A TOOL FOR SUPPORTING TEAMWORK IN
EARLY SOFTWARE DESIGN MEETINGS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfilment of the Requirements for

the Degree of Master of Science in Computer Engineering, Computer Program

1058

by

Gamze SARMASIK

July ,1999
iZMIR

v%nﬁ 353&%3‘1“\“ T :r"
K&;@st B

M.Sc. THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as thesis for the degree of Master of Science.

Assoc. Prof. Dr. Alp KUT

(Advisor)

(Committee Member)

[

Py e

(Committee Member)

Approved by the
Graduate School of Natural and Applied Sciences

A0

Prof. Dr. Cahit HERVACI

Director

[V}

ACKNOWLEDGMENTS

We have always produced profitable studies in a short time within the enjoyable team
atmosphere that has been created by my lecturers Elif Demirors and Onur Demirors who
provided us with the every necessary resources and facilities. I would like to express my
gratitude to them for the encouragement and support, their friendly and motivated they gave
in order to discover our abilities and force our limits. With their studies and achievements

they left on us unforgettable traces which we will follow all through our lives.

1 would like to thank my advisor Alp Kut for his help. 1 also would like to thank my thesis

committee members Oguz Dikenelli and Adil Alpkogak.

My special thanks go to Ali Yildiz in our team for his help and cooperation throughout

At least but not least, I thank my family for their patience and support, which enabled my

master program to reach to an end.

ABSTRACT

Software development is a complex activity that requires a group of individuals working
effectively as a team. Studies have shown that the performance of effective teams can exceed
that of individuals acting independently. However achieving effectiveness is a challenging
task that needs the investment and commitment. In the second chapter of this study, we
investigate the characteristics that differentiate effective teams from all others. To observe
these characteristics within real software teams, we have chosen Microsoft company as a case

study and analyzed Microsoft teams with respect to the characteristics that we define.

In the third chapter of this thesis, we also investigated why some teams fail to perform
effectively. We have observed that conflicts among team members’ expectations, undefined
roles and commitments are the primary factors that reduce effectiveness of teams. Several
approaches have been suggested to overcome these difficulties and building effective teams.

These approaches, called team design methodologies, generally include an information

o+
(D
[
(o
o)
-+
o
D
-
[
[+
n
[+
n
-
-
D
.
=
[
n
o
=)

set of guidelines on how to apply this

information structure.

Based on the activities suggested by different team design methodologies as well as on
our observations on software teams we have investigated the various mechanisms that would
support effective team functioning. All of the tools as CASE tools, project management tools,
workflow management tools provide assistance to different aspects of software development
when used appropriately will help a team to define its own information structure and then
operate with respect to this structure. However, a major activity of software teams, design
meetings, is not addressed by any of these tools. During design meetings team members
discuss the requirements, project plan and develop solutions. In order to support building of a
team memory and effective communication the decisions made during these sessions should
be recorded and data should be passed to appropriate tools within the development cycle. In
this thesis, we introduce a software support tool we developed for a team of software program
developers so that can enter information from each workshop meeting and develop early

project design.

OZET

Yazihm gelistirmek, bir grup bireyin etkin bir takim olarak ¢alismasini gerektiren
karmagsik bir aktivitedir. Arastirmalar, etkin takim performansina bireylerin bagimsiz olarak
calismastyla ulasilabilecegint gostermistir. Bununla beraber, etkinligi saglamak, vatirimi ve
kendini adamay: gerektiren, emek isteyen bir istir. Biz, bu tezin ikinci bélimiinde, etkin
takimlan diger tim takimlardan ayiran ozellikleri arastirdik. Bu ozellikleri gergek yazilim
takimlarinda gozlemlemek i¢in, Microsoft sirketini uygulama galismasi olarak aldik ve

Microsoft takimlarini bizim tanimladigimiz 6zelliliklere gore analiz ettik.

Bu calismanin ii¢iincii bolumiinde, bazi takimlarin etkin ¢aligmalarina ragmen neden
basarisiz olduklarini arastirdik. Uyeler arast beklentilerdeki ¢atismalarin, belirlenmemis
rollerin ve vaatlerin, takimin etkinligini disiren birincil etken oldugunu gozlemledik. Bu
zorluklart asmak ve etkin takimlar kurmak i¢in bir kag yaklasim onerilmektedir. Takim dizayn
yontemleri diye adlandinlan bu yaklagimlar genellikle takimlarca uyarlanabilen bilgiyi ve

ayni zamanda bu bilginin nasil uygulanacagi konusundaki 6nerileri igerirler.

Farkli takim dizayn yontemlerinin Onerdikleri aktiviteleri ve yazilim takimlan
izerindeki gozlemlerimizi temel alan, etkin takim fonksiyonlarini destekleyecek c¢esitli
mekanizmalart arastirdik. Yazihm gelistirmenin farkl alanlarini destekleyen, biitin araglar
CASE araglan, proje yonetim araglari, is akigt yonetim araglan yerinde kullamidiginda,
takimin kendi bilgi yapisini tanimlamasinit ve daha sonra bu yapiya uygun ¢alismasini saglar.
Ancak yazilim talomlarinmm ana aktivitesi olan dizavn toplantiart bu araglarm higbirt
tarafindan desteklenmez. Dizayn toplantilan sirasinda takim elemanlari, gereksinimleri, proje
planint tartisirlar ve ¢ozimler gelistirirler. Takim belleginin kurulmasi ve etkin iletisimin
desteklenmesi i¢in bu asamalarda alinan kararlar kaydedilmeli ve veriler uygun araglarla
gelisim dongtisiine aktariimalidir. Biz bu tezde, yazilim takimlarinin, proje toplantilarindaki
bilgileri girebilmeleri ve 6n dizayn yapabilmeleri igin gelistirdigimiz yazilim destek aracini

tamttik.

CONTENTS

oM NS .o,
List of Tables

List of Figures

Chapter One
INTRODUCTION

1.1 Effective Team and Their Characteristics..................cccoccoeioiennn.
1.2 The Importance of Design on Software Development................................

1.3 Team Design Methods...........ooo i

1.4 Early Design Meetings and A Suggested Support Tool

Chapter Two
EFFECTIVE TEAMS AND THEIR CHARACTERISTICS

2.1 Group Dynamics. . ..o
2.1.1 Software Groups as Group Dynamics......................

2.1.2 Factors Affecting Group Performance ...

Page

10

11
12
12

15
15
16

Page

2.2 Effective Team and Their Characteristics........................cccooveeioieii . 22
221 SIZ€ . 23
222 SIUCHUT® ... e e 23
2.2.3 COMPOSIION... ... oo oL 24

2 2 A PrOCESS. ..o 24
2.3 Building Effective Teams ... 25
2.4 A Case Study: Microsoft Software Development Teams 25
2 L SIZE.o oo 26
2042 SHUCKUT®. ... e 26
2.4.3 COmMPOSIION.ooio o e 27
24 4 PTOCESS.ttt et e e e, 29
2.4.5 Evaluation of the Microsoft Teams Characteristics 30

2.5 The Role of Communication Media on Teamwork...............ccovvviiiiiii . 32

Chapter Three
METHODOLOGIES SUPPORTING TEAMWORK

(U8
—t

The Difficulties of Software Design........................... ... 36

L
[y

The Functions of Early Design Meetings in a Teamwork............................ 37

L2
(V9]

Team Design Methods... 38
3.5.1 Joint Application Design (JAD) ..o 38
3.3.2 Rapid Application Development (RAD) 44
3.3 .3 Participatory Design (PD) ... 45
3.3.3.1 Comparison between JAD and PD....................................... 47
334 Team Design (TD) A48
3.3.4.1 Team Design Phases: Planning and Initiating................................ 51
3.3.4.2 Team Design Preworkshop Planning and Initiating Phase Methods 53

3.3.4.3 Team Design FOrmats...............ocooiivi i, 56

4.1
42
4.3

44
4.5
4.6
4.7

Chapter Four
A TOOL FOR EARLY SOFTWARE DESIGN MEETINGS (EDT)

Early Design Meetings............ocoooii e e,
The Issues of DeSIgN ...
Methods in Early Design Meetings.............coooiiiiiiiiiiiii e

4.3 1 BrainstormIng. oo e e
A.3.2 SCOPIG .. oo o oo e e,
4.3.3 Context DIagram ...t e
The positive effects of the tool on software design complexity........................
Sample Scenario on Early Design Meetings.............ccooovoiiiiiiiieiiii i,
Early Design Tool (EDT) ..ot

Suggestions for Further Research on the Tool EDT ...

CONCLUSION . e e e e,

APPENDICES

A. Early Design Tool (EDT) Class Diagram....................ooo
B. Installing the EDT
C. EDT Program Code..... ...

Page

59
60
61
61

62
63
64
65
71
76

71

79

LIST OF TABLES

Page
Table 2.1. Characteristics of Effective Teams... 24
Table 2.2. Characteristics of Microsoft Teams. U UUDUUURIC §
Table 3.1 Model Team Design Format ... 49
Table 3.2 Planning 51
Table 3.3 Initiating. i 52
Table 3.4 Team Design Format ... 56
Table 4.1 Team Design Formato 59
Table 4.2 Requirement Analysis ..., 60
Table 4.3 Requirement Gathering 61

Table 4.4 Requirement Analysis 64

10

LIST OF FIGURES

Page
Figure 2.1 Communication Structures Between Individuals.............................. 17
Figure 2.2 Deciston-making Structures....................... ... 18
Figure 2.3 Communication SEIUCKUTES. ..~ oo 19
Figure 2.4 Messages sent and received across media types........................c....... 33
Figure 2.5 Duration per contact by mediatype....................cooo 34
Figure 3.1 JAD Phases. 39
Figure 3.2 JAD Phase 1............... R . 40
Figure 3.3 JAD Phase 2... 41
Figure 3.4 JAD Phase 3. .. 42
Figure 3.5 JAD Phase 4. . . 43
Figure 3.6 JAD Phase 5. 44
Figure 3.7 Techniques Applicable in Participatory Design............................... 46
Figure 3.8 Sample workshop agenda........................ 55
Figure 4.1 Brainstorming. ...ttt e 61
Flgure 4.2 SCOPING. 62
Figure 4.3 Context Diagram.. 63
Figure 4.4 Relationship among the Requirements Gathering Activities................ 64
Figure 4.5 Brainstorming. 67
Figure 4.6 Data Transfer from Brainstorming to Scoping Phase......................... 68
Figure 4.7 Data Transfer from Scoping to Context Diagram.............................. 69

Figure 4.8 Data Transfer among Brainstorming, Scoping and Context Diagram...... 70

TC YOKSEKOCRETIM KURU L4
DOKTMANTASYOR MERK¥ZE

11

CHAPTER ONE
INTRODUCTION

1.1 Effective Teams and Their Characteristics

Developing large-scale software systems requires individuals working together with
diverse backgrounds and expertise. The outcome of software projects depends not only on
technical aspects, but also on human factors and team dynamics (Curtis, 1990). Successful
projects are those where team members work effectively with each other. In order to achieve
effective team functioning, an understanding of the factors attecting team performance is
needed. Suitable physical and social environments are also required so that individuals can
work together for a common goal. Investment in teamwork brings major benefits since teams
have the potential to outperform individuals acting alone particularly in complex problem

domains such as software development (Katzenbach and Smith, 1993).

Studies have shown that the performance of effective teams can exceed that of individuals
acting independently. In the second chapter of this thesis, we investigate the characteristics
that differentiate effective teams from all others. We first define what it means for a team to
be effective, and provide a set of characteristics. Then we concentrate on software teams, and
summarise the results of several investigations in software field Finally, we analyse

Microsoft with respect to how effective its teams are working.

12

1.2 The Importance of Design on Software Development

Working as a team means sharing the information. Team members need to discuss the
project, write down these ideas and keep up with each other’s improvements. Through an
effective information exchange each member’s individual mental model of the product will be
unified with others forming a collective team memory. In order to have an effective
information exchange, the “information structure” that defines the team structure, its
communication mechanisms, and its software development processes should be explicitly

defined.

We have observed that conflicts among team members’ expectations, undefined roles and
commitments are the primary factors that reduce effectiveness of teams. A good design also
prevents the misunderstanding among team members. Several approaches which are called
team design methods have been suggested to overcome these difficulties and building

effective teams.

1.3 Team Design Methods

Team design methods manage team activities indetail such as software design and group
planning which includes the information structure. These methods help to organise team
workshops, processes and offer a comprehensive set of methods from which teams can choose
depending on their needs. Existing models are Joint Application Design (JAD), Rapid

Application Development (RAD), Participatory Design (PD) and Team Design (TD).

Joint Application Design (JAD): JAD is the most common design process in the North
American business culture since 1977. JAD approach presents the basic plan and development

1ssues to entire team in a project.

Rapid Application Development (RAD): When a project requires a truly rapid design and
development, you may find it useful to plan a single extended JAD workshop which is called
RAD. For a smaller RAD project, one workshop of two or three days may cover the needs for

all phases of the project.

Participatory Design (PD): PD, is a model for user context which is easily understood by
organisations. The responsibility for the product is shared by the users and designers. It has

been used in Europe for over a decade, only more recently been used in North America.

Team Design (TD): Team Design gives organisations a framework from which to build

their own custom design practices. TD includes JAD and PD component.
1.4 Early Design Meetings and A Suggested Support Tool

Early Design Meetings are very delicate process as the team starts to form, members get to
know each other, discuss the project plan and requirements, suggest alternative design and
develop solutions. Based on the activities suggested by different team design methodologies
as well as on our observations on software teams we have investigated the various

mechanisms that would support effective team functioning.

In order to support building of a team memory and effective communication the decisions
made during Early Design Meeting sessions should be recorded and data should be passed to
appropriate tools within the development cyele. In the fourth chapter. we analyse the
requirements of a support tool for software design meetings and provide an architecture for
such a tool. Then we introduce the tool we developed for supporting teamwork in Early

Software Design Meetings.

14

CHAPTER TWO
THE ROLE OF TEAMWORK

IN SOFTWARE DEVELOPMENT

Large scale software development is a complex problem-solving activity that requires
coordination and cooperation of several individuals with diverse backgrounds. Success of a
project depends not only on technical aspects but also on how effective these individuals
function as a team. Effective teams are observed to outperform individual members and
accomplish their goals to the satisfaction of all involved. However, forming effective teams

and providing the necessary conditions for their functioning is a difficult task that needs to be

Investigation of teams and the factors affecting their performance has been a major
research area in social sciences for more than three decades (Cartwright & Zander 1960, Ross
1989, Shaw 1976). These studies, classified as "group dynamics”, have provided major
feedback for teams and for organisations within which teams function. A common
observation in group dynamics is that there is no single factor that determines the performance
of teams (Hackman, 1990). Performance depends on a complex set of factors that are

interdependent and need to be considered together.

In this chapter, we identify the factors influencing the performance of software teams.
With this goal as a starting point, we investigated the results of group dynamics research as
well as studies conducted on software teams. Our investigation uncovered a set of
characteristics. which differentiate effective teams from others. We then performed a study on
Microsoft Company and analysed its software development teams with respect to these

characteristics.

2.1 Group Dynamics

Human behaviour plays a significant role in teamwork thus becomes importar* in software
development. Especially today, there are only a few software engineers who work alone
because software systems are too complex to be built alone. Most of the programmers work in
teams. Therefore the productivity is related to the effectiveness of the team environment. That
is why building effective, harmonious and well balanced teams is the target of today’s

software organisations.

Most managers are aware that they have more people related problems than technical
problems. If they have got little management experience and no meaningful practice they
spend most of their time thinking technology and no time thinking about the people side of the
problem. This is because the human side of the work is more difficult (DeMarco & Lister,

1987).

As the first and the most crucial condition for successful software development by a team
is peopleware, we have investigated group dynamics and the factors that affect the

performance of a group.
2.1.1 Software Groups as Group Dynamics

In group dynamics, groups are classified depending on their goals such as problem solving

groups, interactive groups, educative groups and self evaluating groups.

