DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

DEVELOPING A COMPUTER-AIDED
INSTRUCTION APPLICATION TARGETING
UNIVERSITY STUDENTS

by
Meltem YILDIRIM

April, 2013
iZMiR

DEVELOPING A COMPUTER-AIDED
INSTRUCTION APPLICATION TARGETING
UNIVERSITY STUDENTS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Doctor Philosophy

in Computer Engineering, Computer Engineering Program

by
Meltem YILDIRIM

April, 2013
iZMiR

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DEVELOPING A COMPUTER-AIDED
INSTRUCTION APPLICATION TARGETING UNIVERSITY STUDENTS”
completed by MELTEM YILDIRIM under supervision of PROFESSOR DR. ALP
KUT and we certify that in our opinion it is fully adequate, in scope and in quality, as a

thesis for the degree of Doctor of Philosophy.

Proﬂ%KUT
Supervisor
e I
Prof. Dr. Yalgin CEBI Assist. Prof. Dr. Reyat YILMAZ
Thesis Committee Member Thesis Committee Member

oo .0, Mudens Yod b 0r L s Enn AT
Examining Committee Member Examining Committee Member

e

Prof.Dr. Ayse OKUR
Director
Graduate School of Natural and Applied Sciences

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude my advisor, Prof. Dr. Alp KUT for his

guidance, support and friendship lead to the successful completion of my thesis.

I extend my thanks to the members of my committee, Prof. Dr. Yal¢in CEBI, and
Asst. Prof. Dr. Reyat YILMAZ for their useful comments and suggestions during my
study.

In addition, | would like to acknowledge the equipment support from the Dokuz
Eylul University BAP with 2011.KB.FEN.34 project number for my doctoral study.

Finally, I would like to thank to my all family; to my parents, Ayten and Mehmet
YILDIRIM for their support to date, especially to my partner, Aytek EKICI for his
contributions and his encouragement during my study and most special thank to my
little friend, Deniz EKICI for pretty gaps during the writing thesis and her luck.

Meltem YILDIRIM

DEVELOPING A COMPUTER-AIDED INSTRUCTION APPLICATION
TARGETING UNIVERSITY STUDENTS

ABSTRACT

Over the years, many various studies realized in education to support learning-
teaching process. Learning algorithm and programming depending on mental
concern is often complex and difficult to understand for students. In general, to
overcome those difficulties and help students had better understand the subject

several educational tools and methods have been developed.

In this study, the introduced model assists students and instructors. Students can
practice and assist themselves to learn algorithms and programming concepts.
Instructors can use the tool during their teaching classes and get inspired by the data
gathered. An educational tool named Algolyzer has been developed for this learner-
centered model. Algolyzer depends on finding a solution to implement an algorithm
for a predefined algorithmic problem. Students can create algorithmic steps using
visual interface that students do not face with programming language syntax issues
but only focus on the possible solutions. In addition to this, Algolyzer is also a helper
utility for the instructors with giving information about the miscomprehension parts
in the teaching process. Instructors can have detailed information on where students
need more help, what are the lacking parts using the detailed logs of student

activities.

The students of Dokuz Eyliil University Computer Engineering and Computer
Programming Department have used Algolyzer. Usage data has been examined and
evaluated at the end of the study and obtained results have been shared with the
instructors. The surveys that targeted the users of Algolyzer and model and the

feedbacks prove that support the learning process effectively.

Keywords: Programming learning, educational tool, simplify algorithm learning,

error detection, code generation.

UNIVERSITE OGRENCILERINI HEDEF ALAN BIiLGISAYAR DESTEKLI
BiR OGRETIM UYGULAMASI GELiSTIRME

0z

Ogrenme dgretme siirecini desteklemek iizere yillar ig¢inde bircok farkli ¢alisma
gerceklestirilmistir. Ogrenciler icin zihinsel islerle iliskili olan algoritma ve
programlamanin 6grenilmesi ¢ogu kez karmasik ve zor olmustur. Genelde bu
zorluklar1 asmak ve Ogrencilerin daha iyi anlayabilmesini saglamak i¢in farklh

metotlar ve egitim araclar gelistirilmistir.

Bu calismada, 6grencilere algoritma ve programlamanin 6grenilmesine yardimei
ve egitmenlerin de kendi 6gretim siire¢lerinde yardimci olacak ve toplanacak veri ile
esin kaynagi olusturabilecek bir model tanitilmaktadir. Bu 6grenici merkezli model
icin Algolyzer ad1 verilen bir egitim aract gelistirilmistir. Gelistirilen yazilim araci
onceden tanimlanmis bir algoritmik problemin algoritmasini gerceklestirerek
¢oziimiiniin bulunmasina dayanmaktadir. Ogrenciler programalama dilinin
sozdiziminden kaynaklanacak hata ve sorunlar ile karsilasmadan gorsel arayiizii
kullanarak algoritmik basamaklar1 olusturabilirler. Ayn1 zamanda Algolyzer egitim
stireci icerisinde kavranamayan boliimlerle ilgili bilgi verdigi i¢in, egitmenler icin
yardimc1 bir bilesendir. Sistemin 6grencilerin aktivitelerini kaydetmesi ile egitmenler
ogrencilerin daha fazla yardima ihtiya¢ duyduklari ya da eksik kalan boliimleri

hakkinda detayli bilgiye sahip olmaktadirlar.

Dokuz Eyliil Universitesi Bilgisayar Miihendisligi ve Bilgisayar Programciligi
Boliimlerinde bu uygulama kullanilmistir. Calismanin sonunda 6grencilerin kullanim
bigileri degerlendirilmis ve elde edilen sonuglar egitmenlerle paylagilmistir. Model
ve Algolyzer kullanicilarina yonelik yapilan anketler ve alinan geri bildirimler

ogrenme siirecine katki sagladigini gdstermektedir.

Anahtar sozciikler : Programlamay1 6grenme, egitim araci, algoritma 6grenmeyi

kolaylastirma, hata bulma, kod tiretimi.

CONTENTS

Page

PhD. THESIS EXAMINATION RESULT FORMcooiiiiiiiiie e i
ACKNOWLEDGEMENTS ..ottt i
ABSTRAGCT ..ottt st e bt s et bttt nr et re it s iv
OZ o ettt v
LIST OF FIGURES ...ttt e e nnnee e IX
LIST OF TABLES ..ottt X
CHAPTER ONE - INTRODUCTIONc.ciiiiiiceee et 1
1.1 Problem Definition ... 2
1.2 Contributions OF TRESIS.......c.viiiicee e 3
1.3 AIMS AN T8 SCOPEvviiiiiieie e 4
1.4 THeSIS OrganiZatIONccoviiiuiieiriiiiie e 5
CHAPTER TWO - LEARNING MODEL & RELATED WORKS.cccccovnnne. 7
2.1 CONSIIUCTIVISIM ...ttt 7
2.2 REIAIEA WOTKS ...t 8
2.2.1 Introducing Algorithm and Programming with Didactic Scenarios............... 9
2.2.2 ELP- Environment for Learning t0 Programccccovevnnnninsennnnenns 10
2.2.3 Web-Based Environment Depending on AcCtiVitiesS...........ccccceeeeeeccncnenns 10
2.2.4 Programming Teaching Tool with Filling Fields.............cccccoeeeiiciccnns 11
2.2.5 Simplifying Algorithm Learning Using Serious Games............cccocoevvrnenes 12
CHAPTER THREE - EDUCATIONAL TOOLS.......ccoi it 13
3.1 Educational Tool for Program Tracing:ProTracercccccoovvivvvvvviverereiereeenen 14
3.2 Educational Software: CGRAPHIC ... 15
3.3 Educational Tool for Understanding Algorithm Buildingcccccoovviiiinnnnes 16
3.4 TOOIS FOr OOP ...ttt 17
3.4.1 TeachingOOP: ObJeCtKarelccooeeiiiici e 17
3.4.2 TeachingOOP: AEIOU ... 18

3.5 Studies for Specific AlgOrthMS..........ccocoiiiii 18
3.5.1 Learning of Sorting AlgOrithms ..o 19

Vi

3.5.2 Learning Tool of Genetic AIGOrthmccoiiiiiiice 19

3.6 Evaluation and Comparison Of TOOIS..........ccceeirniiiiices e 19
CHAPTER FOUR - DESIGN AND IMPLEMENTATION OF NEW
INTRODUCED EDUCATIONAL TOOL: ALGOLYZER......ccccovvvviiririnnrnnn, 22

4.1 General SYStEemM DESIONccriiiiieieees s 22

4.1.1 Operational Level of SYStEM........cccooiiiiicee s 24
4.1.2 Infrastructural Level of System ..o 24
4.2 Library Module of AIQOIYZEN ..o e 25
A.2.0 PIOCESSON ...ttt ettt bbbttt ettt e b 25
£.2.2 SEIVICESveveteieieieieieie ettt ettt ettt s et e ettt sttt s 26
4.2.3 STALBIMENTS.......cuiieciee bbbttt 27

4.3 DAta MOAUIE ...t 28

4.4 COUE GENEBIALIONvvveieieieieiee ettt 29

4.5 Statement DetailScocoviiiiiiie s 30

4.6 USEI INTEITACE ...t 31
CHAPTER FIVE - CAPABILITIES OF ALGOLYZER.......ccooovieiiiiiiesciens 32

5.1 Developed Tool Position in Learning ProCeSS...........cooerrnniiirennnincereeeiens 33

5.2 Base Components Of INTEITaCecooviiiirniicee e 34

5.2.1 Problem Part of the Developed TOOI..........ccccoviiiiiine 35
5.2.2 Operation Part of the Developed TOOI............cccoeeiiiiiiiiiccee e 37
5.2.3 Code Part of the Developed T0Olcccceeeiiiiccceeeeee e 38

