser-dressing parameter

α0. We set V0 = 200 meV and r0 = 7 nm.

As seen from the figures, the geometrical shape and size of the confinement

potential is determined by the structure parameters which have a remarkable effect

on the bound-state energies.

5.2 Calculation of Energy Eigenvalues

In order to show the efficiency of FEM, we compare our results for the bound-state

energy eigenvalues with those reported in Ref.s Lai (1983) and Miyagi & Someda

(2009), denoted Ere f(1) and Ere f(2) in Table 5.1, respectively. Lai et al. have studied

the three-dimensional Gaussian potential with V0 = 200 meV and r0 = 1 nm. The

numerical result of ground-state energy for two-dimensional Gaussian potential with

V0 = 1.404 meV and r0 = 1.404 nm have been investigated by Miyagi et al. For these

systems, the energy eigenvalues found by us are represented as Eour(1) and Eour(2) in the

table, respectively.

The bound-state energy eigenvalues of two-dimensional Gaussian potential obtained

by using finite element method considering the effect of ILF are shown below.
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Table 5.1 Bound-state energy eigenvalues for Gaussian quantum dot.

n −Ere f(1) −Eour(1) −Ere f(2) −Eour(2)

0 341.895 341.8952 0.477 0.4772
1 269.644 269.6445 – –
2 203.983 203.9835 – –
3 145.377 145.3779 – –
4 94.454 94.4577 – –
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Figure 5.3 Bound-state energies as a function of r0 for the two values of V0 in case of α0 = 0 nm.

Figure 5.3 illustrates the energies as a function of r0 for two different values of V0 in

the absence of an intense laser field. As is deduced from the figure, for smaller values

of the range parameter (for deeper potentials) the number of the bound states reduces

(increases).

In Figure 5.4, the bound-state energies are plotted with respect to the dot size

for different values of α0 for a constant V0 = 250 meV. We see clearly that,

the absolute value of the eigenenergies decrease by increasing the laser-dressing

parameter, especially for the lowest states.
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Figure 5.4 Energies as a function of r0 for the different values of α0 with V0 = 250 meV.

5.3 The Effects of Intense Laser Field on The Absorption Coefficients

Throughout this work, the optical properties of a two-dimensional quantum dot

with Gaussian potential exposed to an intense laser field have been studied. The

calculations are realized using the following bulk parameters corresponding to GaAs:

ρs = 3.8x1022m−3 is the electron density, nr =
√
ϵr = 3.6 is the medium refractive index,

m∗ = 0.0665m0 is the effective mass (m0 being the mass of a free electron). What’s

more, the optical intensity is taken as I = 0.3 MW/cm2.

The magnitudes of the absorption coefficients and refractive index changes are

remarkably affected by the dipole matrix element for the transition between the first

two-lower lying energy states. In the light of this information, in Figure 5.5 we

give the variation of M21. We see that, the matrix element of the electric dipole

moment increases slightly with increasing laser-dressing parameter. However, for

range parameter of 7 nm this monotonic variation is more pronounced.
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Figure 5.5 The electric dipole moment of the transition between the first state and second state as a

function of α0 for different values of V0 and r0.

Moreover, in Figure 5.6 dependence of the energy difference (transition energy)

between the second and first states on α0 is depicted for different parameters. We can

see clearly that while α0 is increasing the energy difference is decreasing, especially

for smaller values of r0. On the other hand, for constant α0 and r0 the transition energy

enhances with increasing V0 whereas the transition energy reduces with increasing r0

at constant α0 and V0.

0 1 2 3 4
6

9

12

15

α0 (nm)

E
21

(m
eV

)

Vo = 200 meV Blue

Vo = 250 meV Green

Vo = 300 meV Red

ro = 7 nmSolid

ro = 10 nmDotted

ro = 15 nmDashed

Figure 5.6 The energy difference between the first and second states as a function of α0 for the different

values of V0 and r0.
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In order to exhibit the effect of potential geometry on the optical characteristics,

initially we investigate the optical absorption coefficients for different values of V0

and r0 without taking into account the ILF. Figure 5.7 shows the linear, third-order

nonlinear and total absorption coefficient as a function of incident photon energy for

different values of V0.
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Figure 5.7 Variations of the linear, third-order nonlinear and total AC as a function of the photon energy

for the different values of V0 for α0 = 0 nm, with r0 = 10 nm and I = 0.3 MW/cm2.