Groups that have the goal of deveioping software systems are ciassified as “probiem
solving groups” which are generally unnatural since their members are chosen by someone
from outside such as a company manager. “Problem solving groups™ come together to solve a
specific problem. In software world, the problem they are expected to solve is to define and

implement software components that will satisfy user requirements.

16

Bales and Strodtbeck (1950) list the development steps of problem solving groups as
follows:
1. Orientation step: Group members are oriented towards the problem domain. This can

also be called exploratory step.

'l\)

Evaluation step: Group members try to evaluate the whole problem. They collect

information and find alternative solutions.

o

Control step: In the last step group members organise environmental conditions related
to the problem and distribute the responsibilities among themselves. They realise their

missions.

2.1.2 Factors Affecting Group Performance

There are a number of factors that affect group productivity and quality of group work.
Among those factors we can list size, structure, interpersonal skills, leadership, consensus,
and motivation. Collaboration and coordination improve group success. It is not easy to
establish a team with the optimum blend of these factors and achieve high performance

because these are all multi dimensional properties and relationships among members are not

ttention of organisations and guide

n

stable. We hope the factors we mention here draw the

them to achieve high performance and improve software development.

Number of members:

The group size is of primary importance to team success. There have been a lot of
research on the size a group should be (Kerr 1986, Latane 1981, Harkins & Szymanskil987,
Katzenbach & Smith 1993). Teams have been studied in two categories as big or small
according to the number of members and studies also tried to determine how group size
atfects team performance. The results showed that small groups are more productive than big

groups. The reasons are as follows:

¢ The communication among individuals is better because they can easily get together.
» Different viewpoints are less likely to cause differentiation and individuals are less

likely to fall of.

17

On the other hand, big groups have following disadvantages:

¢ Coordination of the regular attendance of all members to the meetings and activities is
difficult.

e Individuals get less satisfaction from group membership.

¢ Members are less similar to each other and show less attention to other members’
needs and requirements, which leads to lack of cooperation.

o The group breaks into smaller groups.

As a result productivity decreases because of these motivation problems in big groups.

Team Structure:

Team structure reflects how individual members of a team can be located in relation to
other members according to some criterion of placement (Cartwright & Zander, 1960). The

relative positions of group members are important in understanding the group dynamics.

Different criteria can be used to describe team structure such as flow of information
(communication), flow of work, and flow of authority. These criteria provide relationships

between individuals or positions within a team. Examples are given in Figure 2.1.

Boss Tom
\ \l/
Secretary @ Susan
structure of structure of
authority between communication hetween
positions individuals

Figure 2.1 Communication Structures between Individuals

A structure can be imposed on a team by the organisation the team is working within, or it
can evolve during the joint teamwork. In either case, it can be expressed formally in terms of
written rules or it can be informal. Whether formally defined or not, team members are aware

of the structure and they feel a need to conform.

18

In this section, we focus on two criteria that define team structure, flow of decision-

making, and communication patterns between the team members (Demirérs, 1995, p:31).

Decision-making structure: Teams can be classified into two groups with respect to the

decision-making structure they adopt or are imposed on :

+ Centralised team: decision-making is performed by a single individual who is also
responsible from the overall performance and the outcome.

+ Decentralised team: decision-making is distributed among members. A consensus-
based approach is used for teamwork. Performance and product become the joint

responsibility of the team. Figure 2.2 depicts these two types of teams.

leader

N\ FT T 7T)
A DD e OO OO O

Centralized team Decentralized team

—>

Figure 2.2 Decision-making Structures

If the problem is clear and the roles of the members are defined, centralised team structure
can be appropriate for such a team. On the other hand, if the problem domain is complicated,

goals and approaches are not clear, decentralised team structure can be ideal.

Communication structure: Communication structure of a team reflects the physical
arrangement of communication channels among members such as who can communicate with
whom, whether the communication is direct or via another member. This structure may or

may not be the same with the decision-making structure discussed above.

19

Different patterns of communication can be adapted or imposed on the team some of

which are shown in Figure 2.3 (Shaw, 1976).

&y X
o O
comeen chain wheel

Figure 2.3 Communication structures (lines represent communication channels)

Relative effectiveness of a particular communication structure depends on complexity of
the task, goals of the team, and the environment (Ross, 1989). Shaw (1976) points out that
decentralised communication network (such as common) is most efficient when the task is
complex. He also mentions that in decentralised structures the morale is higher than

centralised structures.

Skills of the members:

When building a team, the individuals’ skills should be a key criterion in their
involvement to the program. This is especially true if you want the group to reach to the goal

in a fast and effective way.

The majority of research related to individual skills showed that highly skilled people had
higher performance (Tziner & Eden, 1985). Shaw (1976) also observed that members who
have special skills relative to the team task are usually more active, contribute more to the
team work, and have more influence on team decision. For example, Curtis (1990) observed
that having a member with domain knowledge within the team contributed to the success
considerably. Hiring better people is the best way to improve the productivity and quality of

systems in an organisation.

20
Consensus:

Consensus among the members of a team is a crucial factor affecting the group
performance. Although some studies (Patterson, 1986) claim that group composition
(members having the same occupation) is not a dominant factor during the decision making
process, effective groups are generally composed of members who resemble each other
because people that have similar characteristics find each other more attractive and closer
(Feld, 1982). When group members have similar ideas, they easily reach a consensus on a
subject and get on well each other (Stasser & his friends 1989). Consensus in group dynamics
is studied with respect to three dimensions as cultural, social and sex. Cultural, social and sex

differences affect relationships of the group members in the following ways:

Culture: Cultural differences among individuals determine their relationships. For
example, people immigrated from villages to cities or people living abroad may have different
viewpoints.

Social status: Status means income, education, occupation etc. The more the status of
people in a society resembles each other, the more they get on well each other.

Sex: Sex is also another factor determining the relationships among members but this type
of evaluation 1s still uncertain and complex so it could be discarded. According to the
investigations, men are interested in power, status and income whereas women are more
sincere, cooperative, supporting and natural (Porter & his friends1985, Patterson & Schaffer

1977).
Leadership:

Leadership function is the universal dimension of groups. It is the leader who organises,

directs and motivates a group. The basic responsibilities of a leader are:

e Determining the aims of the group and keeping the team morale high.
e Establishing the coordination, dividing tasks, planing the mission and creating

harmony among members (Aktas, 1997, p74).

21

Leader’s role changes according to the structure of the team. In a centralised team the
leader plays a very important role in group performance. In a decentralised team, however,
leadership responsibilities are shared by team members. In order to be successful and exist for
a long time all the members should have a leaderlike approach. Besides, communication
structure should be democratic and all members should be encouraged to participate in
teamwork. As a conclusion, teams where responsibilities are shared not only by a leader but

also by other members are more successful and productive.

Goals and Approaches:

The goal of a group can be defined as the final result that the members aim to reach. A
group may have only one goal or more. The heart of the matter is the clear and complete
definition of the goals. This simplifies the cooperation and coordination among members and

improves the feelings of satisfaction by combining the members of the group.

In order to have an effective group work, members should commit themselves to a
he team needs to do to
achieve its goals. The common purpose is formed by the team as a collaborative effort that
ensures the awareness of each member. Common approach describes how the team is going to
work together towards a common purpose. A team defines its own approach considering both

administrative and social aspects of its work.

Deciding together on how, when and by whom the activities related to the goals and
approaches will be given is important because this kind of interaction among members
increases the group performance (Aktas, 1997). Besides, when the intention for success
increases among group members, they have a tendency to choose a task with medium
difficulty, on the other hand, groups aim extremely hard goals when they have a risk to fail

(Trape, 1975).

Motivation and Cooperation:

It is striking that motivation of the group members directly affects team performance.
Vhen we say motivation, we mean the mutual consensus and cooperation of the members, the
~illingness to produce task together, the existence of a team spirit. Team members should act

1s “One for all, all for one”.

In order to improve individual behaviour, regular meetings are organised. Members
outline their goals and approaches during those meetings. In addition, social meetings like
parties, dinners help the members get closer. Team members feel the need to conform to the
standards of the team in order to coordinate and communicate with each other. After some
time, members learn about their strong and weak points and compensate each other when

necessary. This brings commitment to each other and work.

Cooperation gets easier when the group members believe that group resources like status,
reward are divided fairly. When the cooperation level of a group is high this protects the
group against the outside interference and makes the group more powerful. However the
presence of cooperation does not mean that disagreement never occurs in a group.
Disagreements and differences within a group are an inevitable and dynamic part of it. These

conflicts when solved positively ensure the survival of the team.

2.2 Effective Teams and Their Characteristics

Wa Aaflicn tanmma
We define teams th

-
a
£
3

embers and accomplish their goals to the
satisfaction of all involved as effective teams. In order to achieve high productivity and
quality in complex problem domains such as software, teams should be functioning

effectively (Curtis, 1990).

Effective teams possess a number of characteristics that distinguish them and increase
thetr performance levels above the teams without those properties. These characteristics can
be investigated under four headings: size, structure, composition, and process. Table 1
summarises the characteristics that are identified as essential for effective functioning
(Cartwright & Zander 1960, Demirérs 1995, Hackman, 1990, Katzenbach & Smith 1993,
Shaw 1976).

2.2.1 Size

Size of a team has been observed to have an impact on the performance (Shaw, 1976). In
general small teams are believed to function better since coordination becomes a problem as
the team gets larger. As a result, small teams are more effzctive and it is believed that team
size should be kept under certain limits, usually between 2 to 12 people (Katzenbach & Smith,
1993). “Workshops with 12 to 15 people are generally manageable, but with more than 20
participants the venue becomes more appropriate for facilitated meeting rather than a

productive design session” (Jones, 1998, p.160).

2.2.2 Structure

Team structure reflects how individual members of a team can be located in relation to
other members according to some criterion such as flow of information (communication
structure), and flow of authority (decision making structure) (Cartwright & Zander, 1960).
Relative effectiveness of a particular structure depends on complexity of the task, goals of the
team and the environment. For example, centralised decision-making structure where

decision-making is performed by a single individual works well when that individual is an

leadership is shared among members, and there is no single individual who is responsible for
everything (Katzenbach & Smith, 1993). Even if a leader exists, the decision-making within
the team is democratic, and every member has a chance to raise his’her voice. On the other
hand, the ease and efficiency of communication structure has shown to be a critical factor on
the effective functioning of the team (Ross 1989, Shaw 1976). A communication structure
where every member can communicate directly with the other is the one generally adapted by

effective teams.

24

2.2.3 Composition

Team composition reflects the behavioral factors affecting the performance of individual
team members such as skills, experience, background, and problem-solving strategy. It has
been observed that members who have special skills relative to the team task are usually more
active, contribute more to the teamwork, and have more influence on team decisions (Shaw,
1976). As a result, teams that consist of such skilled members have higher performance
records (Tziner & Eden, 1985). Katzenbach and Smith (1993) argue that in addition to
technical and functional expertise, teams also require problem solving, decision making, and
interpersonal skills for effective functioning. Members of effective teams have been observed
to be highly motivated and committed both to their work and to the team. “One for all, all for
one” feeling exists among team members. As a result, members enjoy working together and

doing their job (Katzenbach & Smith, 1993).

2.2.4 Process

Team process reflects the way team task is accomplished. It includes team approach, set of
activities to be performed, and evaluation criteria for success. Effective teams form a set of
common goals that define what the team is going to achieve depending on the environment
and on the team task. Such teams also define a common approach to attack these goals.
Definition of the process by the team members encourages collaboration, increase adaptability
within the team, and ensures awareness of each member (Ellis, Gibbs & Rein, 1991).

Effective teams all work towards achieving high quality and meeting their customer’s needs.

Table 2.1, Characteristics of Effective Teams
SIZE Small

STRUCTURE Democratic decision-making

Direct communication among all members

COMPOSITION Highly skilled
Highly motivated
Committed to work and team

Enjoyment

PROCESS Common goals and approach

High quality

2.3 Building Effective Teams

Different approaches have been suggested for building effective teams ranging from
selecting the best people to retreating to a mountain resort with all members and their families
(DeMarco & Lister, 1987). Katzenbach and Smith (1993) provide a list of practices that may
lead to an effective team. The main idea behind their suggestions is that performance should

be the key focus for effective team formation. These practices are:

e Select the team members based on skills and skill potential, not personalities.
e Pay particular attention to first meetings and actions.

¢ Set some clear rules of behavior.

o Set and seize upon a few immediate performance-oriented tasks and goals.

¢ Challenge the group regularly with fresh facts and information.

» Spend lots of time together, especially at the beginning.

e Exploit the power of positive feedback, recognition, and reward.

Although different practices can be followed to build effective teams, generally a
considerable amount of time is needed to actually build one. Also it should be noted out that,
even if you follow all the suggestions on creating the preferable conditions, and facilitating
teamwork, achieving effectiveness depends on the individuals forming the team. Managers
and organizations, after establishing an environment to work in, need to let the teams find
their own style. There is always a chance of a team failing to work and break down before

AAAAAA Pialaton o e 1
acCompiisning its goat.

2.4 A Case Study: Microsoft Software Development Teams

Nowadays the name “Microsoft” is widely spoken among people. Nearly everyone who
uses a computer has a Microsoft product. Even those who don’t have a computer or anything
to do with computers heard a lot about Microsoft especially its business success. In this
section, we analyze whether the software development teams within Microsoft Company have
the effective team characteristics given in the previous section (Demirérs E., Demirérs O., &

Sarmasik, 1997).

26

2.4.1. Size

Although Microsoft is a big company with nearly 20000 employees, it still keeps its
structure that consists of small teams. Microsoft strategy is “to organize small teams of
overlapping functicral specialists”. The evidence of Microsoft’s small team structure can be
found in the following paragraph:

“Within the product units, program managers, developers, and testers work side by side in
small] ‘feature teams.” These typically consist of one program manager (who generally works

on more than one feature) and three to eight developers...”(Cusumano & Selby, 1995, p.74).

2.4.2 Structure

Microsoft culture has evolved around the leadership of Bill Gates as observed by
Yourdon:
“My sense, in my contacts with Microsoft developers, is that this is the quintessential

heroic programmer culture, with Bill as the obvious spiritual leader” (Yourdon, 1996, p.271).

The leader works with a group of managers who are senior technical people and many of
them are veterans working for Microsoft for long years. They know the technology and how
to make money with this knowledge. This top management team runs key product areas and
new initiatives, and gives its decisions independently:

“...the centurions go off on their own and report back only occasionally. But they roam
within certain limits, and the leader can rest assured that these centurions-and their troops-
are fighiing for the good of the whole organizaiion.. Microsofi clearly has a leader, a top
management team, and an army of employees who deeply understand both the technology and

the business of PC software. They also know how to win.” (Cusumano & Selby, 1995,p.22)

Apart from this top level management, the company has, in general, two more levels of
management for software development. Each product unit has a manager, and within product
units there exist small teams leaded by program managers. However this hierarchical structure
of the company does not reflect the flow of authority. For example, program managers have
little formal authority over the groups that will get things done. The following sentence

defines the role of program managers within teams clearly:

27

“The program manager is a leader; facilitator; and coordinator; but is not the boss.”

(Cusumano & Selby, 1995, p.77)

Also in order to get everyone involved and foster creativity, software teams members are
encouraged to raise their voice and state their ideas frankly whether positive or negative. This

practice is called “push-back™ and empowers the employees to change things within projects.

The communication structure in Microsoft is decentralized, and fully connected since
nearly everyone can communicate with each other. In general employees feel that the
management practices an open door policy and their ideas are seriously considered
(Cusumano & Selby, 1995). Also in order to increase communication among team members
nearly all new product development is done on one site. As Gates states “Our all being with
very minor exception, here on one site, so that whatever interdependencies exist you can go

see that person face to face...” (Cusumano & Selby, 1995, p.26).