5.3 Multi Programming Language SUPPOITccoiieiririniieeieiniseseeeieieisese e 38

5.4 LaNQUAGE SUPPOIToviiiiiiiiet it 38

5.5 EFTOr DEIECHIONcovieiiccce e 39

5.6 The First Version of the Developed TOOI ... 41
CHAPTER SIX - RESULT AND EVALUATION OF ALGOLYZER USAGE.43

6.1 Engage Students to Use AIGOIYZET ..o 43

6.2 GeNEral STALISTICS ..o 44

6.3 Distributions of Students Errors During Programming..........c..ccccceeevveerereinenennn. 46

6.3.1 Error Distributions 0n Base TOPICS........ccourriiriieininiineeieissseseseisisseens 46
6.3.2 Error Distributions on Subfield TOPICS.......c.cccoiiiniiniierreeses 47
6.4 Individual Evaluation & Distribution of Multiple Errors...........ccccoevceeiiiennen, 50

vii

6.4.1 Apriori Algorithm RESUILcoiiiiiie s 51

6.5 Students Evaluation of AlgOIYZer ..., 54
6.6 General EVAIUALIONcccoiiiiieieicees s 58
CHAPTER SEVEN - CONCLUSIONScccooiiiieiesessee s 60
REFERENGCES ...t 63
APPENDICES. ...ttt ettt ne s 70
ALLiSt OF ADDIEVIATIONScocviiiiiiiceess s 70
B.Class Diagram Of AIGOIYZEr ...t 71
CLAIGOIYZEN USAGE ...t 73
D.Previous Version of The STUAY ... 76

viii

LIST OF FIGURES

Page
Figure 2.1 General view of application.cccooveiiiii i 11
Figure 3.1 Program tracing interface of ProTracer..cccooveveiieieeie v, 15
Figure 4.1 Main operations of general SYStEM.ccccvviiiriiiieienc e 23
Figure 4.2 General system views on operational levelccooiiiiniiiicnnn 24
Figure 4.2 General system frameworkscccocvveiiiie i 25
Figure 4.4 Class diagram Of PrOCESSOL..ccvieieiieeriieie e sie e se e 25
Figure 4.5 Services of AIQOIYZET. ..o 27
Figure 4.6 Statement CIaSSES.cc.oiiiiiiieriee e 28
Figure 4.7 Data Class diagram.ccccecvveiieiiiiieieese e 29
Figure 4.8 Generate COUE OF PrOCESSON........ucivieieiieieeie st 30
Figure 4.9 Statements and SUDTIEldS............ccooiiiiiiii 30
Figure 4.10 General view of developed tool.cocoiiiiiiiciene 31
Figure 5.1 Ratios of difficulties in programming...........ccccoeveveiieiieiie e, 32
Figure 5.2 Developed tool position in 1earning ProCess..........ccccvveveevieieesieerveseennenn, 34
Figure 5.3 Workflow of the base COMPONENTS..cccoiiiiriiiieie e 34
Figure 5.4 General VIeW 0f GULL. ... 35
Figure 5.5 Error detection MeChaniSM..coveiiiiiniiiiiiieeee e 39
Figure 5.6 Sample screen of error detection..ccccccevveiicieiec s, 40
Figure 5.7 An overview of previous version of application...............ccccccevvevieieenenn, 42
Figure 6.1 Error rates of base operations for Study A. ... 46
Figure 6.2 Error rates of base operations for Study B...........ccccceveiiieniiiniiiiieen 47
Figure 6.3 Error distribution based on the subfields for Study A.cccccoeveiienen. 49
Figure 6.4 Error distribution based on the subfields for Study B..ccccceevenneen. 50
Figure 6.5 Multiple error rates for Study A..ccooiiiiiiinie s 53
Figure 6.6 Questionnaire of Algolyzer USage..ccoovriririnieieie e 54
Figure 6.7 Students feedback on doing more practiCe..cccevvvevieiieeiie e 56
Figure 6.8 Students feedback on effectiveness of error messages..cccceevvvevuvenne. 56
Figure 6.9 Students feedback on support degree of dividing operations... 57
Figure 6.10 Students feedback on support degree of independent of PL................... 57
Figure 6.11 Students feedback on important feature of Algolyzer...........c.ccccocoun.e. 58

LIST OF TABLES

Page
Table 3.1 Features of previous educational tools in literature.cccccceevvevvinenn oo 20
Table 5.1 Problem repository of the SYSteM...........ccccvveviiii i 36
Table 5.2 Operation table.. ... 37
Table 5.3 Types of errors made by students during the programming.. 39
Table 6.1 Experimental groups of study asseSSMeNt.cccevvveeveeiesieseerie s oo 44
Table 6.2 General Statistics of System Usage for Study A.........ccccooevviveiccicieenen, 45
Table 6.3 General Statistics of System Usage for Study B.........cccooevvniiiiinins e 45
Table 6.4 Subfield error rates of StUAY A..cooiiiiii e, 48
Table 6.5 Subfield error rates of Study B.ccccoeiieiiiiccee e 49
Table 6.6 Relations of multi errors and rates for Study A..cccccceevvevieeieiiece e, 51
Table 6.7 Relations of multi errors and rates for Study B..cccoconininiiiiciennn, 54

CHAPTER ONE
INTRODUCTION

Over the years many various studies realized to support learning-teaching process
in imparting education. Studies on teaching algorithms, programming, and data
structures related to mental task are one of those works. Algorithm and programming
is the main course in computer science and computer engineering education.
Learning algorithm and programming is often complex and difficult to understand
for students and they often face difficulties on the main courses. Teaching and
learning programming has never been an obvious process because of that
programming is a skill and difficult for student due to needs on deeply
comprehension. Therefore, studies on learning programming skills are important.
There are some studies on motivation of learning programming skills (Jerez, Bueno,
Molina, Urda, & Franco, 2012).

Simplifying an algorithm learning process is quite significant for both students
and instructors. To overcome the learning problem and help students better learn and
understand algorithms, instructors are using different methods during education
process. Educational tools are playing critical roles in education process (Jain,
Singhal, & Gupta 2010). Visualizations can be used in teaching to support learners
for understanding the abstract and structure (Taherkhani, Korhonen, & Malmi,
2010). In imparting education, educational tools such as visualizations, charts,
simulations, online tools and any other proved or experimental tool can be used to
improve and create more effective teaching and learning sessions (Shabanah, &
Chen, 2009; Sutinen, Tarhio, & Terasvirta, 2003; Kordaki, 2010). Even there are
some studies on exploring these features effectiveness (Hundhausen, Douglas, &
Stasko, 2002) with some questions (Hundhausen, & Brown, 2008). In addition,
there are also some studies on difficulties of learning and teaching programming
(Lahtinen, AlaMutka, & Jarvinen, 2005; Milne, 1., & Rowe G., 2002).

In this thesis, the study has two phases, which will be explained in details. The
first phase is new introduced educational tool-Algolyzer, which will help students to

better learn and understand algorithms and programming. The second phase of the
study is an experimental usage of application by students, and evaluation of the

records including user actions and errors data collected during the students’ usage.
1.1 Problem Definition

Learning programming has never been an obvious process associated with
programming is a skill requires practice. Students need to realize more programming
practice to enhance their programming knowledge (Ng, Choy, Kwan, & Chan,
2005).

Algorithm course tries to teach algorithmic thinking and basics of programming
and affects the students directly during their education cycle. While trying to teach
basics of programming, instructor must also be sure that students are motivated
(Holvikivi, 2010). Selecting the methodology that teaches using a programming
language often fails consequence of learning the syntax of the selected language,
which is not the primary goal in the process. In this case, students will dive into
programming language syntax rather than focusing on algorithmic thinking.
Specially improving algorithmic thinking and passing to abstract reasoning is
challenging process and this requires huge effort. With starting from the importance
of this topic, various studies with Bachelor Computer Science and similar
department’ students were realized on thinking like computer scientist’s skills and

abstraction level of students (Perrenet, Groote, & Kaasenbrood, 2005).

In this study, an inference done depending on the experience of algorithms and
programming courses and an appropriate model produced with considering the
referred points of the previous works. We approved that many students meet
difficulties on learning algorithms and programming level and solving problems in
an algorithmic way. Students have to compete with programming language syntax
and development environments while they are working on improving the algorithmic
logic. This conducts students away from the learning. Getting into the hang of
writing programming code is complicated for students; if programming practices are

insufficient. Another base point on this area is that focusing on understanding and

solving single problem is too important (Miildner, Shakshuki, & Kerren, 2008).
Depending on the observations, this study should consider the difficulties in
algorithms and programming courses and being a mental task for students. This study
propose a new method with identifying the most important and ineffective parts of
the existing process, which provide a supporting user-friendly interface to generate
programming code independent from programming language syntax and focusing
only the algorithmic thinking.

1.2 Contributions of Thesis

This study provides a specific application platform for students and instructors
considering the problems mentioned below. A model, which can support students to
comprehend main topics of programming and assist instructors during their teaching
classes produced. Specialized learning tool, which named Algolyzer, developed to
support basic concepts of learning algorithm and programming. Main contribution of
the thesis is that this tool is independent of programming language, separates

problems into smaller parts, and helps students do more practicing.

By using developed visual interface, students can create algorithmic steps to find
a solution for a predefined algorithmic question. Developed tool gives students a
chance to write code without diving into syntax errors, students only focus on the
possible solutions. This contribution summarized that this educational tool helps

students to improve their algorithmic-thinking abilities focusing on the solution.

Students consume their time and effort for PL syntax errors while developing
programming codes. Creating the code in the selected programming language and
displaying the whole code keep students more motivated with avoiding PL
complexity. This is another advantage for students to achieve learning activity with a

better environment.

In addition to this, Algolyzer is also a helper utility for instructors while teaching
algorithms and programming. Having every action logs of students, instructors can

have detailed information on how students use it, where they need more help, what

are the lacking parts in the teaching process. Final contribution of the thesis is that,
evaluation of students’ errors contributes instructors to explain misunderstanding
parts more intensely in next the semesters within the related courses. In summary,
this is a new approach on learning-teaching process of programming that usage of

this developed tool contributes students and instructors with mentioned features.

1.3 Aims and the Scope

Depending on the Cormen, Leiserson, Rivest, & Stein (2009) definition
“algorithm is a sequence of computational steps that transform the input into the
output” (p. 1), aim of this study is aided students to produce an algorithmic solution
for a given problem by separating the operational concerns and using a
programming-language and environment independent method. The implemented
application provides a visual interface that includes elements required to create the
algorithm for a predefined problem. Since students only use visual elements and not
any line of specific programming code, a generic code for the algorithm is being
prepared in the background, and the programming code can be created in any
programming language from generic programming elements prepared in the

background.

The main idea of the study is to make studying algorithm and programming easier
for the students. Being able to start an algorithmic solution for a problem without
diving into programming language syntax helps starter-level students to be more
effective and focused on the algorithmic thinking and solution domain. On the other

hand, makes it easier to develop learning skills on basics of the programming.