As seen from the figure, while the depth of the dot is increasing, the absorption

peak positions shift to higher energies. That’s due to the enhancement in the confining

potential which leads to the increment in the transition energy with increasing V0.

Besides, in the case of r0 = 7 nm, further shift in the peak positions toward higher

energies values compared with r0 = 10 nm is seen. Furthermore, in this situation,

the absorption peak amplitudes increase remarkably with increasing V0 whereas for

r0 = 10 nm slight variation in the peak magnitudes is visible.

In Figure 5.8, in order to see clearly the QD size effect on the optical properties,

the linear, third-order nonlinear and total optical AC are shown as a function of the

photon energy for different values of r0. We can obviously see that as the dot radius

increases, the peak positions move to the left side. Providing that V0 = 300 meV, the

peaks locations shift to higher energy values.
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Figure 5.8 Variations of the linear, nonlinear and total AC as a function of the photon energy for the

different values of r0, for α0 = 0 nm, with V0 = 250 meV and I = 0.3 MW/cm2.

Modification in the potential profile due to intense laser field causes changes on the

optical properties. To reveal the effects of ILF, in Figure 5.9 we illustrate the linear,

nonlinear and total AC in a Gaussian QD with r0 = 7 nm and α0 = 2 nm as a function

of the photon energy for three different potential depths.
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Figure 5.9 Variations of the linear, nonlinear and total AC as a function of the photon energy for the

different values of V0, with r0 = 7 nm, α0 = 2 nm and I = 0.3 MW/cm2.

It can be seen that the peak intensity increases just as the potential depth increase.

The physical origin is that the transition matrix element increases with increasing the

potential depth. If r0 is taken higher values, the absorption peak positions locate at

lower energy region with increased peak magnitude than shown in Figure 5.9.
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The effect of varying r0 by considering ILF defined with α0 = 4 nm, is plotted in

Figure 5.10 for the potential depth V0 = 300 meV. We set r0 to be 7, 10 and 15 nm,

respectively.
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Figure 5.10 Variations of the linear, nonlinear and total AC as a function of the photon energy for the

different values of r0. We set V0 = 300 meV, α0 = 4 nm and I = 0.3 MW/cm2.

From this figure, we can see obviously that the peak positions of AC shift to lower

photon energies with increasing r0. The physical origin is that, with decreasing r0 the

energy difference between the initial and final energy states is increasing. For smaller

V0 values than V0 = 300 meV, the peak positions sit at lower energy region. The reason

of this is that the difference between the transition energies decrease with decreasing

V0. We should note that there is nonmonotonic variation in the peak intensities of all

the AC.

In order to elucidate the influence of a circularly polarized, high-frequency ILF on

the optical characteristics, in Figure 5.11 we present the linear, third-order nonlinear

and total optical AC as a function of the photon energy h̄ω for three different laser-

dressing parameters. In the figure V0 = 200 meV and r0 = 15 nm are used.

It is readily seen that as the laser-dressing parameter increases, the resonant peak of

AC move to the lower energy region. This is because the energy difference between

ground and first excited energy states in QD decreases with increasing α0. If r0 is

taken 7 nm, the intensity of AC peaks reduces considerably. This is because of that
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Figure 5.11 Variations of the linear, third-order nonlinear and total AC as a function of the photon energy

for the different values of α0. We use V0 = 200 meV, r0 = 15 nm and I = 0.3 MW/cm2.

the transition matrix element decreases with decreasing r0. When we take V0 = 300

meV, the AC peak locations shift to higher energies (blue-shift) which is a result of the

enhanced energy difference for larger V0 values.