2.4.3. Composition

One of the basic strategies of Microsoft Company is to hire smart people with qualities
such as ambition, high IQ, expertise on a technical subject and business knowledge. Since the
company gets 10000 unsolicited resumes a month it has a chance to pick the best. (Yourdon,
1996). In total, Microsoft hires between 2 and 3 percent of the people it interviews. Their
famous question in their interviews for new hires is: “volume of water following down the
Mississippi River and the number of gas stations in the United States” (Cusumano & Selby,
1995).
can also see the skill of Microsoft team members in the explanation of Steve Ballmer:

“We are lucky to be a successful as we have been; the great people we have working for
us has been the reason we 've achieved this success. As we continue to develop new products,
research new technologies and make our existing products faster, smarter and more user
Jriendly, we need to hire a lot more developers. We're always thinking about new ways 1o
attract the best in the industry 1o us. The flyer we mailed to you is just one of the things we 're
doing to let people in the industry know that we are looking for top-notch technical people.”

(Yourdon, 1996, p.266)

28

Software developers in Microsoft are generally workaholics, who follow traditional
Microsoft way: “Wake up, go to work, do sum work. ‘Oh, I'm hungry.” Go down and eat
some breakfast. Do some work. ‘Oh, I’'m hungry.” Eat some lunch. Work until you drop.
Drive home. Sleep.” (Cusumano & Selby, 1995, p.93) The developers who remain in the
company are ambitious, and are willing to work long hours for long-term financial benefits.
The work environment provides a continual series of challenges motivating these people to do

their best.

Development team members in general feel good about working as a team. They believe
that everyone does his/her share and also help each other during peak workload periods
(Cusumano & Selby, 1995). However, the commitment of software developers to their teams
in Microsoft can be best exemplified with their “mentor” program for new employees. Each
new comer is assigned to an experienced developer within the project team, the “mentor”,
who is responsible for monitoring everything new employee does including reading every line
of code he/she writes. The relationship between the mentor and the new comer creates an

atmosphere of friendship and sincerity, they achieve personnel commitment to each other.

The most important practice of Microsoft managers that ensures commitment of team
members is to transfer the responsibility of scheduling and work management to individual
developers and testers. In other words, software developers make their own schedule given
the fixed delivery deadlines, and resources. As Cusumano and Selby points out “This ensures

that everyone takes individual responsibility in addition to acting as a part of the team.”

a
{
¢
{
¥
¢
b
¢
{
{
)
I
1

I

Although they work long hours under stress, software developers in Microsoft enjoy their
work, which they consider interesting, and varied. Most of them believe that Microsoft is one

of the best places to work in the high-tech industry (Cusumano & Selby, 1995).

o YOS OERETIM KT

ORITMARTASYOR M7 700

29

2.4.4. Process

The software development teams in Microsoft are responsible for defining the
specifications of the product, setting the schedules and managing the work. This practice
when combined with the “push-back” principle helps the team members to form a set of
common goals and approaches. The following story exemplifies how a development team
managed to change its focus and found a set of common goals and approaches.

“ ... Denis polled all the managers and the various leaders in the group, asking each to
rank our projects. It became clear that everyone thought a single project, code-named Caviar,
was the single most critical to our success. We concluded that if we could get Caviar out in
good shape ai the right moment, we would live to fight another day. The second most
important project was code - nhamed Barracuda, essentially Caviar ported to Windows NT.

All the rest of our projects, we decided, would have to go, and go now. We would be lucky
10 achieve these two. And, if need be, we would simply focus on one, Caviar. We would put
everything we had behind shipping Caviar and winning in the market...

Caviar would become Visual C++ 1.0 for Windows 3.1.” (McCarthy, 1995, p.15-17)

Microsoft became more serious about quality control in mid-1980s. Since then quality has
become an issue of rising importance to Gates and other managers primarily because of
pressure from customers and competitors. Microsoft people still tend to view quality
differently. For example, Dave Moore explains quality within Microsoft as follows:

“Our viewpoint is that an obsession with quality has to map to customers. There has to be

utility. There is a certain amount of quality in being flexible, being adaptable to changing

customer needs, changing market conditions. And so your standards for quality must not

SIS JICOUS,

hinder that.” (Cusumano & Selby, 1995, p.325)

Microsoft as a company has installed a number of practices to achieve higher quality.
These are:

1.Early customer involvement: Microsoft collects and utilizes customer feedback before
marketing a product. In fact customer feedback is an integral part of the development process
in the form of detailed weekly reports on customer inquires. Bill Gates states:

“Most people don’t get millions of people giving them feedback about their software

products...We have this whole group of over [two] thousand people in the US alone that takes

phone calls about our products and logs everything that’s done. So we have a better feedback

loop, including the market.” (Cusumano & Selby, 1995, p.26)

2. Postmortem reports: Microsoft began documenting their experiences in projects through
written postmortems, reflecting the belief that people could do a much better job at learning

from mistakes. Bill Gates, explains postmortem’s importance like this:

“We do good postmortems after the projects and look at what we were the source of bugs,
how could the design generate less bugs, [and] how could the tools generate less bugs?”

(Cusumano & Selby, 1995, p.26)

3.Daily builds: In order to keep several different parts of the same project synchronized
Microsoft practices “daily build” approach. The main idea is to create a working copy of the
product frequently and perform a number of automated tests on this version. Daily build
approach provides rapid feedback to the project team, keeps them coordinated and aware of

the progress of the product.

The first Microsoft product that use these quality practices was Excel 3.0 that was shipped

oniy eieven days late (Cusumano & Seiby, 1993).

The concept of quality also includes the ability to steer the customer that can be possible
through continuously creating new products. In order to encourage new ideas, Microsoft
depends on its “push-back principle”. It is believed that when software developers are

provided a chance to raise their voice, positive or negative, the chances of finding out

hs b v 2

something new increases.
2.4.5 Evaluation of the Microsoft Teams Characteristics

As a starting point in this study we investigated various resources analysing Microsoft
teams and their practices. We have identified that nearly all of the characteristics of effective
teams do exist in Microsoft software development teams (See Table 2.2). The only exceptions

are “democratic decision-making” and “high quality”.

31

Although decision-making in Microsoft seems to be democratic with every software
developer has a chance to raise his/her voice, top managers can always make the final
decision sometimes contrary to team’s common wisdom. In a company where strong

leadership of a single person exists democracy may not work all the time.

There are different arguments on the quality of Microsoft products in the market. The
general belief is that Microsoft produces low quality products. However, observations of
various researchers point out that the company has a set of quality related practices although
different than those of the field’s experts. But the fact that Microsoft products have sold
millions of copies around the world may be taken as a proof that its quality definition, “good

enough”, works for the customers the company targets.

It should be noted that our investigation of Microsoft teams depends on other researchers’
work, and their observations. These observations involve not a single team but several teams
that the authors had a chance to interview. So it is actually not very clear whether a single
team within Microsoft incorporates all these characteristics. However it is clear from our
study that within Microsoft there are a number of very good practices that help people to form

effective teams and there are a number of high performance teams.

Table 2.2. Characteristics of Microsoft Teams

(+ : valid; - : not valid; + - : can’t decide)

EFFECTIVE TEAMS IN GENERAL MICROSOFT
TEAMS
SIZE Smali +
STRUCTURE Democratic decision-making + -
Direct communication among all +
members
COMPOSITION Highly skilled +
Highly motivated +
Committed to work and team +
Enjoyment +
PROCESS Common goals and approach +
High quality + -

32
2. 5 The Role of Communication Media on Teamwork

In the beginning of this chapter we mentioned how good communication among team
members increases productivity. Therefore, communication tools play a very significant role
for a team effort to succeed, because it is essential that the programmers exchange reference
materials and advice as well as be able to request modifications and explain the reasons for
changes. Most commonly used tools are telephone, e-mail, and fax and voice mail. In this
context, communication tools that are preferred and frequently used by members, besides the

affects of their usage on teamwork are being explained in this section.

The studies on the use of communication media by development teams are quite few.
Perry and Votta (1994) investigated how often team members use communication media and
studied the daily contacts of seven people for five days. They included e-mail, voice mail,
telephone and visits into their research and the results are noteworthy. Although e-mail was
thought to be the most favoured one, others were more frequently used and the most preferred
one was visits. Detailed information is given in Figure 2.4 Each box represents a different
data set. The heights of the boxes show the spread of the central 50 percent of the data. Data
median is shown by the dot in the boxes. The tails of the distribution are denoted by the

vertical dashed iines.

Figure 2.4 shows the number of messages being sent and received each day across
different media. The distribution of sent and received phone messages and visits are normal.
However, the results of e-mail usage are astonishing. The numbers of received e-mail
messages are quite high but sent e-mail messages are low and almost none. Though the
number of received e-mail messages are high, the contents are rarely technical subjects but
mostly about organizational news, announcements, recent product sales and congratulatory
messages. We can give several reasons for this.

. It is difficult and time consuming to prepare an e-mail message. People prefer either

visiting or calling the person. It is easier and quicker.

. E-mail is used like broadcasting.

. E-mail is not suitable with the iterative problem solving of software technology.

Because, people prefer completely finished messages to send not half ones.
. Software CASE tools do not include e-mail and therefore user leaves the tool he is

in and enters into another tool. This decreases e-mail usage as it is time consuming.

33

81 —
M 64—
¢
§
s 49—
a
g 36—
e —
s 25—
p
e 16— E]
r trrengeannnns,
» — =
a PR D
y panall I
| G-
O] &= i il
r s I S r s r s r S
Voice mail E-mail Phone Visit All

Figure 2.4 Messages sent and received across four media types. The
figures shows the number of messages sent and received, by media type
and according to whether they were received (r) or initiated (s).

The data on the length of communication in the same research is shown in Figure 2.5. The
results show that voice mail messages are very brief, one minute. Telephone conversations are
also brief two or three minutes. Both receiving and sending messages require the same
amount of time in telephone talks and voice mail. However, e-mail is shorter than the
telephone talks. People need less time to read an e-mail item than to prepare and send one but
this 1s not surprising as composing a message requires more time. The longest one is visits

naturally because you spend time on going and coming.

Perry and Votta’s research show that individuals do not use communication media
effectively. Even though it is time consuming, they prefer visits because telephone and e-mail
are insufficient for transmitting delicate nuances as diagrams, figures, and graphs. As a result,
we can say that simpler, user friendly and more powerful tools providing advanced
telecommunications should be developed. Suggestions are made below about the addition of

voice, vision and drawing to the e-mail technology.

® Drawing: It is like a white board on the desktop. All members share access and can
write and draw diagrams as they like. Information can be saved and screens can be
displayed on a board to facilitate discussion.

e Voice: Microphones can be attached to members’ computers. Thus subtle nuances of
voice and facial expressions are faithfully transmitted and the need to compose long e-
mail messages is eliminated.

e Vision: Electronic mail and voice mail have facilitated staff communications but there
are still times when face-to-face discussions are required. Video cameras can be
attached to computers providing simultaneous data transmission for exchange opinions

in detail.

Advanced telecommunication tools can reduce product development costs and minimize
the need for movement between locations. Furthermore, they help the members continuously
contact with each other out of work. All these motivate the commitment of members towards

teamwork and increase the performance of the team.

81]
Y e
u —n
¢ 49
[
s 36 =
N @ & Y A
. 25 _]
r
D 16 ~ T
a : R
v .
sS4 . ; ':
- L] Q B
.. N
—
T 3 T S T S T S T S
Voice mail E-mail Phone Visit All

Figure 2.5 Duration per contact by media type. The duration per contact
is broken down by media channel and according to whether the message
was received (r) or initiated (s).

CHAPTER THREE
METHODOLOGIES SUPPORTING TEAMWORK

Effective software team starts with knowledge sharing, broad communication and
coordination. Even in the teams composed of highly skilled members, communication among
members could break down. This leads team failure and big loss. The reasons of this

miscommunication and misinterpretation can be summarised as follows:

e The team does not have a certain project plan

e Goals are not defined

o Functions to be designed are not clearly defined

e Scope of the project is not clear

e The roles of team members are uncertain

e Discussions are not documented well and information is lost

o Commitments are oral, not written, therefore members forget their promises

The necessity of coordination has been emphasized by the writer H. P. Jones as:

Without coordination, the best group members will fail to work as a team
and the project will suffer. With coordination, even a workaday group of
designer and developers can parcel out necessary tasks and produce

something special (Jones, 1998, p:381).

Therefore in this chapter, we investigate team design methodologies in order to suggest

alternative plans for team activities and software process.

3.1 The Difficulties of Software Design

The first prerequisite for a successful software product is a good design. Since a good
design increases the quality of the software and reduces the cost by defining the possible
problem areas, it makes maintenance easier and provides reuse. However, designing software
is not easy since software is naturally complex in essence. This complexity occurs due to the
abstract entities of software which can not be verified experimentally. The essence of software
entities as data sets, relationships among data items, algorithms, and functions are all related
with each other and also they are too detailed. In his paper, Brooks underlines the difficulties

of design as:

"I believe the hard part of building software to be the specification, design,
and testing of this conceptual construct, not the labor of representing it and

testing the fidelity of the representation. "(Brooks, 1987, p.10)

The complexity rises as the system gets larger and this creates problems even for a person
developing a program individually. However, complexit
Everybody has a different idea, approach and design model for the problem domain. In order
to minimise this fuzzy atmosphere, entities should be concretized somehow. We can achieve

this if we can clearly define each phase of our design.

For an effective development of software, a number of software processes (life cycle
models) have been defined and new research are continuing. Today, the below mentioned
models exist:

. Spiral, iterative or evolutionary life cycle (Boehm, 1981)

Rapid application development lifecycle (Arthur, 1992)
Object -oriented development lifecycles (Coad & Yourdon 1991, Jacobson et al 1992,
Booch 1994)

37

Life cycles define work activities in each phase of software development. Common phases
defined in most of the models are (Jones, 1998):
. Planning
+ Requirement definition
Solution Design

Implementation

Using the life cycles is a very important step that can not be overloaded. They provide
great help for software design by decreasing its natural complexity and as a result the quality
of software increases. On the other hand, life cycles do not include the activities which we call
Early Design Meetings. With these meetings a very useful teamwork atmosphere is created
thus an immediate motivation is accomplished. Members get to know each other and the roles

and the task of the members are also defined.

3.2 The Functions of Early Design Meetings in a Teamwork

Early Design Meetings correlate with the phases of Planning and Requirement definition
in standard life cycle. During Early Design Meeting session, team members discuss the
requirements, work on the project plan and develop solutions. Early Design Meetings are like
the bricks of an effective team wall because during these sessions below mentioned steps are
achieved:

. The team is set up.

The members get to know each other.
The goal of the team is defined.
The requirements are clarified.

Members are motivated towards the work.

Members learn to act as a real team.

However, traditional lifecycle methodologies do not address above mentioned trends. As
Jones (1998) stated bringing productive and creative individuals together in a room with
assigned team members is not by itself likely to create great works. When a group of people
are brought together important things to be considered are how to engage them to do work
as a team, achieve collaboration among them, document decisions and start design. For this

reason some team design methods have been developed addressing both social factors and

design solutions.

38

3.3 Team Design Methods

Team design methods manage team activities such as software design and group planning.
‘ney not only include the life cycle models but also explain indetail the activities during the
eamwork. These methods help to organize team workshops, processes and offer a
somprehensive set of methods from which teams can choose depending on their needs.
Existing models are Joint Application Design (JAD), Rapid Application Development (RAD),
Participatory Design (PD) and Team Design (TD). Below, we summarize these methods

previously studied by Jones (1998), Damian, Hong, L1, Pan (1998).

3.3.1 Joint Application Design (JAD)

Joint Application Development (JAD) was originated in IBM in the late 1970%.
Traditionally, JAD has been a joint venture between users and data processing professionals.
In recent years, it has expanded among people who need to make decisions affecting multiple
areas of an organisation. It is a structured workshop (usually called JAD session) where
people come together to plan projects, design systems, or make business decisions. Each JAD
session has a detailed agenda, visual aids, a facilitator who moderates the session, and a scribe
who records the agreed-upon requirements. A final document containing all the decisions

made by the group is generated after each session.

JAD was originally designed to address information system development. It used to
involve some aspects of system design, or, at least, development. But now, the use of JAD

techniques has expanded to handle a broader range of challenges. Nevertheless, all the

caca e ars ol Lo itlinsad canaiorma wobiinh
sessions are stitl facilitated sessions whwh a

JAD consists of five phases. Each of them has its own emphasis and tasks. The diagrams

used in this subsection are taken from Wood and Silver (1995) (Figure3.1).