With this study, it is aimed that;
v" help students to understand basic algorithm and programming concepts
v provide a programming-language-independent tool to find a solution for
predefined algorithmic question
v" help students focus on implementing algorithmic steps with focusing only the

program structure

v provide a solution for students so that they can do more practices with
existing question repository

v" save the actions of the students during their sessions

v’ get students usage statistics and evaluate students errors during programming

v" help instructors to get more effective in-class sessions on lacking topics
obtained from the evaluation

v’ create a platform and approach that can be used in both distance learning

courses and in-class sessions

The developed tool targeted a user friendly, assistive, programming-language-
independent, syntax free environment that helps students to focus on a single
problem. Developed tool might have an important role for learning algorithm and
programming with its features and contributions to overcome the mentioned
difficulties.

1.4 Thesis Organization

In this chapter, we have stated that what we are trying to accomplish, what are our

goals, and our contributions on this area. The rest of the thesis organized as follows.

Chapter two involves related works. Initially, general situation on this area is
mentioned and similar, previous studies are introduced. Programming teaching tool,

web based environments and some similar studies are summarized.

In chapter three, educational tools developed in the previous studies are explained
and detailed. This chapter includes previous educational tools developed both on
procedural programming paradigm and on object oriented programming paradigm. In

addition to this, these mentioned solutions are brought together in a compared table.

Chapter four presents the design and implementation of new developed tool.
During the thesis, a new solution, named Algolyzer, has been developed. General
system of this developed tool and implementation details are introduced in this

chapter. The tool consists of various modules, which constitute the main body of the
Algolyzer. These modules and structure details are in this chapter additively.

Chapter five includes the capabilities of the developed application. Position of the
application in education process is mentioned in this chapter. Basic components and
functional features within the capabilities of the study are explained. Moreover, this
chapter includes previous version of this tool, which developed at the beginning of

the study.

Chapter six focuses on the statistical results and evaluation of Algolyzer usage.
Students’ usage of this tool is cited in this chapter. Beside the general usage

statistics, error rates and evaluation method are explained.

Chapter seven presents the conclusions, which includes the key contributions and

fundamental findings of the thesis.

CHAPTER TWO
LEARNING MODEL & RELATED WORKS

Cognition and learning are main concepts in education. During years, many
different researches have been achieved in this area. The literature identifies a variety
of studies on learning theories and models as Bloom’s taxonomy, constructivism, etc.
Bloom’s taxonomy is a method, which uses cognitive skills’ categorizing, depends
on the complexity order and there are six levels (Bloom, 1956). Constructivist
learning theory depends on that learners not passively wait, actively construct the
knowledge. Today constructivist-learning theory is the predominant paradigm in
education. Concurrently these learning models and theories have been used on

algorithm and programming learning process.

In general, studies started because of the importance and difficulties of teaching
and learning algorithms in education process. Many studies with different models
have been developed on teaching algorithms, programming, and data structures,
which are not easy task for students. Some of these studies investigated the
approaches in literature to teaching programming (Selby, 2011). Some of them
suggest a new elementary programming education approach (Sajaniemi, & Hu,
2006). Study of (Marcelino, Gomes, Dimitrov, & Mendes, 2004) proposed an
educational tool in constructivist perspective to help students.

2.1 Constructivism

Constructivism is a learning theory asserts that students construct knowledge
combining the experiential world with existing cognitive structures rather than
receive and store knowledge transmitted by the teacher (Ben-Ari, 1998). Learning
depends on the active behavior of the students with what the student does, not what
the teacher does. Most modern teachers shared that idea this form of constructivism
is the best way (Biggs, 2003). For constructivist based programming instruction there
are variety of activities as code walkthroughs, code reading, code debugging, and

code authoring. Addition, these instructions include the code method bodies from

header declarations, or the use of rich development environments to support students
for learning to program (Ben-Ari, M., 1998; Van Gorp, & Grisson, 2001). The study
of (Wulf, 2005) is the application of constructivist pedagogical approaches to

teaching computer programming in undergraduate courses.

The essential concept of the learning subject in question is emphasized in
constructivist design (Nardi, 1996; Vygotsky, 1978). The providing student with the
ability to represent and organize their knowledge is base role in the context of
constructivist design (Jonassen, 1996). With this design, the role of appropriately-
designed computer tools are crucial (Kordaki, 2010). Social learning theories
emphasize the role of psychological tools and computer tools in the development of
students’ higher mental functions (Noss & Hoyles, 1996). Computer tools have been
accepted as mind-tools, which can engage and support cognitive processing and
critical thinking of learners (Jonassen, 1996). Social and constructivism learning
theories are used in the proposed learning environment. Individual learning activities

are realized on this study.

2.2 Related Works

Students need to spend their time to do practical activities to have the
programming techniques. Students at beginning phase usually face difficulty
associated with installing and using integrated development environment (Ng, & et
al., 2005). Some studies, which will be outline, propose new applications and
identify support tools to overcome these learning obstacles. Some of these studies
proposed program development environment (Ziegler, & Crews, 1999). After
improving applications, studies engage students to use these applications and usage
activities often were examined (Jenkins, 1998; Hiibscher-Younger, & Narayanan,
2003). Evaluation of some studies showed that support tools are effective (Costa ,
Aparicio, & Cordeiro, 2012). With these kinds of studies, there are some studies
focused on the programming language selection in algorithm courses. For instance,
the study (Chou, 2002) proposes students to use Python programming language in
their classes for a significant time and detailed reports were generated. Beside studies

on developing algorithm and programming skills, studies on different area such

improving web-programming skills were realized (Elgamal, & Abas, & Baladoh,
2013).

2.2.1 Introducing Algorithm and Programming with Didactic Scenarios

There are many difficulties for students who are the novice programmer face
many mental obstacles in comprehending process of algorithm construction and
programming functioning. This previous study depends on didactic scenarios that
educational material organized. Didactic scenarios in this study include educational
software to teach base topics of programming introduce students to basic
programming principles and overcome difficulties for Secondary education
(Dagdilelis, Satratzemi, & Evangelidis, 2004). Main parts of these didactic
scenarios are the tool usefulness and the richness of interactivity as working in
groups. Researchers of this study emphasized that didactical and pedagogical training
of teachers in secondary education is important. Each new concept as loop statement
corresponds some kind of problems suggested by teachers in developed software.
Appropriate problem selection is important to get success on teaching new concepts

to students.

With developing this educational tool and tool’ usage in imparting education,
findings of this previous study can be listed as;

e Formulating general rules associated with the significant didactic

characteristics that should include in similar environment

e Educational applications is efficient just applications has framework based
on didactic scenarios produced by instructor and supported by the tool

e Specific training, which give a chance to instructor for adaptation and
usage in didactic scenarios, is essential for usage of these kind of

educational application

2.2.2 ELP- Environment for Learning to Program

Study of Environment for Learning to Program (ELP) provides a web-based
environment for teaching programming to students at Queensland University of
Technology (Truong, Bancroft, & Roe, 2003). ELP depends on the “fill in the gap”
style exercises. These exercises reduce the complexity for students in writing their
programs. Students do programming exercises by “filling in the blanks” of a partial
Java program in this previous study. The system compiles the completed program of
students. If compilation is successful, system returns the resulting class to students
in Java Archive format, otherwise messages with compilation errors returned to

students.

2.2.3 Web-Based Environment Depending on Activities

Study of Ng & et al. (2005) proposes a web-based tool, which is an interactive
environment for students to learn programming and for instructors to teach
programming at distance learning. Students realize the programming practice and
coursework on system depending on the basic functions of the programming.
Students work on their programming codes in Java programming language without
the complete programming environment and IDE. System gives appropriate
feedbacks to students related their programming practices. Instructors follow
students learning processes and compilation error messages. For the programming
activities on the system, instructors generate and upload programming materials.
Activity materials contain description file, template file and hint files, which includes

a sample, output of the required program.

10

‘Welcame! Tony Chan. We have 1 people anline Home Forum ContactUs Private e

Perform Java @ Activity Description Cotnpile & Run | Wiew Previous Output Hints & Answer Find Tutor Help

open all | close all BMiICalculator java Last modified: February 17, 2008, 09:42:06 AM
) [EErelEs 1. |import jawa.lang.String;
B Session 1 2. |import jawa.lang. Double;

) Target 1 3. |import javax.swing.JOptionPane:

4

] Target2 5. |public class BMICalculator {

+) Target 3 &

) Target 4 é public static void main(String[] args) {
- “{)) Targets 3 /e define variable ——x/
Bl Session 2 H e . R
B Session 3 12 = EES Bnahe ==
7 Session 4 13 s%#— BMI formula ——=~

R 14

Bl
g SESS!DHS 15 #%— show BMI result —-—%/
1] Sessian 6 16
{7 Sessian 7 17
BICJ Swing Demn %g Systen.exiti{0);
i ™A 20 B
BFCJ TMA 03 = |

Logout Change password

Figure 2.1 General view of application

In this related study; students work on the system depending on the activities
uploaded by instructors and use template file shown in Figure2.1 to generate their
programming code on text editor. Students edit, compile and test programming code,
if there is a compilation error, an error message send to the student. Otherwise,
system generate executable file to the students. Error messages do not save, only
students code file saved (Ng, & et al., 2005). Future works of this previous study was
included collecting students’ performance information to early detection of
problems.

2.2.4 Programming Teaching Tool with Filling Fields

This previous study includes an experiment on development and testing a
software tool for supporting of teaching introductory programming courses. Tool is a
web-based application. Study depends on the spending time over on teaching the
programming language syntax. When students make an effort for syntax, they throw
other essential topics of programming as developing design skills (Al-Imamy,
Alizadeh, & Nour, 2006). Features of this study were

11

e Templates generation depends on the main subjects,
e Helps students have different backgrounds to reach on an equal level,
e Allows passing different programming language,

e Usage as a web-based self-learning tool

Source file produced from instructor’s template, which contains outline of the
program structure. Students can generate their copies from templates with filling the
required fields. For filling operation, students can delete statements and add new
statement. Tool show the possible valid statements for required fields. Statements
contains declaration, if statement, for loop, while statement. After completing the

missing part, students can save developed program as C++ file.

For test’ phase students of their institution used this tool. Examination results
compared. Result of the study indicated that tool was effective on acceleration of

learning programming language syntax.

2.2.5 Simplifying Algorithm Learning Using Serious Games

The study which name is Algorithm Visualization using Serious Games (AVuSG)
includes visualization approach (Shabanah, & et al., 2009). This related study uses
computer games to teaching-learning process of an algorithm. A Visualization
approach has three different options as a text form, a flowchart form, and a game
form. Learning theories integrates with game design with applying three learning
models as Bloom Based, Gagne Based, and Constructivist Models in this study. This
application has the user interacting level and the developer creating level for
visualizations. Some algorithm visualizations, includes text, flowchart, and algorithm

games prototypes were developed to validate the approach in this previous study.