Demands on materials with low-threshold power for the usage in practical applications

imply the large refractive index changes with small incident light intensity (Yu et al.,

2011). When the incident optical intensity I is strong enough third-order nonlinear

contribution needs to be taken into account. In order to show better the influence of the

incident optical intensity I on the total AC, in Figure 5.12 we set r0 = 7 nm, V0 = 300

meV and α0 = 4 nm.

The total AC are plotted as a function of the incident photon energy for six different

values of I. The total AC, changes considerably with increasing optical intensity as

expected, especially near the resonance frequency. When the incident optical intensity

I exceeds a critical value, which demonstrates saturation in the nonlinear term, causes

a collapse at center of the total absorption peaks by splitting it into two peaks.
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Figure 5.12 Variations of the total AC as a function of the photon energy for the different values of I,

with r0 = 7 nm, V0 = 300 meV, α0 = 4 nm.

5.4 The Effects of Intense Laser Field on The Refractive Index Changes

The examination of refractive index changes is important in respect of optoelectronic

applications. Accordingly, we will observe the refractive index changes for different

parameters in this section.

In Figure 5.13, the linear, third-order nonlinear and total refractive index changes

are shown as a function of the incident photon energy for different values of potential

depth by using r0 = 10 nm and α0 = 0 nm. As seen in this figure, as the potential depth

increases, the magnitudes of the refractive index changes move to higher energies. The

main reason for this behavior is that the quantum confinement becomes stronger with

increasing potential depth. In addition, for smaller range parameter as r0 = 7 nm the

peaks locate at higher energy region with decreasing peak magnitudes.

In order to observe clearly the size-effect on optical properties, in Figure 5.14 we

have plotted the linear, third-order nonlinear and total RI changes as a function of

photon energy h̄ω for three different dot radii r0 = 7, 10 and 15 nm, respectively.
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Figure 5.13 The linear, nonlinear and total RI changes as a function of the photon energy for different

values of V0 in the absence of laser field. We set r0 = 10 nm and I = 0.3 MW/cm2.
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Figure 5.14 The linear, nonlinear and total RI changes as a function of the photon energy for the different

values of r0 in the absence of laser field. Used parameters are V0 = 250 meV and I = 0.3 MW/cm2.

As we can say from the figure, as the dot radius r0 increases the peak magnitudes

of RI changes increase. The physical origin is that when the dot radius decreases,

the QD size will decrease so that the overlapping between the wave functions of the

ground and first excited states increases. On the other hand, the wave functions will

overflow because of the finite barrier height. Thus, the competition between these two

factors will finally decide the peak value of the RI change. If we take V0 = 300 meV,

the RI peak positions shift to higher energy region. For, the difference between energy
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eigenvalues increases with increasing V0.

In order to comprehend the laser-induced changes in the refractive index, in

Figure 5.15 the variations of the linear, third-order nonlinear and total RI changes are

displayed for the different values of potential depth V0 with r0 = 7 nm considering the

laser-dressing parameter of α0 = 2 nm. The intensity of the incident electromagnetic

field is chosen to be I = 0.3 MW/cm2.
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Figure 5.15 Laser field-induced changes on the linear, nonlinear and total refractive index as a function

of the photon energy for the different values of V0 with r0 = 7 nm where the laser-dressing parameter is

chosen as α0 = 2 nm.

It is seen that, the increment in the potential depth shifts the peak positions to higher

frequencies. When the system is irradiated with ILF, the depth of the potential becomes

shallows which results in observation of red-shifted resonant peaks. For stronger

confinements (increasing V0), the difference between the energy levels increases which

eventually causes the anomalous regions at higher energies. If r0 is taken higher

values, the RI peak positions locate at lower energy region which is directly related

to decrement in the energy difference.

Figure 5.16 illustrates the linear, third-order nonlinear and total RI changes as a

function of the photon energy for varying values of the dot radius for V0 = 300 meV ,

α0 = 4 nm and I = 0.3 MW/cm2.
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Figure 5.16 Dependence of the linear, nonlinear and total RI changes on the range parameter r0.