Project Request l

Select the
JAD Team

Interview
Management

Schedule the
Session

Prepare the
Management
Definition Guide

Management Definition Guide

JAD Phase 1: Project Definition

Jata Models, Process Models, Working Document
'reliminary Information and Session
\genda

The Working Document Train

Overheads. Flip Charts and Magnetics

JAD Phase 3: Preparation

the
The pre-Session { Scribe
Visuai Mieeting %
Aids Set Up the Meeting Room

Management Definition
Guide

Became Familiar

with the System ‘ and Process Models

Data Models and
Process Models

Create Data Models

E Gather Preliminary
; Information

Agenda

Preliminary Information

Prepare the Session

JAD Phase 2:Research

Overheads, Flip Charts and Magnetics

Working Document

Session Agenda;

Process

Data Models]

Screens §

Models Assumptions

Scribe Notes and Forms

Onen
i

Reports ;

JAD Phase 4:The Session

Scribe Notes and Forms

i Produce the
E Final Document

Document

The
Review
Meeting

"Approve the
Document

Assemble the

Track
Distribution

Changing Requirements

uAD Document

Signed Approval Form

JAD Phase 5: The Final Document

Figure3.1 JAD Phases (Wood & Silver, 1995)

40

Joint Application Development Phases:

Five phases of JAD (Figure3.1) evolve from a definite start to a clear finish. These phases

are!

1. Project Definition. This phase involves defining project purpose, scope, and
objectives, identifying JAD team members, setting schedules, etc.

2.Research. This phase involves gathering more details about the user requirements,
exploring problem domain, considering design issues, etc. Based on the research, an
agenda 1s prepared listing what needs to be decided in the session.

3.Preparation. This phase involves preparing everything you need for the session, such as
visual aids, working document, flip charts and overhead transparencies.

4.The Session. This is the actual workshop session. JAD team members define business
process, project requirements, etc. Agreed-upon decisions are documented for the final
document.

5.The Final Document. The information captured in the session is used to produce the

final document. This is the final products of JAD session.

JAD Phase 1: Project Definition

The process of phase 1 is illustrated in figure 3.2.

Project Request

Interview Select the
Management JAD Team

Prepare the Schedule the
; Management Session
§ Definition Guide B

Management Definition Guide

Figure 3.2 JAD Phase 1: Project Definition (Wood & Silver, 1993)

The main tasks to be accomplished, as shown in the above figure, include:
e Interview management - first high-level interview to identify what management wants

from the project, that is to say the purpose, scope and objectives of the project.

41

Produce the Management Definition Guide

(o]

Contents of the Document
° Send the completed Management Definition Guide to the contributors for their
review.

Schedule the session

The session schedule is influenced by the scope of the project and the time constraints.

JAD Phase 2: Research

The main tasks to be accomplished, as shown in the figure 3.3, include:

Become familiar with the business

Document data requirements : Create data models

Document business requirements: Create process models

Defines the rules for using the data.

Gather preliminary information

Gather information about the business requirements. The kind of information to gather
depends on what you want to accomplish in the session.

Prepare the session agenda

Data Models and

Process Models

Management Definition
Guide

* Became Familiar | Create Data Models
§__with the System and Process Models
8 Gather Preliminary ' Prepare the Session

Information Agenda .
| Session Agenda
Preliminary [nformation
»

Figure 3.3 Phase 2:Research (Wood & Silver, 1995)

42

JAD Phase 3: Preparation

The main tasks to be accomplished, as shown in the figure 3.4, include:

Produce the Working Document

All the information gathered from the above phases is compiled into the “orking
Document.

Send out the Working Document

Send the document to all participants at least one week before the session begins so
that they have time to review the document and do any research or preparation
necessary.

Train the scribe

Produce visual aids

Visual aids help keep the participants focused and can clarify the decisions being
made.

Hold the pre-session meeting

The purpose is to establish management commitment, summarize the JAD process,
and distribute and discuss the Working Document. Also, this is the first time all the
participants will be together and have a chance to establish group rapport.

Set up the meeting room

Using checklists

Use a couple of checklists for JAD tasks and for JAD supplies.

b A d 1o Denoasco Ao Al

Lata vioais, Process Mioaeis, Working Document
Preliminary Information and Session l

Train
tha

R* R ANY

The pre-Session | Scribe

Visual Meeting
Aids Set Up the Meeting Room

Overheads. Flip Charts and Magnetics

Figure 3.4. Phase 3: Preparation (Wood & Silver, 1995)

Phase 4: The Session

The process of phase 4 is illustrated in figure 3.5

Overheads, Flip Charts and Magnetics

Working Document
Session Agendai

Data Models

Process
Models Assumptions Open
Issues

Screens

Reports

lﬁcrihe Notes and Forms

_>

Figure 3.5. Phase 4:The Session (Wood & Silver, 1995)

The main tasks to be accomplished, as shown in the above figure, include:

Opening the session: facilitator start the session.

Discuss Assumptions

Define Data Requirements

Detine Business Processes

Design Screens

Design Reports

Define all output from the system. Besides standard reports, this includes any other
print outs generated in the process, such as invoices, statements, checks, and labels.
Other agenda items

Depending on the kind of JAD you are running, there are ali kinds of other items your
agenda might include.

Resolve Open Issues

Open issues are added throughout the session. At the and of the session, all those open
questions are addressed.

The scribe takes notes whenever a prompt is received from the facilitator.

Evaluate the Session

Close the Session

44

JAD Phase 5: The Final Document

In this phase (Figure3.6) all the agreements made in the session are transfered into the
final document and the final document is assembled and distributed to the participants for
review. Finally, signatures approving the final document and for systems development
projects are taken, the development team is authorised to begin the next phase of the life

cycle.

The final document is a comprehensive synthesis of agreements made in the session. It is
the one resulting document, the one final product that represents JAD's role in the process. For
the people who were not participants but have a line of responsibility for that project, the final
document may be the only evidence they have to judge the status of the project after the

session.

Scribe Notes and Forms i

| Produce the | Assemble the |
4 Final Document | Document Track

The "Approve the Distribution
Review Document

Meeting
Veeting

‘ LJ AD Document

Signed Approval Form

Figure 3.6 Phase 5: The Final Document (Wood & Silver, 1995)

3.3.2 Rapid Application Development (RAD)

Rapid application development (RAD) refers to a development lifecycle designed to give
much faster development and higher-quality results than those achieved with the traditional
lifecycle (Booknews,1991). RAD is a series of iterative working sessions used to create a

working prototype of the proposed system.

When a project requires a truly rapid design and development, it is useful to plan a single
extended JAD workshop. Used together with JAD, its creates systems users want very rapidly
(Reilly, 1997). For a smaller RAD project, one workshop of two or three days may cover the

needs for all phases of the project.

T.C. YOKSEKOGRETIM KURF .,
DOKIMANTASYON MEPEEDS

3.3.3 Participatory Design (PD):

The primary goal of Participatory Design (PD) is the involvement of the individuals who
do work in a design process. The responsibility for the product is shared by the users and

designers.

The socio-technical approach which began in England by Enid Mumford, and the
collective resource approach developed in Scandinavia by Pelle Ehn and Morten Kyng
challenge this design tradition (Bjerknes, Ehn, Kyng, 1987). The result of applying the socio-
technical approach in Scandinavia is the developing of Participatory Design (PD) in late
1970's. Now the area of PD has been growing rapidly, in terms of numbers of practices, extent
of theoretical development, numbers of practitioners, and geographical and institutional
diversity of practice. It has been only more recently been used in North America (Jones,

1998).

PD Advice:

e to attract the interest of users, it is important that the focus be on addressing their
immediate needs.

o the project croup is likely to function better in an environment away from everyday
pressures so participants can focus on learning from each other, practicing skills, and
developing systems.

¢ have management support

s specify in a contract how much time the users can /shall spend on the project

e have a steering group in which conflicts can be discussed.

e be sure the required equipment is available for systems experts and users.

» listen to the user, but do not do everything the user proposed.

The advantages of using PD are (Harris and Taylor, 1996):

e involving users of different organizational groups and provide a forum in which the
participants can better understand

e boundaries and explore ways to overcome them

o shared understanding and knowledge of the process enables individuals to anticipate
the consequences of their actions.

s increasing worker's influence on technological change

46

participation in the design process also prepares people for changes

participation is used as a tool to open up conflicts and negotiated throughout the

design processes

PD is a complex process involving technology and multiple levels of organization. It is

also highly dependent on specific organizational contexts. For project participants, this means

there are no programmatic solutions. To the extent that PD projects have been documented to

date, there is little evidence that a "standard” set or ordering of practices has been decided.

However, PD efforts in recent years have led to repertoire of flexible practices and general

guideline. Figure 3.7 (Muller, Wildman, and White, 1993) shows a brief guide to PD practices

for practitioners.

Usens directly Panticipate i Design Activiie

WItn wnom in wnat

wno

Dasigners Parti¢ipate in Uyl

Customization’™>
Low-tech Prototyping® s Buttons project (14}
® teon Deslgn Game{10,17] ¢ Spresdsheets (6]

o Low-tech Prototyping S
1S [1.10.14,15.17 ; .
Co-developmant [9] s : mﬁggald 5471 participatory Ergonomics [13] 5
Mock-ups ® BrainDraw
$ JTOPIAL3.7.02.95] o | unchoox project (S
® ACE {5} b Low-tech Prot‘atypmg
* Lunchbox project [5] » Databsse Buckets Game {17}

Theatre for Wark lmpact “#

* Forum Theatr Theatre for Design®

g (7 et) . o Interfacs Theatra {10.17]
Video Prototyping (1]’
Storyboard Prototyping 5.8
T.S ® ISP ()
Card Games
e tion s Lyt e (S 48]
-cuw & B.OARD. R o
(£.16. 7 Cooperative Evaluation ;s

* Mataphara games (€, 1 Transiators (315 :

(Semi) Structured Conferences Lk

® Staring contarentos (158 . B T.87
Collaborative Prototyping '°

. ‘*Ju."e Ee
* Graphicat fncdrra @ Participatory requirements
specification {§,15]

Envisioning Future Solutions 3" Commercial Use:

® Fulurg workshogs (356,15 ; 5
. Lomerben e Techniques used on commercial products
outside of rescarch labs appear in ltalics.

Contextual Inquiry (2 7.15 547

Appropriate Group Size for Each Practice:
Ethnographic Methods |1 57,1513 5M7 T = tiny (2-4) S= small (6-8)
M= moderate (up to 40) B= big (up to 200)

Position of Activity in the Development Cycle or iteration

Figure 3.7: Techniques Applicable in Participatory Design

47

Notions in the above figure are described below:

Time during the development life cycle: some practices appear to be more
appropriate at certain points within the development life cycle or iteration. The
horizontal axis of the ngure provides a very approximate guide to points within the life

cycle at which each practice may be useful.

Who participates with whom in what? The concept of participation is open to
multiple interpretations. The vertical axis of the figure spans one way of organising the
various approaches, the software professionals can participate in the users' world
(lower on the axis), or users can participate in the software professionals’ world

(higher on the axis).

Appropriate group size for the practice: Different practices are designed to work
with groups of different sizes. Appropriate group sizes are indicated by superscript
letters for each category of practice: T (tiny, 2-4 participants). S (small, 6-8
participants), M (moderate, up to 40 participants), and B (big, up to 200 participants).

The group size recommendations are in some cases approximate.
3.3.3.1 Comparison between JAD and PD

User Involvement

The main common characteristic of PD and JAD is that they advocate a strong user
involvement in system design, in which workers actively engage in designing the computer

system they will eventually use (Carmel at al., 1993).

In JAD, both operational workers and managers are considered "users". The term "user"
from the JAD perspective does not indicate rank or position, but simply organizational

affiliation.

In PD approach user participation is mandatory because users are viewed as primary

source of knowledge. The focus is on lower-level, operational users - often excluding

18

management from the process. PD practitioners presume that operational users are the most

qualified authorities on improving their workplaces (Carmel, Whitaker, and George, 1993).

Both approaches face the same obstacles in a successful implementation: managerial

resistance, user conservatism, lackluster workshops and poor facilitators. Getting user

participation may create troubles as users themselves can be uncooperative and unmotivated.

Structure

JAD is a very structured approach, in which manuals and guides are like a cookbook. The

JAD approach where everything is explained in great detail emphasizes structure and agenda.

PD emphasises creativity. PD practitioners do not advocate of prescriptive methods,
however, they do use a number of techniques such as: Future Workshops, Cooperative

Prototyping, Design Mock-ups, Future Games, etc.

3.3.4 Team Design (TD):

Team Design incorporates structure and practices from several types of facilitated
workshops and planning sessions for analysis and design, including Joint Application Design
(JAD), Participatory Design (PD), facilitated planning, prototyping workshops and total
quality management processes. JAD approach is highly structured in terms of the control of
the meeting and the guidance of participants and expects a consensus in a team and PD
expects user-centred democratic process. These methods require the facilitator to help to
establish and maintain the team context. The process o hose
solutions is based in the notion of teamwork. As the teamwork is not given, in JAD and PD, it
should be developed by the team, usually with a leadership and guidance. The Team Design
approach addresses this process of working with creative groups and integrates the best
practices of researchers and facilitators within a team model and the facilitation could be
shared among the participants. Besides, less structured is necessary to provide a working
environment where team members can be allowed to think and develop solutions creatively
and also less structured helps organisations to relax the cultural constraints and to generate
ideas and proposals from a more creative perspective. Team Design method gives
organisations a framework from which to build their own custom design practices. A sample

model format for Team Design (Jones, 1998) is shown in Table 3.1

Table 3.1 Model Team Design Format (Jones, 1998)

49

Agenda Activities

Methods

Inputs and Outputs

*lanning: Preworkshop

Advance planning for workshop

-eparation for workshop

Project planning, team planning, workshop

planning

Team and workshop planning, coordination

interviewing and surveys, discussions

In: Business case, schedules
Out: Workshop plan (initial)

In: Workshop plan (initial)
Out: Workshop plan (initial)

nitiating: Workshop
Welcome

Team Building

The workshop process

Agenda, ground rules
Warm-ups, introductions, exercises

Agenda, discussions

In: Workshop plan

Out: Agenda

In: Agenda

Out: Team identity

In: Workshop plan, agenda
Out: Project goals

Scoping: Identification

Brainstorming, scoping diagrams

In: Mission statement ,
project goals
Out: Purposes

Visualizing: Analysis

Brainstorming, system diagrams

In: Purposes, scope
QOut: System and process
vision

Usage: Application

Scenarios, prototypes

In: System and process
vision
Out: Scenarios, prototypes

Packaging: Completion

Design diagrams, mapping, final documentation

In: Scenarios, prototypes
Out: Design package

Validating : Fvaluation

Design evaluation, test planning

In: Prototype design package
Out: Validate design

Three columns in each table list the bellowing:

o Agenda Activities: Phases of design (shown as the italic listings) are indicated for each

major set of agenda activities.

e Methods: Methods are associated with activities within a phase.

o Inputs and outputs: Inputs are required deliverables or conditions to enable a given

activity. Qutputs are recommended products developed as a result of completing an

activity.

50

The phases shown in the model format a full-extended set of activities, representing an

end to end design process. These phases are described as follows:

e Planing: Preworkshop. The preworkshop is used as the planning period for the
workshop organiser, the facilitator and the project manager to plan and prepare for the
session. The idea is to set aside enough time in the preworkshop period to sufficiently
prepare for the workshop.

e Initiating: Workshop. The initiating phase starts the workshop and integrates all of
the introductory sessions and most of the team-building processes. Initiating is used at
the start of all projects and series of workshops.

e Scoping: Identification. Identification of scope and process. Scoping phase involves
identifying the components and boundaries of the problem or requirements addressed
by design.

e Visualising: Analysis. Analysis of the process. This phase bridges the design from
current analysis to the new requirements or vision. Numerous front-end analysis
methods are used in visualising to enable teams to construct appropriate design
models.

e Usage: Application. Application of the process in context. Usage integrates
operational models, scenarios and use cases, and prototypes in order to surface issues,
test assumptions and iterate the design within an identifiable context.

o Packaging: Completion. Completion of the design process. Packaging is the phase
where a design model or specification is produced from the analyses, iteration of
design, and learning of the prior phases.