12

CHAPTER THREE
EDUCATIONAL TOOLS

Introduction to programming is difficult mental task for students (Gomez-
Albarra’n, 2005). Students face difficulties at beginning phase of the programming
(Robins, Rountree, & Rountree, 2003). Various research studies performed on this
area to support students for learning process. To compete with the difficulties of
learning algorithms and to teach basic concepts of algorithm successfully, web-
based, different graphical user interface based (Lazardis, Samaras, & Sifaleras,
2010; Shakshuki, Kerren, & Miildner, 2007), abstraction-based, a specific algorithm
(White, Martinez, & Rudolph, 2012) intended educational software applications have
been implemented in the past. Suggestion an educational tool is one method used to
deal with these complications in previous studies. Some studies depend on the
evaluation of the specific educational tools used in class-sessions (Lazaridis,
Samaras, & Sifaleras, 2010).

Graduate and under-graduate students in university education have used these
developed tools and their experiences were followed in significant time. Study
(Wang, Li, Feng, Jiang, & Liu, 2012) is one of these studies. Even, there have been
some studies targeted secondary education students (Dagdilelis, & et al., 2004).
These studies often are implemented as a web-based application. They provide
students an editing, compiling, testing and debugging environment on the web for
learning programming (Ng, & et al., 2005). Even some studies facilitate to visualize

for program tracing process.

In general, to help students better understand and learn design and analysis of
algorithms, algorithm courses include problems as programming assignments and
exercises. Educational tool named AnimPascal study, tracks the actions of the
students through a problem solution process (Satratzemi, Dagdilelis, & Evagelidis,
2001). Objective of these studies are to help students to understand the developing
and other essential phases of programming and to aid teachers to discover the status

of the students on the base of programming.

13

Studies, which support multiple programming languages, have been realized on
the contrary studies based on the single programming language. That kind of studies
assists students for improving their algorithms skills with using a base interface. In
the same time, this gives a chance to implement their algorithms in various
programming languages (Jain, & et al., 2010). There are some studies focused on
teaching object oriented programming concepts. AEIOU is one of these studies
which is software tool developed to support to understand of object oriented
programming concepts (Licea, Juarez-Ramirez, Gaxiola, Aguilar, & Marti nez,
2011). ObjectKarel study is another study, which provides a structure editor, runtime
error detection, program animation and recording of students' actions (Satratzemi,
Xinogalos, & Dagdilelis, 2003). ProTracer is different study that for visualizing
students’ program tracing processes (Chou, & Sun, 2010).

This kind of educational tools not replace the traditional methods of teaching,
only complements the learning processes. Especially these developed tools support to
students in practice and they include the foundations of programming. In general,
these developed software applications allows students to study intuitively,
graphically, and gradually. To develop new software these features are programming
essential principles (Ferna'ndez, & Sa'nchez, 2004).

3.1 Educational Tool for Program Tracing:ProTracer

Program tracing is significant factor at learning programming phase especially
novice programmers. This study designed a system which name is ProTracer,
includes program-tracing processes for students and allows teachers to indicate
students’ errors in tracing execution. This study provides to students and teacher
program tracing in view. Students can follow execution flow stepped and edit I/O
display and variable values at each step and, they can modify tracing record. Tracing
record indicates students’ possible errors and misunderstanding of students. This
suggest to teacher for future teaching. ProTracer has three interfaces; two of them
for students which are trace programs and to preview their tracing records and

another interface to correct students’ tracing for teacher.

14

Choose |
current |
#* program !

Edit

i L variable’s |

“ ———<"| | data type !
& value |

Edit Avea
[nral2]=14,0);

Varable Nume Daw Stractur : Valse

+ L] .
Assotatios = — annotation

Whgy: = 0 e iacans

Edit
* /O display

Figure 3.1 Program tracing interface of ProTracer

Engaging students to use ProTracer for program tracing in a Computer
Programming Il course and analyzing students’ tracing records IS an assessment of
this study. The tracing records of 44 students collected and analyzed in this study.
ProTracer result indicated that tracing abilities of students as poor and students’
tracing errors were classified into execution step, variable, and 1/0O errors (Chou, &
etal., 2010).

ProTracer supported program codes of variables, array, selection and repetition
structure and this did not support functions and object-oriented programming. This

study used files to store program codes and students’ tracing records.

3.2 Educational Software: CGRAPHIC

CGRAPHIC is educational software, which was designed to learn the foundations
of programming and C programming language. This study was developed in the Java
programming language and executes on Internet or locally. CGRAPHIC provides
theoretical and practical levels. There are several examples of the execution of

15

different exercises in the practical level and students can follow execution of
program step-by-step or direct. This software includes and various parts as; a
debugger of the C programming language, a programming online textbook, and a
virtual tutor. Virtual tutor part of CGRAPHIC inside a graphical environment offers
to student theoretical and practical learning of the basic concepts of programming.
They implemented a set of graphical objects to develop new interactive exercises.
CGRAPHIC provides support for variable, one dimension array, two dimension

array, function, pointer, memory map, file, and structure objects.

This software involved main topics of a classical program in a first-year course in
engineering studies and students in a first-year used this application. The main
purpose of this study was to supplement teacher role with completing the traditional
methods of teaching and develop teaching performance at programming base. There
was English and Spanish version of this study. Spanish version was used at the
University of Ma’laga in separate subjects as Foundations of Computing of the
school of engineering, and Elements of Programming, and Practical of Programming
in the school of computer science and as virtual tutor of a programming course in the

Computing Virtual Services (Ferna'ndez, & et al., 2004).

3.3 Educational Tool for Understanding Algorithm Building

This study compound algorithms, base coding and multi programming language
syntax in a single interface for learning algorithm and programming languages.
Essential part of this study is that understanding of the main logic building and
learning multi programming languages with a single interface. Tool was programmed
in Python and contains script window, code generation module and sharing support.
Sharing support part, which supports collaborative learning between students and
teachers, realized with Remote Procedure Calls. At code generation drag-n-drop
method used for image objects to learn programming languages majors. Each block
images have text file depending on the programming language modules. When
students select any block image, file content and necessary explanation related to

selected programming language showed in script window (Jain, & et al., 2010).

16

3.4 Tools for OOP

Students in introduction to programming phase mostly meet difficulties
independent of the programming paradigm as procedural or object oriented
programming. In general, method selected by the researchers is identical even though
there are some special kind of difficulties depending on the programming paradigm.
Research activities often include development of programming environment to assist
students to overcome these complications. Particular of these studies realized on
object-oriented programming as ObjectKarel, AEIOU that mentioned in the next

headings.

In the same time, there are also some studies, which developed for advanced
programming concepts in object oriented programming courses. This developed tool
support students to reach deeper level at programming knowledge (Licea, Juarez,
Marti'nez, & Aguilar, 2008).

3.4.1 TeachingOOP: ObjectKarel

ObjectKarel is an integrated programming environment, which includes e-lessons
series, special structure editor, and program animation to teach object-oriented
programming paradigm. There were multiple ways to write program code in
structure editor. Writing program realized in two ways. First is choosing the
appropriate action like method declaration. Second is interacting with the system
through dialog boxes. Students have three choices to execute program; running the
program, tracing through the program and executing the program step-by-step
(Satratzemi, et al., 2003).

Runtime error detection and recording students' actions were other properties of
this developed software. Trial use of objectKarel by undergraduate students saved.
For this, 20 undergraduate students from the department of Applied Informatics in
Greece were used this environment. Students’ programs and errors saved and
evaluated in developed software concept. These give an idea to the teacher about

students’ problem solving techniques and errors. Teacher can follow students’

17

misunderstanding parts of object-oriented programming at beginning of the OOP

learning.

3.4.2 TeachingOOP: AEIOU

In this study, development environment to help students for learning object-
oriented programming with Java, which name AEIOU, developed. This tool,
facilitated to students for programs’ developments in programming courses. AEIOU
includes three modules to support different type of students as novice, intermediate,
and advanced (Licea, & et. al, 2011). AEIOU presents the project view with the
classes’ graphical representation and code view with the specific code. In the code
view, students can edit, compile, and execute the class code. Environment gave class
errors to the students during compilation. Displayed errors include translation in
Spanish with more details. Base screen of AEIOU offers to the students various tabs
to manage class operations for a deeper understanding of object-oriented
programming concepts. AEIOU supplemented with ELVIA (Aispuro, & et al., 2012)
Students in two Mexican engineering schools at University of Baja California and
University of Sonora used this programming tool. Spending time of solving a
problem, errors introduced by students and tool adaptation for other object-oriented
programming languages are plans of this study.

3.5 Studies for Specific Algorithms

Some studies propose learning tools for teaching of specific algorithms such as
genetic algorithm, ant colony optimization (Li, & Liu, 2009), etc. Some studies
depend on the learning sorting algorithms (Kordaki, Miatidis, & Kapsampelis,
2008). Certain of them depends on the new approaches such Reinforcement
Programming that used to generate sorting algorithm (White, & et al., 2012).
(Byrnea, Catramboneb, & Staskoc, 1999) conducted the using animation for depth

first search algorithm for students learning.

18

3.5.1 Learning of Sorting Algorithms

A web-based environment was designed to support secondary level education’s
students for learning of sorting algorithms and pilot evaluation of environment was
presented in this study. The environment design based on the modeling methodology,
considering modern constructivist and social theories of learning. Developed sorting
environment also give a chance to students for typical sorting algorithms’ learning as
Bubble-sort, Quick-sort and Selection-sort. Data of pilot evaluation study of sorting
environment was analyzed and these results are obtained: students used all the
representation systems and they found environment attractive and easy to use
(Kordaki, & etc., 2008)

3.5.2 Learning Tool of Genetic Algorithm

This study suggested a learning tool to teach and study the genetic algorithm. The
user of the tool can study and manipulate the algorithm easily with friendly graphical
user interfaces. This presents that the aim of the developed tool is supporting to teach
the algorithm. Tool interface includes Genetic Algorithm parameters area, and
computation processes area. Graduate students at Nanjing Agricultural University get

a chance to use this tool to learn the genetic algorithm (Li, & Zhang, 2010).

3.6 Evaluation and Comparison of Tools

In this chapter, educational tools in literature are investigated and the general
features mentioned in previous headings are summarized. Table 3.1 includes the
properties of some educational tools used to algorithm and programming learning in
previous studies. There are more similar studies in literature, this table not include all
of these studies in this area. Studies are specially examined considering the error
detection as saving students errors, giving appropriate feedbacks to students related

to their errors.