Potential depth with V0 = 300 meV is chosen and laser-dressing parameter is set to be α0 = 4 nm.

We can see from the figure that the peaks of RI changes shift toward lower energies

with increasing r0. This red-shift is because of the fact that the energy difference

between the ground state and the first excited state in the QD decreases with increasing

dot radius. As long as V0 is taken lower values, due to the decrement in the difference

between energy eigenvalues, the peak location moves to lower energy values.

So as to show better the influence of the laser effect on the refractive index changes,

in Figure 5.17, the linear, third-order nonlinear and total refractive index changes

are plotted as a function of incident photon energy for three different laser-dressing

parameters. In this figure, the barrier height and the dot radii are set to be V0 = 200

meV and r0 = 15 nm, respectively.

It is obvious that, as the strength of laser field increases, refractive index changes

shift towards lower energies. This happens because of the decrease in the energy

differences between the first and second bound-state energy levels with increasing α0.

For lower r0 or higher V0, the RI peak positions move to higher energy region. This

reason is that the difference between the energy levels increase with reducing r0 or

ascending V0.
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Figure 5.17 The effect of laser-dressing parameter on the linear, third-order nonlinear and total RI

changes as a function of the photon energy. Quantum dot with V0 = 200 meV and r0 = 15 nm is chosen.

Finally, in Figure 5.18, in order to see clearly the influence of the incident optical

intensity I on the total optical refractive index change, we set r0 = 7 nm, V0 = 300 meV

and α0 = 4 nm for six different values of I.
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Figure 5.18 The total RI changes as a function of the photon energy for the different values of I, with

r0 = 7 nm, V0 = 300 meV, α0 = 4 nm.

In this figure, we see that as the intensity of the optical field increases, the peak

heights of the total RI changes shorten and anomalous region spreads out. This

situation can be attributed to the enhancing third-order nonlinear effects.
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CHAPTER SIX

CONCLUSION

The propose of this thesis is to investigate theoretically the effects of intense laser

field on the nonlinear optical properties of two-dimensional quantum dot system. The

system described by the Gaussian confinement potential is exposed to a high-frequency

intense laser field with circular polarization. Within the framework of non-perturbative

approach and by means of Kramers-Henneberger unitary translational transformation

and Fourier-Floquet serial expansion, the motion of an electron is described with time-

independent Schrödinger equation including laser-dressed potential.

Electronic properties of the system have been found by the numerical solution

of the Schrödinger equation by using finite element method based on Galerkin’s

approach. Nonlinear optical properties of the system have been extracted from the

compact-density matrix approach and iterative procedure. Energy eigenvalues and

corresponding eigenfunctions as well as the linear and third-order nonlinear optical

absorption coefficients and refractive index changes are investigated for various values

of the structure parameters and laser field strengths.

Numerical results show that, in the presence of intense laser field the confinement

potential is strongly affected by the structure parameters V0 (depth of the potential)

and r0 (range parameter). With increasing values of laser-dressing parameter, the

width of the confinement potential expands and furthermore, the depth of potential

decreases. These modifications in confinement potential cause the changes in the

energy levels and corresponding eigenfunctions. We demonstrated that optical

absorption coefficients and refractive index changes are blue-shifted (red-shifted) for

increasing value of V0 (r0). Further shift in the resonant peak toward the lower

energy region is observed when the laser field in turned on. These variations are more

pronounced for smaller range parameters. Moreover, increment in the incident optical

intensity results in the strengthening of the nonlinear contributions which leads to a

bleaching in the resonant peaks.
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Consequently, our results demonstrate that the nonlinear optical properties of two-

dimensional Gaussian quantum dot are influenced by the strength of the intense laser

field and structure parameters. These findings may make a contribution for utilization

of the quantum-size effect in optoelectronic devices and can assist in designing of

systems with controllable optical transitions.
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