¢ Validating: Evaluation. Evaluation of the design and process. Validating is a phase

recommended for review and evaluation, which is typically used in analysis and

n
—

3.3.4.1 Team Design Phases: Planing and Initiating

Planing: Preworkshop.

In this phase, the 1dea is to set aside enough time in the preworkshop period to adequately
prepare for the workshop. For a two—day workshop, a week or more of advance work might
be required to ensure that the workshop is well planned and productive. Also participating
team members must have enough advance time to digest advance information and make

preparations too be capable of collaborating in the workshop.

Advance planning for workshop: Advance planning for workshop starts with the project and

workshops planning factors. These activities involve the general methods shown in Table3.2,
including project, team, and workshop planning. For a new project or a new workshop series,
the first inputs to planning will likely be a project description or business case and any
schedules that have been prepared. The essential output for the workshop will be the

workshop plan, which includes project and team planning relevant to the workshop.

Preparation for workshop: Preparation for workshop might require continued planning. with
participation of sponsors or management and discussions and interviews with participants.
The methods for preparation can include any activity necessary to establish the groundwork
for the workshop. This activity includes coordinating with stakeholders, discussing roles and
participation with the entire team and gathering information required to better understand the
processes or systems to be designed. Interviews are used in advance to gather specific detailed
information from participants. Surveys can be used as a means of tapping into the larger
organisation and gathering feedback on a number of issues relevant to the workshop. The
initial workshop pian is the primary input and the revised and final workshop plan is the

output.

Table 3.2 Team Design: Preworkshop Planning (Jones, 1998)

Planning: Preworkshop

Agenda Activities Methods Inputs and Outputs
Ivance planning for workshop Project planning, team planning workshop In: Business case, schedules
planning Out: Workshop plan (initial)
eparation for workshop Team and workshop planning, coordination In: Workshop plan (initial)
interviewing and surveys, discussions Out: Workshop plan (initial)

Initiating: Workshop.

A mini-initiating session shculd be held at the start of every new meeting as well, to check
in with participants, obtain feedback about the process, and take informal measures of

perceived progress.

Team Building Activities: Team building activities follow the welcoming and these can take

the form of many different approaches and exercises. The goal or output of this activity is a
group with a team identity, ready to work together over the project or at least, the workshop
period. Introductions are typically made, and warm-ups and small group exercises are used for
members to learn about each other. If the team uses a team building method, such as Team
Spirit (Heermann, 1997) or methods from the Team Handbook (Scholtes, 1988), would be

started at this point.

The workshop process: The workshop process activity provides the opportunity to discuss the

workshop agenda, and consensus can be reached on agenda topics, ground rules and
scheduled items. Discussions are heid with the team to craft policies and agreements for
working together. The goals for the project can be discussed openly, and agreements and
proposals affecting the workshop. The outputs for this activity is project goals that have been

shared, discussed and understood among the team.

Table 3.3 Team Design: Initiating Phase (Jones, 1998)

Initiating: Workshop

Agenda Activities r Methods] Inputs and Cutputs
Welcome Agenda, ground rules In: Workshop plan
Out: Agenda
¢am Building Warm-ups, Team Handbook, Team Spirit, In: Agenda
introductions, exercises Out: Team identity
The workshop process Agenda, discussions In: Workshop plan, agenda
Out: Project goals

W
(97]

3.3.4.2 Team Design Preworkshop Planning and Initiating Phase Methods

Workshop Planning

Any workshop requires planning and coordination that reflect the amount of advance
preparation. Several significant planning considerations determine your workshop structure,

duration and style. These are described in the following:

Size of the project: small, large-scale or phased. Project size guides the breadth versus the
depth of the workshop. With a smaller project, a single workshop may be all that’s required,
at least for each stage of the life cycle (analysis, design and development). A large project
might involve numerous stakeholders and more team members and workshops from three

days to a week should be scheduled for the start up period.

Complexity of the design: simple, complex or unknown. For quick planning purposes,
consider complexity as a rough guess based on the number and interrelatedness of
requirements and the team’s relative experience level in the area. If the design is considered

simple, be cautions and plan the workshop as if it were of medium complexity.

Project deadlines and milestones: For near-term deadlines, the team will be pressured to
conduct a rapid workshop, settle decisions by compromise and cut corners on meeting
requirements. Midterm deadlines are any milestones that are not under extreme pressure for

immediate delivery.

Project Planning

Project planning, involving team planning for the project and its phases, presents a major

tor working through technical and organisational issues. At the project planning workshop,
clients will have a project definition, resource plan and bar chart schedule for the project’s
lifespan. Several aspects of project planning:

¢ Project scoping and definition

e Project scheduling and resourcing

e Development planning

e Orgzanisational issues resclution

54

Team Building:

Twao approaches for team building are The Team Handbook (Scholtes, 1988) and Team
Spirit (Heermann, 1997).

The Team Handbook (Scholtes, 1988), provides a cookbook of methods and guidelines

practitioners and participants:

o Forming: Social relationships are established and the group initially begins to work with
the leader.

o Storming: Conflict begins to emerge between members as they recognise differences in
goals and perspectives.

e Norming: Group members recognise commonalities and shared interests in the team and
establish process for communication.

e Performing: Team members generate insight s into the team’s processes and work

cooperatively through group problems.

Team Spirit (Heermann, 1997), presents a holistic view of teams that integrates thinking
from organisational, scientific and spiritual foundations. It has five phases that characterised
in order as follows:

s [nitiating: Introducing and learning about team members and their interests,
disclosing and sharing and creating a common sense of belonging.

o Visioning: Developing a shared vision or purpose aas a group developing mutual
interests, becoming closer through sharing ideas and establishing a team presence.

o (Claiming: Tdentifying and aligning with roles and goals available in the team,
developing organisational support and identifying competencies and personai

goals.

o Celebrating: Bringing about team celebration through recognition and individual
accomplishment.
o [enting Go: Allowing for constructive feedback among team members, providing

disclosure and straightforward communication.

U
wn

Agenda:

Workshop agendas identify each major topic of discussions and define the timeframe
allocated for work. The basic elements of any agenda are described on the examgle from

shown in figure 3.8.

Following the agenda: Select an appropriate workshop template and create an initial
agenda. Be sure to ask workshop participants for their input to the agenda in advance of the

session.

Team Design Workshop Agenda

Project: Date: Room:
From: Start time: End time:
Attendies/team:

Purpose of workshop or meeting;
Facilitator: Please be prepared to:

Workshop activities:

Activity Time Person responsible
1. Introduction: 8§15-845 ‘ Facilitator
Ground rules and procedures
2. Project overview 8:45-9:30 Project leader
3. Requirements discussion 9:30-10:13 Project leader

Review document in advance
LBreak 10:15-10:30

Figure 3.8 Sampie workshop agenda (Jones, 1998)

Introductions:

Introductions can be handled by the organiser, facilitator or participants. Have people
describe their work and their role on the team, since this is the place to establish some context
for working together. Members answer several simple questions about themselves (collage

attended, favourite sport, last vacation spot, hobbies and interest) or introduce their neighbour.

Ground Rules:

Ground rules are a must and should always be presented at the first meeting of a new
group.

1. Start of the ground rules discussions by listing a partial set of rules that most members
will agree with, such as: Arrive and end on time and follow the ground rules.

2. Explain to the group the importance of ground rules and how they support holding a
smooth and productive workshop.

3. Ask the group to add any other rule to which they want to hold.

4. After five to seven ground rules have been listed, offer to close the discussion. Ask

whether all are satisfied with the rules and whether everyone can live with them.

3.3.4.3 Team Design Formats:

Team Design method (Table 3 .4) offers five formats which guide the practice of design
techniques. Each format provides a structure to follow for Scoping, Visualising, Usage,
Packaging, and Validating and includes the following:

e A baseline agenda to use as a starting point

o A set of group activities to generate the deliverables for the workshop

e Descriptions of practices for using the appropriate development methods.

Tabie 3.4 Team Design Format (Jones, 1998}

Activities

Planning: Preworkshop

Initiating: Workshop

Scoping: Identification

Visualising: Analysis

Usage: Application

Packaging: Completion

Validating: Evaluation

The five formats of Team Design Method are:

* Business Process Design: This is a front-end process which formats team in starting
with an objective and completing with a redesigned business process.

* Requirement Definition: This is another front-end format supporting teams in
evaluating the initial business requirements and working through to completion of
them. This can be considered the design of requirements.

* Application Design: This format integrates application analysis and design activities
into a team workshop format. Unlike the other formats, Application Design integrates
a front-end format as input - either requirements or process design.

* Team Planning: Planning is typically a front-end activity, but this format can be used
during workshops, for project planning, scheduling and business planning.

* Decision Making: The Decision Making format supports team-based decision
processes. This format can be used at any point within the development or in
nondevelopment decisions. Decision Making follows the same design cycle as the

other formats, but in a much shorter time period.

Development teams might use these five analysis and design formats independently,

sequentially or cumulatively.

58

CHAPTER FOUR
A TOOL FOR EARLY SOFTWARE DESIGN MEETINGS

(EDT)

Early Design Tool (EDT) is a software support tool designed to be used for Early Design
Meetings and workshop activities in a teamwork. Early Design Meeting activities include
planning and designing stages that occur before coding in a software development project.
During Early Design Meeting sessions, team members discuss the project plan, requirements

and develop solutions.

All the meetings hold in a team are important, however, early meetings are the most
delicate as the team starts to form, people get to know each other and they suggest
alternative solutions for design. Unfortunately, sottware teams today are not aware of the
importance of Early Design Meeting activities and therefore most of the teams face the

following problems:

o Loss of information which coming from the discussions due to manual

e Loss of time and obligation to enter the information to CASE tools by hand
¢ Difficulties of transferring information with an appropriate format to the CASE tools

o Adaptation problems with the system support tools

It is astonishing that there is no tool in the computer world to support these activities. So
we decided to develop a tool as a support system for Early Design Meetings. This tool
addresses to the above mentioned problems and has following advantages:

» Decreasing the loss of information

o Transferring data safely

» Saving time

59

e Transferring the data into CASE tools easily
s Supporting effective team work by being user friendly

e Lessening the problem of software complexity

In summary, in developing such a tool we aimed firstly to help the teams to get rid of the
struggles they have, secondly, to improve the quality of software with the advantages

mentioned above.

4.1 Early Design Meetings
For the tool EDT, we investigated Early Design Meeting Activities according to Team
Design Method. The activities in the Early Design Meeting are Project Planing, Team

Planning, Scoping (Table 4.1).

Table 4.1 Team Design Format (Jones, 1998)

Activities

Planning: Preworkshop
Advance planning for workshop

Preparation for workshop

Initiating: Workshop

T Building EARLY DESIGN MEETING
The workshop process ACTIVITIES

Scoping: Identification

T ca s o AL s
{dUULL 'lllg‘ 4‘1’1“{}/010

Usage: Application

Packaging: Completion

0 SV SR

Validating : Evaluation

4.2 The Issues of Design

60

We investigated the Scoping phase of Requirement Definition Format (Jones, 1998)

This phase is called Requirements Gathering. We took Requirements Gathering activities

as a frame and developed it as a support tool of a team (Table 4.2).

The requirement analysis is the foundation for developing effective team design

workshop. Requirement process begins with the problem definition, initial gathering and

results in understanding of the user and product requirements. The activities in this phase are

Exploring the purpose, Defining the scope and User and system goals (Jones, 1998, pp:338-

340).

e Exploring the purpose: The team identifies the goals, assumptions and business needs

for the system in the very beginning of the analysis. The scope and the overall

purposes are considered for requirements definition during this phase.

e Defining the scope: Scoping the project is the beginning stage of work when the team

1s building a shared understanding of the domain. Defining the scope is useful for

allocating resources and determining priorities, purposes and objectives. It also

provides multiple perspectives.

e User and System goals: Defining user and system goals is a useful way to construct

the high level frame work for requirements definition. Understanding the goals of

users supports the team in making tunctionality decisions and helps to find the right

balance between the user requirements and system goals.

Table 4.2 Requirement Analysis (Jones, 1998)

Requirements Gathering

Activities

Methods

Inputs and outputs

Exploring the purpose

Defining the scope

User and system goals

Dialogue, brainstorming methods, Breakthrough
Thinking methods

Scoping diagram, context diagram process hierarchy

Brainstorming methods. Breakthrough Thinking
methods, affinity diagram

In: Project Goals
Out: System purpose

In; Purposes, initial scope
Out: Scope definition

In: Scope definition
Out: User and Scope goals

61

4.3 Methods in Early Design Meetings

The Requirement Analysis activities (Table 4.3) -Exploring the purpose, Defining the
scope, User and system goals - are realised with the methods next to them. In our tool, we
used three methods namely: Brainstorming, Scoping and Context Diagram.

Table 4.3 Requirements Gathering (Jones, 1998)

i Requirements Gathering

Activities Methods

Exploring the purpose | Dialogue, brainstorming methods, Breakthrough Thinking methods

Defining the scope Scoping diagram, context diagram process hierarchy

User and system goals | Brainstorming methods, Breakthrough Thinking methods, affinity diagram

A——

4.3.1 Brainstorming

Brainstorming is used for generating or elaborating requirements with the users (Jones,
1998). During Brainstorming, potential viewpoints, system services, data inputs, non-
way of
looking at the project is written down (Sommerville, 1996).

The use of Brainstorming:

. Contributions from everyone are encouraged.

. Brainstorming inputs are requested from the group one person at a time.

. Each item is entered in one bubble.

. The process is continued until no further inputs are forthcoming.

BRANSTORMING

@
Motor
controller
Arrival button

Qny

Figure 4.1 Brainstorming

62

4.3.2 Scoping

In this session boundaries for the project and system are defined. Scoping diagrams bring

discussions back to the relevant topics and provide a focus for the team.

The use of Scoping: The team members are asked to reflect on whether new issues fit into
scope or lie outside its bounds.
. Major topics that fit within the scope are identified and written inside the biggest
circle.

» Related topics are represented inside the small circles.

SCOPING

Muain Area

Elevator

Elowvator id
Floor state
Direction

Overweight Sensor

Motor
Motor
controller

Arrival event

Arrival button

Destination
Event

Destination
panel

Reluied Areas ~~__ -~

Figure 4.2 Scoping

4.3.3 Context Diagram:

63

Context diagram provides a useful overview of the process and generates the common

understanding of work (Jones, 1998). With a context diagram the team can communicate the

impact of process design alternatives using a common model as a baseline.

The use of Context Diagram: The selected entities which are previously chosen from

scoping diagram are transferred to the related areas. The relations among the diagrams are

shown with the arrows.

Floor Status

Floor

Elevator

Elevator id

Floor state
Direction
Overweight Sensor

~_

Elevator Status

CONTEXT DIAGRAM

\ Elevator Status

Destination
Event

Floor sensor

Floor Status

Floor Status

Arrival Panel

Arrival Id
Arrival Button {

i

N

Arrival

Destination Id

{ Destination pending

Destination Panel
Destination Button \

@

Figure 4.3 Context Diagram

64

4.4 The positive effects of the tool on software design complexity

Designing software is difficult as software has a natural complexity in essence. The reason
of this complexity comes not only from the abstract entities of the software which can not be

verified experiment but also from the interrelated relationships among the entities.

Table 4.4 Requirement Analysis (Jones, 1998)

Requirements Gathering Activities

Jo——

Exploring the purpose

Defining the scope

User and system goals

In order to simplify the complexity of software design, each activity should be defined
clearly and made concrete (Table 4.4). This is the ideal and desired solution. However, this is
not so easy. For example; during the stepl “Exploring the purpose ", “User and system goals”
can be taken into account together (Figure 4.1). Because if user and system goals are
completely discarded, our purpose can not be attained. Moreover, during the step2 “Defining
the scope ", new ideas may arise and going back to previous step may become a necessity. The
same need of going back may occur in step3 and thus the stepl and the step2 might be

reviewed again. These are the typical problems team members will struggle with.