19

Table 3.1 Features of previous educational tools in literature

“ - -

Multi PL
Support

SOLENISITEETLY Non-available in Computer Applied in two
usage value, the Programmin Informatics engineering informatio
school of g Il course department n
schools
engineering,
school of
computer
science
Save Usage-
Errors

TGV Nothing Tracing Error Run time error Compile Absence
message detection errors

Graphical
Support

Application
Type

Topic
Concept(main/
advanced)

Process Type
(tracing,code
generation,
show sample
code)

20

Considering these general features of some previous educational tools, a new
software solution can be developed for learning algorithm and programming. In this
study, a new educational tool is proposed, which aids to students to learn basic
concept of algorithm and programming in the first phase of the work. In the second
phase of the study, graduate students at Dokuz Eyliil University are engaged to use
developed tool. The students’ usages of new developed tool-Algolyzer are
investigated at the end of the study.

21

CHAPTER FOUR
DESIGN AND IMPLEMENTATION OF NEW INTRODUCED
EDUCATIONAL TOOL: ALGOLYZER

In this study, a new educational support tool has been developed to help students
for learning basics of programming and to assist instructors during teaching classes.
An educational tool named Algolyzer -the visual interface tool created for this
model- provides a programming-language-independent environment for students and
gives information about the misconception topics in the teaching process for
instructors. In this chapter, developed tool will be explained in details. During the
study, an appropriate model for supporting programming learning produced,
depending on the investigation of the previous studies and observation of the
algorithm and programming courses in computer engineering department at Dokuz
Eylul University (DEU).

At implementation phase of the study, general system architecture designed firstly
based on the requirements and plans. In second step sample problem repository has
been created and the possible programming operations which should be in the
application were determined. After all decisional process, implementation of the
application was began and completed. Completed application provides different
opportunities for instructors and students. This software provides a web based access
to both instructors and students. Students can create their own projects on the tool.
During these activities, usage errors of students are saved automatically and can be
analyzed for detecting the main topics of programming, which is not being

understood properly.

4.1 General System Design

The tool developed as a web application. Tool interface provides multiple usage
scenarios both in-class sessions and distance learning systems as the previous version

of this study (Yildinm, & Kut, 2010). General process of application depends on

22

focusing on understanding and solving a single problem. Programming can be
divided into four steps (Winslow, 1996):

understanding of the problem

definition of the problem solution initially in any form, such as text-based
or math-based and in a computer compatible form

create solution using selected programming language

testing and debugging of the solution program

Students firstly try to understand problem given by the system, and work on
problem and generate solution, then student passes to next problem. At the
beginning, students determine main operations with solution separation. This method
supports the students to improve an algorithm easily. The structure of the system can
be summarized as giving problem to students and saving errors made by students in

problem solving phase illustrated in figure 4.1.

e Get Solution

e Evaluate
Student

Figure 4.1 Main operations of general system

After finalizing the first usable version, students of computer engineering
department at DEU used the application. During this phase, we kept the system
updated and made minor changes depending on the feedbacks to get experiences that
are more efficient. In the last phase of the study, we investigated the system usage
and evaluated the collected actions, operations and errors data, which will be

mentioned in the next chapters.

23

4.1.1 Operational Level of System

Algolyzer is a web-based application and has two parts, which are the user and
system parts as demonstrated in Figurel. User sends code pieces of operations to the
system part. Code generation is done using the selected programming language

depending on the algorithm that user created using visual elements of the application.

Error detection runs on system part. If there are any errors in user code part,
appropriate messages send to the user. During the session, user actions and errors are
saved to the application database and they are kept notified about any problems in
the algorithmic rules. Saving every action and any possible errors to log database
helps instructors and analyzers to investigate and determine the lack of topics.
Briefly, the system side responsible for handing the requests from the users, keeping
user logs and serving them as a shared compiler and giving user create and download

code file options.

User Part System Part

PL Selection

Operations

relevant touser Code pieces

solution

Error Detection
Error Messages
Create/Download code

file
Code file

ik

Figure 4.2 General system views on operational level
4.1.2 Infrastructural Level of System

On infrastructural level, frontend application and test module are at the top of the
layered model. Domain model and processing library are over the data access part.
The last part that Algolyzer builds on, .NET Framework is bottom of the structural
schema. All of these modules implemented in Algolyzer framework can be

considered from Figure 4.2.

24

‘g .

Frontend Application Test

Domain Model Processing Library

i

_L_l

\

Figure 4.3 General system frameworks

Overall classes associated with the infrastructure can be observed from Appendix
A. These classes perform the various operations and statements of developed tool.

4.2 Library Module of Algolyzer
4.2.1 Processor

Processor module includes classes presented as class diagram in figure 4.3. Two
different programming language processors were created in this phase of the study

and can be extended with more programming languages.

ILanguageProcessor (¥
Interface
\, A
0 0
ProcessorFactory (¥ ' VBasicProcessor (¥ ' CSharpProcessor (¥
Class Class Class
\. v,
ProcessorUtility ¥
Class
\. v,

Figure 4.4 Class diagram of processor

A generic base structure has been created and applied for multi programming
languages support. To get appropriate operation a Processor factory class was
developed. Code is generated depending on the selected language with responsible

processor.

Processor Factory
Function Get Processor(programming language pl)
case pl of

ProgrammingLanguage.VBasic: return new VBasicProcessor()

default: return new CSharpProcessor()
end case

endfunction

4.2.2 Services

Services are the main contact points between user interface layer and data layer.
Two most important services being used widely during the application are, error log

service and error message service.

Validators are based on the statements and control and validate the operations.
They are all implements a shared interface named IValidator and located in services

section with other two service shown in Figure 4.4.

26

' Ivalidator
Interface

«

«

AssignmentValidator
Class

T
' ConditionValidator
Class

(Ail

T
LoopValidator
Class

ErrorLogService @)
Class

«)

C ,,
VariableValidator X |
Class

ErrorMessageService (¥
Class

C |
IfValidator @ |
Class

\ T)
ReadWriteValidator @ |
Class

Figure 4.5 Services of Algolyzer

4.2.3 Statements

Statements developed depending on the main operations of programming.
Statement classes correspond to the operations on the user interface in backend
codebase. These are condition, read/write, if/else, assignment, loop, variable
statements illustrated in Figure 4.5. All statements are derived from IStatement

interface.

27

IStatement @ |
Interface

2
‘ AssignmentStatement |

<</

Class

T

' ConditionStatement 3
Class

T

" LoopStatement
Class

«|

T

& VariableStatement 3]
Class

T

' IfStatement
Class

«)

T

" ReadWriteStatement (¥ |
Class

Figure 4.6 Statement classes

4.3 Data Module

Data module includes the database operations. General classes of data module
illustrated in Figure 4.5. Operation, problem, error type, user log, error log, problem
text, error text and language used are main types of data module. For a problem
operation, which supports multilingualism, problem, text and language objects are

referenced.

28

<«

42 Operation v | ~| #2 Problem
A | S

0.1 ¥
O & 0
70..1 70.1 1
*
42 ProblemText ¥
*
*
#2 Userlog v
{\1
7S 2
Y ¥ *e Language ¥
*)
s |
S
#¢ Errorlog ¥
'®
V'
0..1 »
O (&)
| 44 Errortype ¥ A %2 ErrorTypeText ¥/ |

Figure 4.7 Data class diagram
4.4 Code Generation

A processor is created depending on the selected programming language primarily
on code generation phase. Statement’s creation is implemented in the following
phase. Figure 4.1 illustrates the creation of the statements in processors. Parts of code
creation were implemented in the code generation method, which includes the
generation methods of all statements. Statements are common for all languages.

Nevertheless, the generation is different for each of the programming languages.

29

Gerenarete Code
Generate Variable
Statement
Generate Read Write
Statement
Generate If Statement

—[Generate Loop Statement]

Generate Condition Statement

—[Generate Assignment Statement]

Figure 4.8 Generate code of processor

4.5 Statement Details

Read/write statement includes operation type and variable statement. If statement
has if type, condition statement and inner statements as read/write, assignment, etc.
For all language in code generation, every statement and its fields are common.
Assignment statement includes the left sight variable, mathematical operator, first

right sight variable and second right sight variable in the following code block.

sOperation Type A eLefthand side (lhs) A sIf type A
*Variahle eFirstright hand sight sCondition statement
{rhs) sInner statements
*Secondrhs

e[Viath Operator

Read/Write Assignment

N Y N
+Condition type *Loop type slhs
Firstvariable *\ariahle +Math operator
+Comparison type +Condition statement Firstright hand sight
«Second variable oInitial value {rhs)
*Secondrhs

Assignment

Figure 4.9 Statements and subfields

30

4.6 User Interface

Developed tool functionalities mentioned previous headings, are being used by
students through a visual interface. Figure 4.9 presents the general view of the
interface. Detail screens of the application are in Appendix B. There is an instance of
one scenario.

a3 Home Page x

& = C f [} algolyzer.cs.deu.edu.tr/Defaut.aspx?lana=2 YO BRL AR e RE =
Algolyzer Log in | Register Tarkge| English
Home About Help

WELCOME TO ALGORITHM EDUCATIONAL TOOL

Programming Language
Gce Oy ¥ 1s Friendly

Question Part

Select Question

Variable | Read/Write | Condition | If/Else | Loop || Assigment |
Defining variable
Type Int od
Name
Initial Value
Create variable
Code Part

Create File I Compile | Download code | Clear code I

Figure 4.10 General view of developed tool

31

CHAPTER FIVE
CAPABILITIES OF ALGOLYZER

An algorithm and programming course introduce students to programming. In this
study when determining tool’s capabilities, computer-engineering students’ thoughts
were considered. A survey on difficulties of algorithm and programming learning
were prepared to get benefit during tool development phase. Students who are failed
and face difficulties in algorithm and programming course participated to survey. 26
first year students were selected randomly. Feedbacks of the students on difficulties
of learning programming are evaluated. All 26 students marked at least one difficulty
on programming learning process. Passing the abstract thinking had the highest
value, difficulties caused by programming languages and understanding of the

problem exactly are the substantial ratios detailed in Figure 5.1.