— > @ Exploring the purpose

v

@ Defining the scope

A

S @ User and system goals g—

Figure 4.4 Relationship among the Requirements Gathering Activities

We attempt to solve this problem with the tool we present. The tool has been designed in

such a way that you can go back to the previous steps if need be.

65

4.5 Sample Scenario on Early Design Meetings

The team of program developers has regular meetings to develop software design
solutions on an existing project using Brainstorming, Scoping and Context Diagram Methods.

Each meeting of the team is called “Workshop”. Early Design Meetings consists of five steps.

Stepl: Initiating

Initiating phase starts the workshop, integrates all of the introductory sessions and team
building process. The goal of the team building activity is forming a group with a team
identity and ready to work together over the project. Introductions are typically made, warm-
ups and small group exercises are used for members to learn about each other. (Heerman
1997, Scholtes 1998).

In all workshops, information - such as Date, Time, Purposes and Participants- has to be

written down.

Step2: Problem Domain

After the workshops in initiating step team is ready to work together over the project the
team begins to study on a Problem Domain which chosen by them or by someone (manager)
out of the team. In order to explain the usage of the methods better, a problem domain is given
as an example. The following steps and the tool explained in the next section are modelled

over this problem domain.

Problem Domain: Elevator Control System

The general requirement is to design and implement a program to schedule and control
four elevators in a building with 40 floors. The elevator will be used to carry people from one

floor to another in the conventional way.

Efficiency: The program should schedule the elevators efficiently and reasonably. For
example, if someone summons an ¢levator by pushing the down button on the fourth floor, the
next elevator that reaches the fourth floor travelling down should stop at the fourth floor to
accept the passenger(s). On the other hand, if an elevator has no passengers (no out-standing

destination requests), it should park at the last floor it visited until it is needed again.

66

Destination Button: The interior of each elevator is furnished with a parnel containing an
array of 40 buttons, one button for each floor, marked with the floor numbers (1 to 40). These
destination buttons can be illuminated by signals sent from the computer to the panel. When a
passenger presses a destination button not already lit, the circuitry behind the panel sends an
interrupt to the computer (there is a separate interrupt for each elevator). When the computer
receives one of these (vectored) interrupts, its program can read the appropriate memory
mapped eight-bit input registers (there is one for each interrupt, hens for each elevator) that
contains the floor number corresponding to the destination button that caused the interrupt. Of
course, the circuitry behind the panel writes the floor number into the appropriate memory-

mapped input register when it causes the vectored interrupt.

Destination button lights: As mentioned earlier, the destination buttons can be
illuminated (by bulbs behind the panels). When the interrupt service routine in the program
receives a destination button interrupt, it should send a signal to the appropriate panel to
illuminate the appropriate button. This signal is sent by the program’s loading the number of
the button into the appropriate memory-mapped output register (there is such one register for

each elevator).

Floor sensors: There is a floor sensor switch for each floor for each elevator shaft. When
an elevator is within eight inches of a floor, a wheel on the elevator closes the switch of
switches in each elevator shaft). When the computer receives one of these (vectored)
interrupts, its program can read the appropriate memory-mapped eight bit input register

coitesponding to the floor sensor switch thai caused the interrupt.

Arrival lights: The interior of each elevator is furnished with a panel containing one
illuminable indicator for each floor number. This panel is located just above the doors. The
purpose of this panel is to tell the passengers in the elevator the number of the floor at witch
the elevator is arriving (and at which it may be stopping). The program should illuminate the
indicator for a floor when it arrives at the floor and extinguish the indicator for a floor when it
leaves a floor or arrives at a different floor. This signal is sent by the program’s loading the
number of the floor indicator into the appropriate memory-mapped output register (there is

one register for each elevator).

67

Step3: Brainstorming

In this step, the team starts design solutions. Brainstorming is done on the problem domain
2bcve mentioned. Requirements, control events, exceptions, potential viewpoints and ary

possible data inputs related with the problem domain are jotted down.

A model result of the Brainstorming according to Elevator Control System is represented

in figure 4.5.

BRANSTORMING

-

controller

Summon _,/
Button
inati F Passen,
Destination Destination
panel

Figure 4.5 Brainstorming

Step 4: Scoping:

In this step, the data found out in Brainstorming step are transferred to the Scoping areas
and boundaries of the problem domain are tried to be defined. Scoping diagrams bring

discussions back to the relevant topics and provide a focus for the team.

68

The team members try to fit the data to three areas in the scope namely: major area,

related areas and unrelated areas or let the data lie outside the boundary.

- Major topics that fit within the scope are identified and written inside the biggest
circle.

. Related topics are represented inside the small circles.

BRANSTORMING

Destination
panel

Motor

Fary &2

controlor
Summon
Button

|

I
N

Elevator

\
Elevator id
1 Floor state
m Direction
Motor | Overweight Sensor Panel
| { \

controller y Arrval Panel

i
\ Arrival event \[
Arrival

button

Passenger

Related Areas

Figure 4.6 Data Transfer from Brainstorming to Scoping phase

69

Step 5:Context Diagram.

Data previously chosen from the Scoping diagrams are transferred to the related areas.
Transactions between diagrams are shown by labelled unidirectional arrows as between
“Floor” and “Elevator”. The “basic elevator process” is described by the steps listed. For
example the relationship of the “Elevator” with “Floor” is such as “Elevator Direction” is sent

to “Floor” from “Elevator” and as a result “Floor Status” is sent to “Elevator” from “Floor”.

SCOPING

Main Area

Elevator

Elevator id
Floor state
Direction

Overweight Sensor

Motor
Motor
controller

Qanl
_/ i) 4
RelatedAl‘eAi M \
\ \

N\
CONTEXT DIAG
Elevator \
Elevator id

Floor state
Elevator Direction

n \ Elevator Status
N\)

4

7/
f 4

Destination
Event
Destination Id

/ Destination pendin

Destination Panel
Destination Button
Destination Light

Floor

Floor sensor o
Destination Status

Floor Status

Arrival Panel
Arrival Id

Arrival Button
Arrival Light

Figure 4.7 Data Transfer from Scoping to Context Diagram Phase

70

Selection of the entities on the diagrams illustrate the primary subjects of analysis,

transactions reflect the team’s top considerations for the design. In a way, they interpret the

focus of analysis and design. Data transfer among Brainstorming, Scoping and Context

Diagram phases are shown in Figure 4.8

BRANSTORMING

Summon Button

Arrival Panel

.

Ja

M

Motor
Motor

canteallad
contreller

SCOPING

in Area

Elevator

Elevator id

Floor state
Direction
Overweight Sensoyp

Related Areas

Floor Status

Floor sensor

Artival
Arrival Id
Arrival Button

Elevator

Elevator id
Floor state

Floor SV
Elevator Direction

Elevatgr Status

Destination Event

Destination Status

Panel

Destination Panel
Destination Button
Destination Light

Destination Id

Destination pending

Figure 4.8 Data Transfer among Brainstorming, Scoping and Context Diagram

4.6 EARLY DESIGN TOOL (EDT)

EDT has been developed for a team of software program developers so that they can
enter information from each workshop meeting and develop early project design. It is
modelled [Appendix A] by the graphical representation of the Unified Modelling Language
(Booch, 1997) and developed by the Programming Language of Visual Age for Java ver2.0
[Appendix C].

Step1: Initiating

Let’s imagine our team consists of 3 people. The information is entered into the tool by
one member. The program is followed on the display projector or monitor projection panel by

the other members.

The main window is called “Workshop”. Main window is not enabled at the start of the
session. A project name must be entered by using the menu items. You can enter data into the
main window afterwards.

e Ifanew project is going to be created, “New” item is selected.

e [fan existing project is to be continued, the item “Open” is selected.

WORKSHOE

TR TR e RN & R

Fronien Damsm i :
Date: : =

&

- r——‘m HEU Disgraws g
% | 3
- ok |

i

ﬁfm %\im;wggﬂ J

E—_

¥
i

Starting the Workshop

1. To start the Workshop the “New Workshop” right button is clicked the bottom
of the screen. When the New workshop button is clicked “Workshop No” will
automatically be assigned a value of 1. Then the other workshop information
can be entered: Date, Start Time, End Time, Purpose, Participants. Finally the
workshop is saved by the “Save Workshop” button which is the one at the

bottom left of the screen.

2. If another new workshop is wanted to be start, “New Workshop” button is

clicked again. This time “Workshop No” will be assigned a value of 2.

3. To display the existing workshop, the number of the workshop is chosen from
the choice box and then the “Find Workshop” button is clicked. The workshop

information is then displayed.

73

Step2: Problem Domain

The Problem domain button is clicked on the Main Window (Workshop) in order to enter
the Problem Domain Window. The data is entered by the same way in the Workshop
Window. Firstly the “New Domain” button is clicked and then the choice box is assigned
a value of 100. (In the Problem Domain Window numbers start with 100). After the data

entry is finished, it is saved.

Step 3,4,5: Brainstorming, Scoping and Context Diagram Window (BSC Diagrams)

LI e wm b

“BCS Window”.

The beans we would like to drag are chosen from the tool box located on the upper far left
corner of your screen.

To cerate a text field - click our button

To cerate a text area - click Explicit button

To cerate arrows — click Transitional Bean

74

Step3: Brainstorming

Brainstorming bubbles are represented by the text fields in the program.
For creating a Text Field, the “Our Button” is clicked on the ToolBox Window and the
mouse is clicked once again on the BeanBox Window.

The Text Fields can be moved around the BeanBox Window.

75

Step 4: Scoping

The data in the Brainstorming text fields is transferred to the Scoping text area.

In the Scoping phase related and unrelated areas are colour coded. Related boxes are the
same colour:

Major area: Red

Related areas: Blue

Unrelated areas: Yellow

T'he colours of the bean are changed on Properties Bean Box Window.

3.

Under Scoping, each data written under Brainstorming may be used again in more than

one box.

Step 5:Context Diagram.

Entities which are previously chosen from the Scoping diagrams are transferred to the
related areas in the Context Diagram phase.

In this phase, the data written in the Scoping phase can be transferred into only one box.
The text areas in the Context Diagram phase are identical and are the original colour.

The Relationships between Context Diagram text areas are represented by arrows.

Fivor sensor

4.7 Suggestions for Further Research on the Tool EDT

In this study, we tried to provide an insight into the ways of managing teamwork and
developed a support tool on which the teams can develop a software design. The tool offers
you a path from Analysis to Design. Final diagrams in our tool EDT illustrate the primary
subjects of analysis and the transactions reflect the teams’ top consideration for the design. In

a way, they interpret the focus of analysis.

Future work of the tool:

e The tool can help to find out classes and objects in Object Oriented Programming
Language.

e Transferring the final diagrams of our tool to CASE tools can play a very significant
role for the Object Oriented development.

¢ In most of the Team Design Methods a facilitator is a prerequisite, because they are so
complicated that a specialist is needed for application. Our suggestion is to add the
roles of the facilitator to the tool. Thus, the tool can guide the teams and the

teamworks. As a result, the absolute need for the facilititator is vanished.

77

CHAPTER FIVE
CONCLUSION

Scftware development is a complex activity that requires a group of individuals working
together effectively as a team. In our study on effective teams and their role in software
development, we have identified a number of characteristics that such teams possess. These
characteristics differentiate effective teams from the others and cause their individual
members to outperform. Effective team features are having a small team size, common
approach and goals, a team spirit, and having highly motivated, skilled and committed
members working in harmony. To observe the characteristics within real software teams, we

have chosen Microsoft Company as a case study.

Achieving effectiveness is a challenging task. As computer systems become more
complex and business emphasis is more on quality and productivity, discussions are not
documented properly, roles are not clearly defined, forgoiten or misunderstood commitments
cause conflicts within communication structure and this interrupts healthy teamwork. Even
1 some teams possess effective team properties, they may fail. When a group of people
are brought together important things to be considered are how to engage them to do work as
a team, achieve collaboration among them, document decisions and start design (Jones, 1998).
Another prerequisite for a successful software product is a good design. A good design
increases the quality of the software and reduces the cost by defining the possible problem

areas.

78

For an effective software design, a number of life cycle models have been defined.
Common phases in most of the life cycle models are Planning, Requirement Definition,
Design and Implementation. However, life cycles do not provide the activities called Early
Design Meetings where the team members discuss the project plan, requirements and develop
solutions. With these meetings a very useful ieamwork atmosphere is created and thus an
immediate motivation is accomplished. Members get to know each other and also the roles
and the tasks of the members are defined. Therefore we studied existing team design
methodologies addressing both social factors and design solutions. These are Joint
Application Design (JAD), Rapid Application Development (RAD), Participatory Design
(PD) and Team Design (TD).

We observed that today’s computer world is not aware of the importance of Early Design
Meeting activities and also there is no tool supporting Early Design Meetings. Therefore we
decided to develop a tool as a support system for Early Design Meetings. We designed our
tool for Early Team Design Meetings according to Team Design (TD) Method. We chose TD
method as a base because this method includes JAD and PD. This tool addresses the
following advantages:

® Decreasing the loss of information

e Transferring data safely

e Saving time

e Transferring the data into CASE tools easily

e Supporting effective team work by being user friendly

e Lessening the problem of software complexity

¢ Providing a path to program developers from Analysis to Design.

In this thesis, we tried to provide an insight into the importance of managing teamwork
and software design and then introduced the Early Design Tool (EDT). In developing such a
tool we aimed firstly to help the teams to get rid of the struggles they have, secondly, to

improve the quality of software with the advantages mentioned above.

Future development of EDT will include class and object selection in Object Oriented
Programming Languages and the transfer of final diagrams to CASE tools to prevent

information loss.

REFERENCES

Aktas, A M. (1997). Grup Siireci ve Grup Dinamikleri. Istanbul: Sistem Yayincilik

79

Arthur, L.J. (1992). Rapid Evolutionary Development :Requirements, Prototyping & Software

Creation. New York: John Wiley & Sons.

Bales, R.f. (1950). Interaction Process Analysis: A method for study of smll groups. Reading,

MA: Addison-Wesley.

Bjerknes, G, Ehn, P., & Kyng, M. (1987). Computer and Democracy: A Scandinavian

Challenge. Aldershot, Avebury, Great Britain.

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs NJ: Prentice-Hall.

Booch, G. (1994). Object-oriented Analysis and Design with Applications. Redwood City

CA: Benjamin Cummings.

Brogoks, F P (1987).

N’
I'n
(Vs
172
4
—
le]
']
faV]
-
—
3>
&)
Q.
[@N
@
=
[72]
@]
oY
w2
@]
o e}
b=
£
Lm)
[¢’]
es]
3
\JS.
=
(4%
q"]
=
=
us
gl
m
)
o]
3
=]
=
L
[¢']
I
[\
o

10-19.

Carmel, E., Whitaker, R. D., & George, J.F. (1993). PD and Joint Application Design: A

transatlantic Comparison. Communications of ACM, 36, 4

Cartwright, D., & Zander, A. (1960). Group dynamics: research and theory. (2™ ed).

Evanston, IL: Row, Peterson and Company.

80

Coad, P, & Jourdan, E. (1991). Object Oriented Analysis. Englewood Cliffs NJ: Prentice-
Hall.

Curtis, B. (1990). Managing the real leverage. American Programmer, 3, 4-14.

Cusumano, M.A., & Selby, R W. (1995). Microsoft secrets. New York, NY: The Free Press.

Damian, A, & Hong, D, & Li, H, & Pan, D. (1998). Canada: University of Calgary.

DeMarco & Lister, (1987). Peopleware: Productive projects and teams. New York, NY:

Dorset House.

Demirors, E. (1995). A Blackboard framework for supporting teams in software development.

PhD Dissertation, Southern Methodist University, Dallas, Tx.

Demirérs, E., Sarmagik, G., & Demirors, O. (1997). The Role of Teamwork in Software

Development: Microsoft Case Study. IEEE: Euromicro’97 Conference.

Ellis, C.A., Gibbs S. J., & Rein G. L. (1991). Groupware: some issues and experiences.
Communications of the ACM, 34, 38-58.

AAAAAAA

Feld, S.L. (1982). Structural determination of similarity among associates. American

Sociological Review. 47. pp:797-801

Hackman, J. R. (1990). Groups that work (and Those That Don’t). San Fransisco, CA: Jossey-

Bass Publishers.

Harkins, S .G, & Szymanski, K. (1987). Social loafing and social facilitation: New wine in

old bottles. Review of Personality and Social Psychology: Group Process and intergroup

relations. 9, pp:167-188

81

Tiarris, G. B, &Taylor S. (1996). Participatory Design Using the Action Workflow Model.
Workshop on Strategies for Collaborative Modelling and Simulation, Conference on

Computer- Supported Cooperative Work, Boston, MA_

Heermann, B. (1997). Building Team Sprit: Activities for Inspiring and Energising Teams.

New York: McGraw-Hill.

Jacobson, 1., Cristerson, M., Jonsson, P., & Overgaard, G. (1992). Object-Oriented Software

Engineering: A Use Case Driven Approach. New York: Addison-Wesley.

Jones, P.H. (1998). Handbook of Team Design. New York: McGraw-Hill.

Katzenbach, J. R., & Smith, D. K. (1993). The Wisdom of teams. Boston, MA: Harvard

Business School Press.

Kerr, N.L. (1986). Motivational choices in task groups: A paradigm for social dilemma

research. W.Ike. pp:1-27

Latene, B. (1981).The psychology of social impact. American Psychologist. 36, 343-356

McCarthy, J. (1995). Dynamics of software development. Redmond, WA: Microsoft Press.

Muller, M. J., Wildman, D. M, & White, E. A. (1993). Taxonomy of PD Practices: A Brief

Practitioner’s Guide. Communications of ACM., 36, 4

Patterson, M.L., & Schaffer, R.E. (1977). Effects of size and sex composition in interaction
distance, participation and satisfaction in small groups. Small Group Behaviour. 8, pp. 433-

442

Patterson, A.H. (1986). Scientific jury selection: The need for a case specific approach. Social

Action Law. 11, pp: 433-442

%?a%mmw MR

82

erry, E., Votta, L. G. & Staudenmayer, N. (1994, July). People, organizations, and process
improvement. [EEE Software: pp.38-44

Porter, N., Geis, F.L., Cooper E., & Newman, E. (1985). Androny and Leadership in mixed

sex groups. Journal of Person Social Psyclogy. 49, pp: 808-823

Ross, R. S. (1989). Small groups in organizational settings. Englewood Cliffs, NJ: Prentice-
Hall.

Royce,W.W. (1970). Managing the development of large software systems: concepts and
techniques. IEEE WESTCON, 9, 1-9.

Shaw, M. E. (1976). Group dynamics: the psychlogy of small group behavior. (2™ ed.). New
York: McGraw Hill Inc.

Scholtes, P. (1988). The Team Handbook. Madison, Wis.: Joiner Associates.

Sommerville, I. (1995). Software Engineering.(5™ ed.). Addison - Wesley Publishing

Company Inc.

Stasser, G., Kerr, N.L., & Davis, J H. (1989). Influence process and consensus models

decision-making groups. Paulus, pp: 279-326.

975). Seeking information about one’s own ability as a determinant of choice

among tasks. Journal of Personality and Social Psychology. 92, pp:1004-1013

Tziner, A., & Eden, D. (1985). Does the whole equal to the sum of its parts?. Journal of
Applied Psychology, 67, 769-775.

——2

Yourdon, E. (1996). Rise and resurrection of the American programmer. Upon Saddle River,
NJ: Prentice-Hall.

Wood, J. & Silver, D. (1995). Joint Application Development. New York: John Wiley & sons.

83

APPENDIX A
INSTALLING THE “EARLY DESIGN TOOL (EDT)~

A.1 EDT Use Case Diagrams

The Tool EDT is designed by “Rose Java 98™ Edition” using the graphical representation
of the “Unified Modelling Language” [Booch, 1997].

Maintain Worksop information
A
Select Workshop to evaluate
7

=
Select Problem Domain

Team member
Submit Brainstorming

Constitute the Scoping

Constitute the Context Diagram

A.2 EDT Packages

EDT

- BSC-Diagrams

84

A.3 EDT Class Diagrams

<<Entity>>
MainData
& priName
@:‘:WorkshopNo
& date
& startTime
{PendTime
&> purpose
@ participants
& fileName

“.getPrjName(
“.getWorkshopNo()
"::%getDate()
“getStartTime()
“igetEndTime()
“getPurpose()
“LgetParticipants()
“getFileName()
~setPriName()
“setWorkshopNo()
“setDate()
“setStartTime()
“setEndTime()
“setPurpose()
“setParticipants()
“setFileName()

*

<<Boundry>>
MainWindow

& priName

B date

& startTime
&-endTime
@ﬂ:padicipants
@‘,.,workshopNo

CnewFile()
“openFile()
“saveFile()
“saveAsFile)()
‘:szstemexit()
“createMyHash()
“findMyHash()
“oadMyHash()
“LaddMyHash()
UsaveMyHash()
“newWorkshop()
“TbPrbWindow_ActionPerformed()
“beanBox()
“Show2()
“wchoiceUpdate()
SclearSome()
“clearAll()

< v
<<Entity>> * 4
MyhashTable
Brintkey = 0
& prbkey = 100

<<Boundry>>
BSC-Diagrams2

ot

<<Boundry>>
PrbWindow
@?pmNo
& praName
& prbDomain

T ZaddMyHash()

1.> “saveMyHash()
“newPrbWindow()
“uchoicePrbUpdate()
“clearAll)
“show?2()

RO P
<<Entity>>
PrbData

B prbNo
&-prbName
&+prbDomain

“getPrbNo()
“getProName()
“getPrbDomain()
1.+ setPrbNo()
“setPrbName()
LgetProDomainl

85

A.4 “BSC-Diagrams” Class Diagrams

<<Boundry>> <<Boundiy>>
MainWindow o BSC-Diagrams
rom EDT) 1 1
<<Boundry>1 1 <<Entity>>
ToolBox BeanPropertys
<<Entity>:1 l:<Entity>>
ToolBoxPanel ToolBoxScrollPane
1
<<Entity>>
Buttons
A4
1 1

*
*
-

1

| TN A N T
A Pll ANV IRRW]

& textArea

s WP o S R,
AUTD UL
2 textField

& transitionalArrows

36

APPENDIX B

INSTALLING THE “EARLY DESIGN TOOL (EDT)”

B.1 Installing The “Early Design Tool (EDT)”

Visual Age for Java ver2.0 must primarily be installed.

Use the command “Import” from the “File” menu under the Visual Age for Java main

window to start the installation of the program “EarlyDesignTool”.

JWorkbench

- 3 Class: EDT: MainWindow
4Package EDT 0
§Cfass EDT MainBrata ™ -
- B Praject EapDesignToal

87

88

3. From the dialog window choose “Repository” then press “Next” to go to the next step.

4. Write the install file path and name next to “Repository Name:”

what you want to import.

. Choose projects as to

Hepostopname: [ANEDT dat
What do pouward to import?
& Projcts :

ey F‘agkageé

89

5. Click on to “Details” (figure above) to open the “Project import” window (figure below)

so that you can select the project and its version. You have now imported the program to
the Visual Age For Java repository.

g,} Project import

Select the profect versions ta import
Projects Versions avaiable

B E aiDcian o P | AR

L Al e

T proiects, 1 versions selected

]——cm—j Cancel |

6. To be able to see the project under the VisualAge for Java main window you have to

3
]
n
o=y
@]

2
el
]
"

F

i3

n

R

;%

o

]
3
e
=
D
i
aQ
=
—
i3

ouse button somewhere empty on
the window. From the menu that appears click “add” and then click “project”.

o) Wortkbench
Fie Edit ‘Workspace

=

Selected Window. Heln

%@Aﬂproiects
1+ AHasha 1.3
1% g AHaehS 1.53
15 =9 AHashBi23/08/9517:31:21)
1559 Ayapti 1.0 :
14 23 BEANTASIDTAO7/99 161235
1% 53 Brainstoming 1.0

12 ¥ Catisma 1.2

1+ =4 Calismallass 1.1

5 B Calismatash 1.2

o CDEN e o M e LS € TV T vt

MR

b Ada apioiect o the warkspages:. ;.

7. From the Add Project Dialog Window select “Add projects from repository”.

From the project list that appears select the program name and version (which for our case is
the “Early Design Tool”).

T Create a new project named:

r

& Add proiects from the repositon
Available proiect names Avaijable editions

— -]

" IBM Domino E xamoles)

BB (B (DE Uiy clas s Tbsane

- 11 1BM Java Examples “_}
71 Sun class fbraries UNIX

" Sun JOK Animatey

unJDK ArcTagt

File

ect

Y

Edit Workspace Sel

: @,Pmﬁa&:; i

=

TP AL POty

o £N E12AD4/05/93 110153} .
$4: 59 E14104/06/99 10:48.52)

- EarlyCesant ool 1,18 E
‘# 2G IBM Java implsmeantation 2.0
+ 2% Java class libraries 1.1.6

#: 29 JFE class libaries 1.02
#0525 My Tobotist Project 1.1

2% Sun BDK Examples(01/07/39 17:30:09
£ 5 Sun class brades PM Win3Z 116

| EatyDesignToal ¥

91

B.2 Starting the Program

1. From the main window of “Visual Age for Java”, the project of “Early Design Tool” is

selected. You see in the below figure the project and related packets.

FalWorkbench

<S5 All Piojects +i
+ £ E12(04/06/93 11:01:59] T T =4
£ E£14(04/06/39 10:46:52). ‘
“:_3, Emfyﬁeslgn’foan 12

x5 (57 mbeanbox 23
i 3 sunbeanbcx stmplexesoutce 2 0
ZF sur.beanbor 207
ok £73- sunw. derio buttans 2, 3,
EF sunw.demo. classiile 2.0
Riw o szmw demo. dsfegetor Z B
+ 53 _sUr. demo_encapsuiatadE vents. 2 1
53 surwe.dematransitional 25
k(T3 surwe wrapper 2.0

BM Java }mp‘ementabon ZD
Java class libraties 1.1.6 7.

T oo By Seimn o
UFC class forades 1.02

‘.531
55
=5

2. The first package EDT is selected from the project menu of the “Early Design Tool”. Then

the “Run” command is started from the tool bar. This opens a dialog box.

Run

P idPoecis -
& S £12{04/06/99 11:01:59)
s S D14{04/05/39 10:45:52]

Chonse an executabie class: o " - S d
Patein (3 = any character, “ = any ating) ’

~ 4 SahDesignTool 112 [A -
+ AR Ry Tupe Names: e :
© + 17F wnbeanbox 2.2 M ainw rdow
Prowindow

+ (7F sunbesrbox smpletesource 2.0
+ 73 surw bearbox 210
+ EF survs.damo butons 2.3
-2 3 sunw.dema.classite 2.0
+ (T3 sunw.demo deiegstos 20
+ €33 sunwe.dema, encapsuistecE vents |
« &% surw.dema.transtional 25
5 surwemapper 20
 » 55 8¢ Java Imol i
w 5F Java class ivaries 1,1.8
5§ JFC clacs ibuavies 1.02

Packags Names:

] o |

[ectin -

?‘Slani DLOQ 1 Y Microsolt Werd Eallyces.vj ,’ngkbanch

3. One other alternative is selecting “MainWindow™ and clicking on “OK”. Which starts the

program.

w S Javaclass i

i -

U Workshop N ‘ “I

" stnTime: [T
- End Time:] :

Purpose: J b

i S BM Javalmpl

'7 7' dPémc:p-}

& S JFC closs Bora

Chéase an sxecutable dlass: L
- Pattermn (# = any chatacter, * = any stting) - -
f

TypeNames

14 2o indcis
Privindow

 Packdge Names.

 WORKSHOP

ctMame: { -

—

s |

‘j&SeopingACome D |-

Participants: |

APPENDIX C
EDT PROGRAM CODE

This codes created in VisualAge For Java ver2.0.

C1. MainWindow

import MainData;
import PrbData;
import PrbWindow;
import sun. *;
import sunw.*;

public class MainWindow extends java.awt.Frame implements java.awt.cvent. ActionListener,
java.awt.event.ItemListener, java.awt.event. WindowListener {
private java.awt.Panel ivjContentsPane = null;
private java.awt.Label ivjLDate = null;
private java.awt.Label ivjLEndTime = null;
private java.awt.Label ivjLPrjName = null;
private java.awt.Label ivjLPurpose = null;
private java.awt.Label ivjLStartTime = null:
private java.awt.Label iviLTitle = null:
private java.awt.Label ivjL WorkshopNo = null;
private java.awt.Label ivjLParticipants = null;
private java.awt.Choice ivjCWorkshopNo = null;
private java.awt. TextArea ivjTAParticipants = null;
private java.awt. TextField iviTFDate = null;
private java.awt. TextField ivyTFEndTime = mull;
private java.awt. TextField ivyTFPrjName = null;
private java.awt. TextField iviTFPurpose = null;
private java.awt. TextField ivjTFStartTime = null;
private java.awt. MenuBar iviMainWindowMenuBar = nuil;
private java.awt.Menu iviMenu = null;
private java.awt.Menultem iviMIExit = null:
private java.awt.Menultem iviMINew = null;

vvvvv o+
privatc java.awt. Menultem iviMIOpen = null;

private java.awt. Menultem ivjMISave = null;
private java.awt. Menultem ivjMISaveAs = null;
private java.awt.Button iviBBean = null;

private java.awt.Button iviBPrbDomain = null;
private String fileName=null:

MyHashtable aMyHashtable = nuli;

private MainData aMainData=null;

private java.awt.Button ivjBAddWorkshop = null:
private java.awt. Button iviBFindWorkshop = null:
private java.awt.Button iviBNewWorkshop = null;
private int intkey;

private int prbkey:

-’

public void newFile() {
Java.awt FileDialog dialog = new java.awt.FileDialog(this, "Save...",
Jjava.awt.FileDialog. SAVE):

dialog.show();

fileName = dialog.getDirectory()+dialog. getFile();
String file=dialog.getFile():
dialog.dispose();

if (file = null) {

saveMyHash(fileName);
getMISave().setEnabled(true);
getMISaveAs().setEnabled(true);
getContentsPane().setEnabled(true);

getCWorkshopNo().removeAll();
clearAll();

intkey=0;

prbkey=100;

3
5

e

public void openFile() {
java.awt FileDialog dialog = new java.awt FileDialog(this, "Save...",
java.awt.FileDialog. SAVE);

dialog.show();

fileName = dialog.getDirectorv()-+dialog. getFile();
String file=dialog.getFile();
dialog.dispose();

if (file = nulil) {
getCWorkshopNo().removeAll();

loadMyHash(fileName);
getMISave().setEnabled(true);
getMISaveAs().setEnabled(true);
getContentsPane().setEnabled(true);

clearAll();

-

94

public void saveFile() {

saveMyHash(fileName);

public void saveAsFile() {
java.awt FileDialog dialog = new java.awt.FileDialog(this, "Save...",
Java.awt FileDialog SAVE):

dialog.show();

String fileName = dialog.getDirectory()+dialog. getFile();
String file = dialog.getFile();
dialog.dispose();

if (file != null) {
saveMyHash(fileName);

H
retur;

public void systemexit() {
System.exit(0);
return;

S~

pubilic void createMvyHash() {
aMyHashtable = new MyHashtable();

k)
§

public void findMyHash() {

String userkey=getCWorkshopNo(). getSelectedItem();
aMainData=(MainData)aMyHashtable. get(userkey);

getTFPrjName().setText(aMainData. getPrjName());
getTFDate().set Text(aMainData. getDate());
getTFStart Time().setText(aMainData. getStart Time());
getTFEndTime().setText(aMainData. getEnd Time());
getTFPurpose(). setText(aMainData. getPurpose());

getT AParticipants().setText(aMainData. getParticipants());