Students Response

60%

54%

50%

40% -

35%
31%

30% -
23% W Students Response
19%
20%
- I
0% -

Passing to PLsd\fflcuIt\es Complexity of Understandmg Others
abstract (as syntax IDE problem
thinking errors) exactly

Figure 5.1 Ratios of difficulties in programming

32

Students can use the developed tool with its feature set. Proposed tool has an easy
to use visual interface and component based environment. During this study, various
versions were improved. First version of this study was a desktop application. The
next, web-based version of the developed tool consists of the following basic

components and functional capabilities.

e Problem part, operation part, and code part in user interface
e Multi programming language support
e Tool multilingualism support

e Error detection and validation

These capabilities of Algolyzer mentioned above will be explained in details in

the following headings.

5.1 Developed Tool Position in Learning Process

In traditional education, instructors transmit knowledge to the students and
students try to store knowledge in mind. When students are elements of the learning
process as student-centered models, these proposed systems facilitate students to
store knowledge. In Algolyzer, students can do more practices on programming with

using developed tool and get feedbacks about errors in Figure 5.2.

33

experiences

Students

Developed Tool/Algolyzer

" Deal with
PL syntax

Develop
programmin
g skills

Statistics

Feedback
about errors

Instructors

Figure 5.2 Developed tool position in learning process

5.2 Base Components of Interface

The developed tool has three parts in its visual interface; problem, operation and

code sections. The workflow of these base components illustrated in Figure 5.3.

.Obtain

Code Block
.Realize
Operation

.Get
Question

Figure 5.3 Workflow of the base components

Firstly, problem part is coming to students; then student begin to create solution
for the problem using the tool interface. In solution phase, the students navigate

through related tabs of the tool to create operations. Each student should create

34

his/her own solution in a syntax free way. The tool depending on the user’s solutions
in the code part will automatically generate program code of a given problem. The
mentioned general workflow can be followed from graphical environment in Figure
5.4.

PL Selection

Problem/Question

Operation Window

Code Window

Create File Compile Download

Figure 5.4 General view of GUI

5.2.1 Problem Part of the Developed Tool

Question/problem repository was created and problems were -categorized
depending on the subject groups (operations) and difficulty levels illustrated on the
Table5.1 for problem component. Problems appear randomly from the repository to
the student side when the student clicks select question button from the visual
interface. Focusing on understanding and solving a single problem is important. At
any time studying on understanding, solving and testing of a problem should
completed by students then next question will take place (Miildner, & et al. 2008).

35

Table 5.1 Problem repository of the system

ProblemID ProblemText Problem Operation
Degree ID
1 Write to screen welcome to progmamming 1 2
2 Take user name and age then display this 1 1
information on the screen
3 Find the total of given two numbers 1 1
4 Multiply two given number and display result on 1 1
the screen
5 Write days of week on the screen according to 1 2
given number(1-monday,..)
6 Find the average of midterm and final grades given 2 6
by user
7 Convert a measurement given in km to the 2 6
equivalent number of m, cm and mm
8 Find triangle's surroundings given three numbers 2 6
9 Find rectangular area depends on the a,b edge 2 6
values
10 Find rectangular surroundings depends on the a,b 2 6
edge values
11 Tell the given number is positive or negative 3 4
12 Tell the given number is odd or even 3 4
13 Print a given digit(0-9) in text (1-one,2-two,...) 3 4
26 Find the total of n numbers given by user 4 5
27 Draw rectangular on the screen with # 4 5
28 Draw diamond on the screen with * 4 5
29 Read one character from user and display this 1 2
character on the screen
30 Take two number from the user and display 1 6
subtraction result on the screen
31 Take x,y from the user and calculate power(x,y) 4 5
using loop and display result on the screen
32 Find the biggest number given two numbers taken 3 4
by user
33 Calculate and display absolute value of number 3 4
given by user
34 Take midterm,assignment and final grades from the 2 6
user and calculate average of
course(%20Ass,%30mid,%50final)
35 There is two nested circle,calculate the difference 2 6
area of these two circles according to R1,R2 value
36 Take course grade from user and display passed or 3 4
failed condition depends on the 70 point
37 Write a program that print the months of a given 3 4

season

36

Table 5.1 Problem repository of the system (cont.)

38 Take number from the user between 1-1000 and 2 6
adds all the digits in the number(562 - 13)

39 Write numbers between 4t096 (41016 22...) 4 5
using for loop

40 Write numbers muplications of 3 from 1- 100 4 5

41 Find the second largest number of given 7 numbers 4 5
by user

5.2.2 Operation Part of the Developed Tool

Achieving a well-planned learning path is important at teaching-learning process.
In this study, interface separates problems into smaller parts as operations.
Operations are determined depending on the main subjects of algorithms and
programming. There are six statement types; variables, loop, if-else, read-write,
assignment, and conditions as illustrated in Table 5.2.

Table 5.2 Operation table

OperationiD Operation Name

Variable
ReadWrite
Condition
IfElse

Loop
Assignment

A b WN PR

Each operation has its own child fields, which explained in details in previous
chapter. In this way, students can learn steps of operations during development
phase. Thus, they also have a chance to do more practice on main and subfields of
programming topics. Programming-language-independent feature embedded in this
part. Using operation parts to create solution algorithm is important for students since
they generate a syntax-free code. Students can focus on algorithm design. Thus, they

are more motivated and have more chance to improve their programming skills.

37

5.2.3 Code Part of the Developed Tool

Algolyzer generates source code automatically depending on the actions of the
students in operation part of environment after completing the error checks. At each
step of the solution, students can follow their algorithm in code part of the interface
on selected programming language. There is a “clear” option to clear all generated
code and start the problem solution over again.

In the code part, there are also three actions can be taken about the solution code.
Students can create source code file and download this generated file wherever they
want to save. In addition to this, students can compile their solution on the tool

interface to get more realistic compiler warnings.

5.3 Multi Programming Language Support

When students make an effort for programming language syntax, they spend
much time and there is a little time to improve their programming skills (Al-Imamy
S., et al., 2006). Programming-language-independent code generation is important

and this feature is one of the main study objectives.

Generic algorithm elements developed in the backend, which allows generating
code in any programming language. For multi-programming-language support, this
generic structure is being used through Processor factory mentioned in previous
chapter. Solution source code is generated in the selected languages depending on the

operations and orders of student’s operations.

5.4 Language Support

Turkish language support on interface provided to students besides English.
Especially, giving error messages in Turkish supports students to understand
midpoints more clearly. Certain previous studies indicate that students at the
beginning phase of programming have problems about understanding messages of
IDE or any programming language compilers (Licea, & et al., 2011). Getting error

messages in details and in native language is more beneficial for students.

38

5.5 Error Detection

In general, compilers are designed for advance programmers, not for novices
(Satratzemi, & et al., 2003). Students spend their much time for debugging
operations, sometimes they do not understand error message while improving their
algorithm solution. In this study, error detection is over the debugger shown in

Figure 5.5.

4 I
Error Detection

Debugger

Figure 5.5 Error detection mechanisms

Error detection of this system is processed before debugger. An appropriate
warning and errors messages delivered to the students by the system depending on
the operations of the student. Programming-language syntax errors and some logical
errors that caught by the developed tool identified in Table 5.3. Errors are separated
with the operation type and error degree. Error degree indicates that if the error type

is a syntax error or logical error. Third level states the certain logic errors.

Table 5.3 Types of errors made by students during the programming

Error Error Type Name Operation Error
Type ID ID Degree
1 Varlncomplete 1 1
2 VarTypeMismatch 1 2
3 VarNaming 1 3
4 VarDefineAgain 1 2
5 RWIncomplete 2 2
6 RW-Convert 2 2
7 RWParameterMissing 2 1
8 CondIincomplete 3 2
9 CondincompleteMulti 3 2
10 CondTypeMismatch 3 2
11 CondSameVariable 3 2

39

Table 5.3 Types of errors made by students during the programming(cont.)

12 CondSameConditionMulti

13 CondBoolCtrl

14 IflIncomplete

15 IfIncompleteElse

16 Command missing

17 LoopVariablelnitialMissing

18 LoopConditionMissing

19 LooplncDecValueMissing

20 LoopCommandMissing

21 LooplogicError

22 Assignmentincomplete

23 AssignmentTypeMismatch

24 AssignmentNumericTypeMismatch
25 AssignmentWrongStringOperator

o oo o0 i n L1l Lt L1l A B B WW
W W NN WNNDNDNDNDMNNDNWNDNDWW

System executes the error detection for students on each operation steps. If there
is any error, understandable error messages are reported to the students as illustrated

in Figure 5.6.

x
<« C i [algolyzer.cs.deu.edu.tr/Default.aspx?lang=2 OB L age QI =

|»

Algolyzer Welcome meltem! (Log out) Tarkge| English

Home About Help

WELCOME TO ALGORITHM EDUCATIONAL TOOL

Programming Language

G cs Cvs ¥ 1s Friendly

Question Part

Determine whether the object with given three edges is a triangle or not depends on the triangle

Variable | Read/Write || Condition | If/Else || Loop | Assigment

Defining variable

Conscle.Readline () :

% 3

Create File Compile Download code Clear code -

Figure 5.6 Sample screen of error detection

40

The application saves these activities during sessions of the students. The
instructors can examine the usage reports and try to get more effective in-class
sessions. Instructors investigate the logged actions and error logs. Thus, getting
statistics from the students’ logs can provide a possibility to determine
misconceptions. During algorithm and programming courses, instructors can
consider errors on main topics and subfields, which shows misunderstanding parts

for students.

5.6 The First Version of the Developed Tool

The previous version of this study implemented as a desktop application. There
are some different features besides similar features. On operational level, application
has the same capabilities as problem, operations and code parts while developing
solution of the problem. Different capability of these features, there is a flowchart
support capability. Students can follow operations on flowchart and when the
students complete the problem solution, overall student’s solution workflow can be
obtained in the application interface as illustrated in Figure 5.7. Creating executable
file and running this created file option are other different parts of this version. These
different capabilities actualized easily associated with the application type. In
detailed, more instance screens of the previous version of application hold in
Appendix C part.

41

[code Generator .. =10l x|
Problem | Vanables | Read/Wite | Condiion Bse |Loop | Assignment | FlowChart

Stepl—— IVanab\e definttion

FType ¢ F
* Ese ReadWiite operation

' Beeif l

Step 2
Co‘r:gihon IF operation
I

Step 3
Commands when condition is occured

Add to Program
Code

int number=0;

Console WriteLine("Enter number");
number=Convert Tolnt32(Console ReadLine()):
if(number<=0)

Console WriteLine("is negative"+number);
|

else

Console WriteLine("is positive"+number);

Figure 5.7 An overview of previous version of application

42

CHAPTER SIX
RESULT AND EVALUATION OF ALGOLYZER USAGE

In imparting education, to have an idea on misunderstanding parts of the courses
is essential for instructors. Particularly at mental and abstract courses as an algorithm
and programming courses, learning is difficult for students. Students have
misconceptions, related with facing problems on introduction phase of algorithm and
programming. In our study, to have an idea related to these complications, developed
tool tracks every action of students and collects the errors from the compilation
results and higher-level application validation rules. In this way, instructors can
follow the students' learning process and their misconceptions associated with

programming topics.