95

public void loadMyHash(String fileName) {

try {
java.io.ObjectInputStream in = new java.io.ObjectInputStream(new
Java.io FileInputStream(fileName)):
aMyHashtable=(MyHashtable)in.readObject();
this.intkey=aMyHashtable.intkey;
choiceUpdate(this.intkey),
this.prbkey=aMyHashtable.prbkey;

}catch(Exception ¢){
e.printStackTrace();

3

public void addMyHash(String fileName) {

MainData aMainData=new MainData();

aMainData. setPrjName(get TFPrjName().getText());
aMainData.setWorkshopNo(getCWorkshopNo(). getSelectedItem());
aMainData setDate(get TFDate().getText());

aMainData.setStart Time(get TFStart Time().getText());

aMainData setFEndTime(getTFEnd Time(). getText());
aMainData.setEndTime(get TFEnd Time(). getText());

aMainData setPurpose(get TFPurpose(). getText());
aMainData.setParticipants(get T AParticipants().getText());

String userkey=getCWorkshopNo(). getSelectedltem();
aMyHashtable.put(userkey,aMainData);

saveMyHash(this fileName);
}

T

pubiic void saveMyHash{String filcName) {

S~

aMyHashtable.intkey=this.intkey;
try {
java.io.ObjectOutputStream out = new java.io.ObjectOutputStream(new
java.io. FileOutputStream(fileName));
out.writeObject(aMyHashtable):
out.close();
ycatch(Exception €){
e.printStackTrace();

.
s

96

public void newWorkshop() {
intkey++;
getCWorkshopNo().addltem(new String().valueOf{intkey));
clearSome();

-

public void bPrbWindow_ActionPerformed(java.awt.event. ActionEvent actionEvent) {

PrbWindow PrbWindow! = new PrbWindow();
ProWindow1.show2(aMyHashtabie, fileName);

return;

Nt

public void beanBox() {
sun.beanbox.BeanBoxFrame BeanBoxFramel =new sun.beanbox.BeanBoxFrame();
Smﬂg[] argv={""};
BeanBoxFramel.main(argv);

—~—

public void show2(Object p_hash, String fileName) {
aMyHashtable = (MyHashtable) p _hash;
this.fileName=fileName;
show();

—-

public void choiceUpdate(int intkey) {
for (int i=1;i<=intkey;i++){
getCWorkshopNo().addItem(new String().valueOf(i});
L

—

97

bublic void clearSome() {

getTFDate().setText(" ");

get TFStant Time().setText(" ");
get TFEndTime().setText(" ");
getTFPurpose().setText(" ");

public void clearAll() {
getTFPrjName().setText(" ");
getTFDate().setText(" "),
getTFStart Time().setText(" ");
getTFEndTime().setText(" ");

getTFPurpose().setText(" "),

getT AParticipants().setText(" "),

Nt

getT AParticipants().setText(" ");

98

FZ. MainData

import java.util Hashtable;

class MainData implements java.io.Serializable {
private String prjName:

private String workshopNo:

private String date:

private String startTime:

private String endTime;

private String purpose:

private String participants;

private String fileName;

public String getPrjName() {
return prjName;
¥

public String getWorkshopNo() {
return workshopNo;
h

public String getDate() {
return date;
h

public String getStartTime() {

return startTime;

}

public String getEndTime() {
return endTime;
}

public String getPurpose() {

return purpose;
IS
]

public String getParticipants() {
return participants;
3

public String getFileName() {
return fileName;

1,

s

public void setPrjName(String newValue) {
this.prjName = new Value;
3

public void setWorkshopNo(String newValue) {
this.workshopNo = newValue;

3

99

ublic void setDate(String newValue) {
this.date = newValue;
b

public void setStartTime(String newValue) {
this.startTime = newValue;
¥

public void setPurpose(String newValue) {
this.purpose = newValue;

H

public void setParticipants(String newValue) {
this participants = newValue,
}

public void setFileName(String newValue) {
this.fileName = newValue;

h

100

C3. PrbWindow

import PrbData:

private java.awt.Panel ivjContentsPane = null;
private java.awt.Label ivjLPrbDomain = nulil;
private java.awt.Label ivjLPrbName = nuil;
private java.awt.Label ivjiLPrbNo = null;

private java.awt. TextArea ivjTAProDomain = null;
private java.awt. TextField ivjyTFPrbName = null;
MyHashtable aMyHashtable = null;

private PrbData aPrbData=null;

private java.awt.Button ivjBAdd = mull;

private java.awt.Button ivJBFind = null;

private String fileName=null;

private int prbkey;

private java.awt.Choice ivjCPrbNo = null;
private java.awt.Button ivjButtonl = null;

public void addMyHash(String fileName) {

PrbData aPrbData=new PrbData();
aPrbData setPrbNo(getCPrbNo(). getSelectedItem());
aPrbData.setPrbName(getTFPrbName().getText());

aPrbData.setPrbDomain(get T APrbDomain(). getText(});

String userkey=getCPrbNo().getSelectedltem();
aMyHashtable. put(userkey aPrbData);
saveMyHash(this.fileName),

¥

public void saveMyHash(Siring fileNaine) {
aMyHashtable. prbkey=this. prbkey:
ry {

java.io.ObjectOutputStream out = new java.io.ObjectOutputStream(new

Java.o FileCutpuiSircam{fileName)),
out. writeObject(aMyHashtable);
out.close();
tcatch(Exception e){
e.printStackTrace();

}

Nt

public void newPrbWindow() {
prbkey++;
getCPrbNo().addItem(new. String().valueOf(prbkey));
clearAll);

—

public class PrbWindow extends java.awt. Frame implements java.awt.event. ActionListener,
java.awt.event.ContainerListener, java.awt.event. WindowListener {

101

Hpubnc void choicePrbUpdate(int prbkey) {
for (int i=100;i<=prbkey;i++){

}

]
f

public void clearAll() {

getTFPrbName().setText(" "),
getTAPrbDomain().setText(" "),

¥

public void show2(Object p_hash, String fileName) {
aMyHashtable = (MyHashtable) p_hash;
this.fileName=fileName;
this. prbkey=aMyHashtable. prbkey;

choicePrbUpdate(this.prbkey);
show();

}

getCPrbNo().addItem(new String().valueOf(i));

102

4, PrbData

class PrbData implements java.io.Serializable {

private String proNo;
private String prbName;
private String prbDomain;

——

public String getPrbNo() {
return prbNo;

,

s

public String getPrbName() {

return prbName;
1
]

public String getProDomain() {

return prbDomain;
1
Pl

public void setPrbNo(String newValue) {
this.prbNo = newValue;
¥

public void setPrbName(String newValue) {
this.prbName = newValue;
b

public veid setPrbDomain(String newValue) {
this.prbDomain = newValue;

}

103

S. BSC- Diagrams

import java.awt.*;
import java.awt.event. *;
import java.util. *:
import java beans.*;

public class BeanBoxFrame extends Frame implements LayoutManager, Runnable, ActionListener {

—

private static String tmpDir = "tmp";

private static boolean doShowTimes = false;
private static Thread focusThread,;

private static Component nextFocus;

private static BeanBoxFrame instance;

private static String clipDir = "tmp";

private static String clipFile = "beanBoxClip.ser";
private static String clipResource = "beanBoxClip";
private static String versionID = "BDK1.0 - March 1998";
private static String clipLabel:

private static String clipName;

private static boolean clipFromPrototypelnfo;
private static boolean quickStart = false;

private static boolean defineOnDemand = true;

private static BeanBox topBox;
private static Wrapper top Wrapper;
private static Wrapper currentFocus;

private static PropertySheet propertySheet;
private static ToolBox toolBox;

private static boolean hideInvisibleBeans;

import java.beans.*;
import java.awt.*:
import java.awt.event.®;
import java.io.*;

import java.util. Vector;

class ToolBoxPanel extends Panel implements Runnable, MouseListener {

private class Helper implements DoOnBean {

public void action(JarInfo ji. BeanInfo bi, String beanName) {
String label;
Image img = null:

BeanDescriptos bd = bi. getBeanDescriptor():

104

-t

debug("Helper.action; beanName: "+beanName);
debug(" beanName: "+beanName);

debug(” getName(): "+bd.getName()):

debug(" getBeanClass(): "+bd.getBeanClass());

Class beanClass = bd.getBeanClass();
if (beanName.equals(beanClass.getName())) {
label = bi.getBeanDescriptor().getDisplayName(),

img = bi.getlcon(Beanlnfo. ICON COLOR_16x16);

¥ else {
label = beanName;
int ix = beanName.lastindexOf('.");
if (ix >=0) {
label = beanName. substring(ix+1);
}
img = nuil;
h
addWithUniqueName(beanLabels, label);
beanNames.addElement(beanName);
beanicons.addElement(img);
beanJars.addElement(ji);
h
public void error(String msg) {
ToolBoxPanel.this.error(msg);
H
public void error(String msg, Exception ex) {
ToolBoxPanel this.error(msg, ex);
h
h

private Helper helper = new Helper();

Vector beanlLabels = new Vector();
Vector beanNames = new Vector();
Vector beanlcons = new Vector();
Vector beanJars = new Vector();
private int topPad = 0;

private int sidePad = 0;

private final static int rowHeight = 20;
private Thread insertThread = null;
private static boolean debug = false;
private Object pendingBean;

private String pendingBeanl abel:
private String pendingBeanName;
private boolean pendingFromPrototypelnfo;
private Frame frame;

private static Cursor crosshairCursor = Cursor. getPredefinedCursor(Cursor. CROSSHAIR _CURSOR);

private static Cursor defaultCursor = Cursor. getPredefinedCursor(Cursor. DEFAULT _CURSOR);

import java.io.*;

import java.util *;

import java.beans.BeanInfo;

import java.beans.BeanDescriptor;

import java.beans.Introspector:

import java.beans.PropertvEditor:

import java.beasis. PropertyEditorManager;
import java.beans. PropertyDescriptor;
import java.awt.*;

import java.lang.reflect. Method;

// Abstracts a bean property
class BeanProperty {

private boolean propertyHasChanged; //Arue if property has changed
private PropertvDescriptor pd;

private Method readMethod; // getter

private Method writeMethod; // setter

private Class property Type;

private PropertyEditor propertyEditor; // editor for property type

private Object property Value;

private Object bean; //bean that owns this property

import java.awt.*;

import java.awt.event.*;
import java.beans.¥;
import java.io.Serializable;
import java.util. Vector;

/**

* A simple Java Beans button. OurButton is a2 "from-scratch”

* lightweight AWT component. It's a good example of how to

* implement bound properties and support for event listeners.

*

* Parts of the source are derived from sun.awt.tiny. TinyButtonPeer.
*/

public class OurButton extends TextField implements Serializable,
MouseListener, MouseMotionListener {

private boolean debug;

private PropertyChangeSupport changes = new PropertyChangeSupport(this);
private Vector pushListeners = new Vector();

private String label;

private boolean down;

private boolean sized:

static final int TEXT XPAD = 12;
static final int TEXT_YPAD =38;

-~

106

import java.awt.*;

Lmport java.awt.event.*:
import java.beans.*;
import java.io.Serializable;
import java.util. Vector:

public class OurButton extends TextField implements Serializable,

MouseListener, MouseMotionListener {

private boolean debug;

private PropertyChangeSupport changes = new PropertyChangeSupport(this);

private Vector pushListeners = new Vector();
private String label;

private boolean down;

private boolean sized,

static final int TEXT XPAD =12;
static final int TEXT_YPAD = 8;

import java.awt. ¥;

import java.awt.event.*;
import java.beans.*;
import java.io.Serializable;
import java.util. Vector;

public class OurButtonTextArea extends TextArea immplements Serializable,

N

MouseListener, MouseMotionListener {

o)
private boolean debug;

private PropertyChangeSupport changes = new PropertyChangeSupport(this);
private Vector pushListeners = new Vector();

private String label:

private boolean down;

private boolean sized;

static final int TEXT XPAD = 12;
static final int TEXT_YPAD =8§;

107

%mpon java.awt.*;

private Color ourColor = Color.orange;
3
i

public boolean handieEvent(Event evt) {
if (evt.id == Event MOUSE_UP) {
if (ourColor == Color.orange) {
setColor(Color.green);
Yelse{
if (ourColor == Color.green) {
setColor{Color.red);
Yelse{
if (ourColor == Color.red) {
setColor(Color.blue);
yelsef
if (ourColor == Color blue) {
setColor(Color.orange);

b

}

}
return false;

3

public void paint(Graphics g) {
g.setColor(ourColor);

if (ourColor == Color.orange){

//Sola Ok
g.drawLine(20,10,50,50);
/Al uc
g.drawLine(50,40,30,50);
g.drawLine(50,50,40,50);
/1 Ust Uc
g.drawLine(20,10,20,20);
g.drawl.ine(20,10,30,10);

telsed

if (ourColor == Color.green){
/I Saga ok
g.drawLine(20,60,60,20);
//Alt Uc
g.drawlLine(50,20,60,20);
g.drawLine(60,20,60,30);
/MUst Uc
g.drawLine(20,30,20,60);
g.drawLine(20,60,30,60);

yelsed
if (ourColor == Color.red){

//Tki yana ok

ublic class TransitionalBean extends Canvas implements sunw.io.Serializable {

108

109

g.drawLine(20,10,100,10);

g.drawLine(20,10,30,20);
g.drawLine(20,10,30,1);

g.drawLine(100,10,90.20);
g.drawLine(100,10,90.1);

telsef
if (ourColor == Color.blue){

// Yukari-Asagi Ok
g.drawLine(20,10,20,100);
// Ust Uc
g.drawLine(20,10,10,20);
g.drawLine(20,10,30,20);
/I Alt Uc
g.drawLine(20,100,10,90);
g.drawLine(20,100,30,90);

}

// Main method for our internal Menultem handling thread.

public void run() {
for (;;) {
// Wait for an event.
ActionEvent evt;
synchronized (this) {
while (events.size() == 0) {
try {
wait();
} catch (InterruptedException 1x) {
}

}
evt = (ActionEvent) events.clementAt(0);

events.removeEiementAt{0);

i)
s

// now process the event.
v {
¥ catch (Throwable ex) {
System err.println("BeanBox caught exception "+ex+" while processing:
"+evt.getActionCommand()); System.err.printin(" msg: "+ex.getMessage());
if (ex instanceof ExceptionInInitializerError) {
ExceptionInlnitializerError ex2 =
(ExceptionininitializerError) ex;
Throwable ¢ = ex2. getException();
¢ printStack Trace();
h

deMenultem{evt);

—~

110

* This implements the "save" menu item. This stores away the
* current state of the BeanBox to a named file.
*
* Note: The format is builder-dependent.
*/
public void save() {
// Write a JAR file that contains all the hookups and a
// single serialized stream.
// Then, on load. read the components and mock-up the AppletStub.

FileDialog fd = new FileDialog(getFrame(), "Save BeanBox File", FileDialog. SAVE);
// the setDirectory() is not needed. except for a bug under Solaris...
fd.setDirectory(System. getProperty("user.dir"));
fd.setFile(defaultStoreFile);
fd.show();
String fname = fd. getFile();
if (fname == null) {
return,
)
String dname = fd. getDirectory();
File file = new File(dname, fname);

try {
// create the single ObjectOutputStream
File serFile = new File(serFileName(null));

/l we could use a JarEntrvSource here to avoid writing the ser file
FileOutputStream f = new FileOutputStream(serFile);
ObjectOutputStream oos = new ObjectOutputStream(f);
writeContents(00s);

o0os.close();

String{] hookups;

hookups = HookupManager. getHookupFiles();

String(] files = new String[hookups.length+1];
System.arraycopy(hookups. 0, files, 1, hookups.length);
files{0j = serFueNaime(nuil);

JarAccess.create(new FileQutputStream(file),
files);

; catch \Evr\aﬁhnh mz\ f
error("Save failed", ex)/

¥
b

W PRKFL §

‘%mammﬂ“ e