For study’s assessment, developed tool was published in
http://algolyzer.cs.deu.edu.tr address and we engage students to use this educational
tool. Students of computer engineering and computer programming department of
Dokuz Eyliil University were informed about Algolyzer and application published
web site address. Students used developed tool within the scope of their algorithm
and programming language courses. After students’ usage, application saved
students’ activities and errors. Then we investigated and evaluated those knowledge
concerns on the usage and errors made by students. In this chapter, this investigation
and evaluation will be presented and explained in details. With this evaluation, the
instructors have usage reports and they tried to get more effective in-class sessions

during their algorithm and programming courses.

6.1 Engage Students to Use Algolyzer

Practices of courses are too important for students when mental concerns are
matter of the learning process. Abstract knowledge can be followed in tangible forms
with similar applications as our developed tool. In this way comprehension of those
topics can be facilitated for students. Beginning from this point, we engage our

students to use developed tool- Algolyzer.

43

The developed application was announced to our starter-level class students at
computer engineering and computer programming department of Dokuz Eyliil
University. Students used developed tool published in http://algolyzer.cs.deu.edu.tr
address during the one semester within the scope of their related courses. There are
two different experiment group illustrated in Table 6.1. Students in first study group
used this tool in algorithm and programming course. Students at second study group
used this tool in programming languages course. Each study was realized on separate

semesters with different students.

Table 6.1 Experimental groups of study assessment

Department Class Course name

First study Computer Starter- Algorithm Study A
Engineering level &Programming |

Second study Computer Starter- Programming Study B
Programming level Languages |

System saved students’ activities and errors during their sessions. At the end of

the semester, logs obtained from the system database were investigated.

6.2 General Statistics

The login/registration, operations and errors made by the students were saved to
system database when students use the application. This gives an idea related to
students sessions, their usage and erroneous state while improving their solutions on
the tool. Thus, erroneous statistics provide the opportunity for the instructors to

determine lacks on topics.

44

The data retrieved from the user experiments, values in Table 6.2 were obtained
for study A group. Investigation can be summarized as; system collected 84 student’s
registration and 950 sessions. Session corresponds to the students’ login and chooses
a question. The questions have been chosen by students are randomly selected from
database. In this group, not all students made an error at the problem solution phase
and compiled their improved algorithm. Solution code compilation was not
succeeded in general. Record of compilation means that students select one question

and perform to complete his/her solution and then compile code file.

Table 6.2 General Statistics of System Usage for Study A

Record Name Count
Total number of students 84
Total number of sessions 950
Total number of erroneous sessions 80
Number of questions 52
Number of questions error(s) made on 32
Number of error types in erroneous sessions 15
Number of operand/statement types 6
Number of compilation 39

General statistics depending on the usage of the students in study B group were
listed in Table 6.3. The 42 students used the tool related to their courses. Session
number is a little low, when these values compared with study A group’s values.
Another remarkable state is number of compilations is too few. This means that most

of students cannot came to the end of their solution or not prefer to compile.

Table 6.3 General Statistics of System Usage for Study B

Record Name Count
Total number of students 42
Total number of sessions 665
Total number of erroneous sessions 29
Number of questions 60

45

Table 6.3 General Statistics of System Usage for Study B (cont.)

Number of questions error(s) made on 18
Number of error types in erroneous sessions 9
Number of operand/statement types 6
Number of compilation 2

6.3 Distributions of Students Errors During Programming

In problem solving phase, students make an error associated with their algorithm
and programming. System saved these errors during the students’ session. At the end
of the semester, we worked on these errors data. In this part, types and distributions
of errors made by students explained in details. With these distributions and
evaluations, topics of algorithm and programming course, which not properly

understood, can be determined.

6.3.1 Error Distributions on Base Topics

In study A, there are 80 errors made by students while generating algorithmic
solution of the problem using the main operations. Error type and their distribution
illustrated in Figure 6.1.

Error Rates of Operation

2%

M Variable

H Loop

m IfElse

B Condition
B Assignment

| RwW

Figure 6.1 Error rates of base operations for Study A

46

For Study B there are 29 errors made by students during their solutions. Figure 6.2
shows the distribution of the main operation errors. Operation that has the highest
distribution is the same in study A. Other error types are changing on following

rates.

Error Rates of Operation

3%

m Variable
N Loop

m IfElse

B Condition

M Assignment

B RW

Figure 6.2 Error rates of base operations for Study B

6.3.2 Error Distributions on Subfield Topics

System saves errors associated with subfields of the main topics when students are
working on the problem solution. For instance, student made an error on loop
operation, error part as variable or condition parts of loop statement saved to
database such as condition lacking or command missing in loop statement. Order of
error distribution in subfield topics are changed a little when compared with the
results of main operations in previous heading. On the contrary, in previous ratio, the
most errors comes from “If” operation of all main subjects. This show that students
made incomplete if/else statements while creating their algorithm. Some specific
variable, loop and condition errors with the same ratio value pursues highest topic.
Defining same variable, condition missing of loop, using same variable in condition
are the second high-rated errors made by students. Other subfield errors are figured
in Table 6.4 for study A.

47

Table 6.4 Subfield error rates of Study A

ErrorType Operation Rates
14 Ifincomplete 18,8
4 VariableDefineAgain 11,3
18 LoopConditionMissing 11,3
11 CondSameVariable 11,3
2 VariableTypeMismatch 10,0
17 LoopVariablelnitialMissing 8,8
1 Variablelncomplete 8,8
13 CondBoolControl 5,0
5 RWIncomplete 3,8
19 LoopincDecValueMissing 3,8
15 IflncompleteElse 2,5
7 RWParameterMissing 1,3
8 CondIincomplete 1,3
22 Assignmentincomplete 1,3
23 AssignmentTypeMismatch 1,3

Distribution of the subfield errors for study A in Figure 6.3. Error type, which has
the highest value based on the subfield different from the most intensity of error type
one based on the main subjects. When we examine the different errors, main subject

variable and loop subject have the highest intensity.

48

VariahleDefineAgain
AssignmentTypeMism 16—+ VariahleTypeMismatc

atch 14 h
Assignmentincomplet '

o VariableIncomplete

LooplIncDecValueMiss

_» RWIncomplete
ing 7\

LoopVariablelnitialMis | | | ||

) /7 RWParameterMissing
sing

LoopConditionMissing CondSameVariable

IfincompleteElse CondBoolContraol

IflIncomplete Condincomplete

= Error Count

Figure 6.3 Error distribution based on the subfields for Study A

For Study B group, first element of the error type distribution was changed

associated with the errors separately depending on the subfields sighted in Table 6.5.

Incomplete variable block is highest rate of this distribution. Defining same variable

error followed the highest one that is the same order with study A.

Table 6.5 Subfield error rates of Study B

ErrorType Operation Rates ‘
1 Variablelncomplete 41,4
4 VariableDefineAgain 20,7
11 CondSameVariable 13,8
5 RWIncomplete 6,9
14 Iflncomplete 3,4
17 LoopVariablelnitialMissing 3,4
15 IflncompleteElse 3,4
8 Condincomplete 3,4
22 Assignmentincomplete 3,4

49

For study B, intensity of the error type is in Figure 6.5. Variable errors are

differed from the other operation errors.

Variablelncomplete

12 -
Assignmentincompl 719 _VarDefineAgain
ete ' i
I3 -

'y

L ConditionMissi 4

oopConditionMissi

i ng f——— 2 RWincomplete

AS Error Count

LoopVariablelnitial |~ —

Missing Condincomplete

[flIncomplete CondSameVariahle

Figure 6.4 Error distribution based on the subfields for Study B

When we examine the errors made by students on generating their algorithm,
main topic errors separated from the errors depending on subfields of these main
topics. Consequently, the errors, which come from subfields topics, must be
considered beside the base concepts rates. In this way child elements, which can be
re-worked in an extra lecture with base concepts, can be specified associated with the

students activity rates.

6.4 Individual Evaluation & Distribution of Multiple Errors

On comprehension phase, having the knowledge of details of errors is essential
for instructors. Beside the errors depending parts as base or subfield, multiple errors
made by same student may be important on evaluation. In this concept multiple
errors data obtained and evaluated. Firstly, errors examined according to general title

groups mentioned previous parts. In second phase, errors analyzed individually for

50

each students. To examine the multiple errors made by one student in details; firstly
duo, trio errors made together determined and an Apriori algorithm, which is a
classic algorithm for learning association rules, is used in this study. Shortly to find

the relations of errors clearly at this step, data mining is applied.

6.4.1 Apriori Algorithm Result

Firstly, errors examined according to general title groups mentioned in previous
parts. In second phase, errors analyzed individually for each students. To examine
the multiple errors made by one student in details; firstly duo, trio errors made
together determined and an Apriori algorithm, which is a classic algorithm
for learning association rules, is used. Shortly to find the relations of errors clearly at
this step, data mining is applied. Duo, trio and other combinations of errors for study

A group’s students have been identified and values in Table6.6 were obtained.

Table 6.6 Relations of multi errors and rates for Study A

Error ID| Rates Error Type(Base topic)
813171811 2,7 | Condition Condition Loop Loop Condition
8131718 2,7 | Condition Condition Loop Loop
8131711 2,7 | Condition Condition Loop Condition
8131811 2,7 | Condition Condition Loop Condition
8171811 2,7 | Condition Loop Loop Condition
13171811 2,7 | Condition Loop Loop Condition
131718 2,7 | Condition Loop Loop
131711 2,7 | Condition Loop Condition
131811 2,7 | Condition Loop Condition
131114 2,7 | Condition Condition IfElse
81317 2,7 | Condition Condition Loop
81318 2,7 | Condition Condition Loop
81311 2,7 | Condition Condition Condition
81718 2,7 | Condition Loop Loop
81711 2,7 | Condition Loop Condition
81811 2,7 | Condition Loop Condition
191811 2,7 | Loop Loop Condition
17 18 11 2,7 | Loop Loop Condition
231114 2,7 | Assignment condition IfElse
11811 2,7 | Variable Loop Condition

51

http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Association_rule_learning

Table 6.6 Relations of multi errors and rates for Study A (cont.)

7114 2,7 | ReadWrite Variable IfElse
4214 2,7 | Variable Variable IfElse
21114 2,7 | Variable Condition IfElse

1811 8,1 | Loop Condition
1114 8,1 | Condition IfElse
1311 5,4 | Condition Condition
214 5,4 | Variable IfElse
1514 2,7 | IfElse IfElse
2311 2,7 | Assignment condition
2314 2,7 | Assignment IfElse
71 2,7 | RW Variable
714 2,7 | RW IfElse
813 2,7 | Condition Condition
817 2,7 | Condition Loop
818 2,7 | Condition Loop
811 2,7 | Condition Condition
1917 2,7 | Loop Loop
1918 2,7 | Loop Loop
1911 2,7 | Loop Condition
42 2,7 | Variable Variable
414 2,7 | Variable IfElse
12 2,7 | Variable Variable
118 2,7 | Variable Loop
111 2,7 | Variable Condition
114 2,7 | Variable IfElse
1317 2,7 | Condition Loop
132 2,7 | Condition Variable
1318 2,7 | Condition Loop
1314 2,7 | Condition IfElse
172 2,7 | Loop Variable
17 18 2,7 | Loop Loop
17 11 2,7 | Loop Condition
211 2,7 | Variable Condition

During examining multiple errors, one of the observations is that any student
made maximum five errors together. At the same time, duo errors are high density in
multiple errors. The highest pair error value is 8.1 and these are belongs to loop-
condition and condition-if/else errors.

make an error about the loop or if-else statement, there is an error also in condition

52

We obtained the inference that if students

part. Duo errors, which have the second highest value, were condition-condition and
variable-if/else errors. We observed that student who has an error on creating
condition, repeated this situation when solving a different problem. This indicates
that there is miscomprehension for students about condition topics. Another error
status was that student who made an error on creating variable, also could not
complete if/else part. Depending on the general analysis of multiple errors, condition
errors are the highest value. This evaluation also was attained from the multiple
errors rates depending on the main topics in Figure 6.5. Numbers on vertical

coordinate show the error types and error 3, condition has the highest value.

Multiple
Errors

Distribution of
Multiple Errors

153

413
241
643

B Errors Quantity

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0

Figure 6.5 Multiple error distribution for Study A

When we examine the errors made by students in study B group, Table 6.7 is
obtained for multiple errors. Variable error’s rate is the highest value. Variable’s
operation errors is the highest rates based on the evaluation of main operation’s error

in previous headings. This is the same in multiple error evaluation.

53

Table 6.7 Relations of multi errors and rates for Study B

Error ID Rates Error Type(Base topic)
221711 6,7 | Assignment Loop Condition
851 6,7 | Condition ReadWrite Variable
2217 6,7 | Assignment Loop
2211 6,7 | Assignment Condition
85 6,7 | Condition RW
81 6,7 | Condition Variable
51 6,7 | RW Variable
17 11 6,7 | Loop Condition
174 6,7 | Loop Variable
111 6,7 | Condition Variable
41 13,3 | Variable Variable

6.5 Students Evaluation of Algolyzer

A questionnaire is prepared to obtain the feedbacks from the students after they
use Algolyzer and this model. This questionnaire includes ten questions related to
beneficial rates on learning process of algorithm and programming and essential
features of Algolyzer. Students were asked to evaluate the support level of Algolyzer

from no benefit to very beneficial shown in Figure 6.6.

1. Did you use Algolyzer educational tool?

O Yes O No

2. How was Algolyzer beneficial for you?

O1 O 2 O3 O 4 O &

3. Did you have a chance for more practice?

O Yes O No

4. How beneficial were the error messages?

O1 O 2 Os O 4 O 5

54

How do you think dividing problems in operations was beneficial?

O1 O 2 Os Q4 O s

How beneficial was writing the programming code independent of PL?

O1 O 2 O3 O 4 Os

How do you think Algolyzer helped you to develop problem solving skills?

O1 O 2 O3 O 4 Os

How do you think Algolyzer helped you to improve abstract thinking?

O1 O 2 Os O 4 O 5

Please check appropriate box(es) which are the most important features of Algolyzer for
you?

Generate programming source code independent of PL
Give error messages

Have problem repository

Focus on single problem

Divide solution in operations

OoOoOdno

10. Please add any other feedback on Algolyzer.

* 1 Almost no benefit 5 Very beneficial

Figure 6.6 Questionnaire of Algolyzer usage

Even though 40 students participated in the questionnaire, only 24 students

completed the questionnaire forms. All the students reported that they had a chance

for more practice with Algolyzer shown in Figure 6.7.

55

Do you have a chance for more
practice

No; 0%

WYes

B No

Figure 6.7 Students feedback on doing more practice

Feedbacks on effectiveness of error messages are illustrated in Figure 6.8.

According to students, error messages support them in average level.

Effectiveness of error messages

35%

30%
25%
20%
15% W Students Feedbacks
10%

5%

0% T T T T

1 2 3 4 5

Figure 6.8 Students feedback on effectiveness of error messages

56

Support Degree of dividing operations

35%

30%

25%

20%
15% m Beneficial quantity
10%
5%
0%
1 2 3 4 5

Figure 6.9 Students feedback on support degree of dividing operations

Dividing operations which is the another main feature of the developed tool has
been identified as beneficial for participants shown in Figure 6.9. Independent of
programming language feature has the same result with dividing operations in Figure
6.10. Students register that writing syntax free code supports them for learning

programming process.

Support Degree of independent of PL

35%

30% —

25% —

20% —

15% — W Support Degree Quantity
10% —
1

0% . . . —

1 2 3 4 5

Figure 6.10 Students feedback on support degree of independent of PL

57

The last rating question’s result, which aims to get students opinion on the most
important features of Algolyzer is shown in figure 6.11. Giving error message,
dividing solution in operations and having problem repository features are the

highest and the same percentage.

Most important features of Algolyzer

30%

25%

20%

15%

10% m Students Feedbacks
5%
0% T T T T

generate code giveerror have problem focus on single divide solution
independentof messages repository problem inoperations
PL

Figure 6.11 Students feedback on important feature of Algolyzer

Some participants responded with their own opinions by answering the question
number 10 of the questionnaire; “You may add more new programming language
support”, “Dividing operations is excellent”, “This is perfect for starting level

students™...

6.6 General Evaluation

Making errors means that there is a misconception or a problem in the learning
process. From this point, analyzing the errors of students in details becomes

important. As far as obtained result can be summarized as;

e Subfield errors are diversity from main topic errors,
e Multiple errors give information about individual evaluation of students

e Some topics can be depended on the other topic.

58

The above all general results shared in details with the instructors. The instructors
on teaching process can consider these evaluations. In this way, misunderstanding
parts can be re-worked in more lectures. At the same time instructor have a chance to

form their courses related to miscomprehension parts on the next semesters.

Another important evaluation depends on the survey results. The surveys related
to the usage of Algolyzer and its model and the feedbacks prove that Algolyzer
supports the students on learning process. The survey results of participants can be

summarized as;

e Algolyzer was beneficial for students
e Feature set of the tool is important on learning process
e they had a chance to do more practice which is necessary for improving

programming skills

59

CHAPTER SEVEN
CONCLUSIONS

Teaching and learning programming has never been an obvious process because
of the programming is a skill requires practicing and wide effort. Learning design
and analysis of algorithms is important for students. Students in computer science
disciplines often face difficulties on the related courses. To date, various studies on

learning algorithm, programming and data structures have been realized.

In this study, a new method proposed with considering the most important and
ineffective parts of the algorithm and programming learning process. Constructivism,
which is a learner-centered pedagogy, is used in this study. In this concept, user-
friendly, visual interface tool has been developed to support learning process of
students. Developed tool, named Algolyzer, provides a programming-language-
independent environment for students to create an algorithm solution for predefined
algorithmic problem. With this feature, students get a chance to focus on the possible
solutions more without facing with programming language syntax issues. This
feature helps them in several points as; they understand the importance of main logic
of creating an algorithm and decrease time spent on the syntax of the programming
language. Another point is that Algolyzer affects the student’s motivation and
confidence in writing correct programs in a positive way. Thus, students can improve

their algorithmic thinking abilities independent from the programming languages.

In the same time, students can work on program codes in different programming
languages using multiple language support of Algolyzer. This feature of tool gives a
chance to students to do more practice on improving algorithm and programming
design skill. By using Algolyzer, students can create algorithmic steps of their
solution using visual interface operations. Students can comprehend topics better

with separated operations associated with basic concepts of programming.

60

In addition to this, Algolyzer is also an assistant for instructors. While teaching
algorithms and programming, instructors can use this developed tool. Algolyzer
saves errors of students occurred during solving the given problems. With having all
activities log of each students, instructors can have detailed information on how
students use it, where they need more help, what are the lacking parts in the teaching
process. In this way, misunderstanding topics can be determined and re-worked in

more lectures.

The students of Dokuz Eyliil University Computer Engineering and Computer
Programming Department have used Algolyzer. At the end of the semester, their
usage data has been evaluated. General statistics obtained from the activities and
errors of students. The highest error topic was determined. In detail investigation,
multiple errors were examined. Selected data mining method applied on collected
data and the base problems that happen during designing an algorithm phase were
defined. When examining multiple errors we observed that pair’s errors are high
density in multiple errors. Another result is that, highest error type in evaluation on
multiple errors is different from highest one in evaluation based on general error type

definition.

Another point of this study is that, in verbal form we attained the feedback from
the students that they used the tool and benefited from the problem repository for

preparing the algorithm and programming exams.

In summary, in this thesis during the study a tool has been developed on learning
algorithms and programming area to support students to learn basics of programming
and to assist instructors during their teaching classes. The developed tool has been
developed as a web based application and can be used in both distance learning
courses and in-class sessions. This developed tool provides instant repeat chance to

students if used in distance learning sessions.

The most significant contributions of this study can be summarized as
e Developed tool can bridge the gap between the learning process and

learning complications.

61

e Attain knowledge of errors of students related with comprehension while
developing a program
e Give a chance to enhance success rate with repeating misunderstanding

parts and increasing student’s motivation.

Some surveys related to usage of Algolyzer and its model has been applied to
students. The feedbacks of students prove that Algolyzer supports the students during
algorithm and programming learning process effectively.

In the future, adding new features will help catching more logic errors to be used
for the study and will result with better-analyzed problems on improving algorithmic
thinking phase. Collecting more data will always be in our plans to create results that
are more sensible and help to propose new models. Another primary goal in this
study will be improving real time notifications and improving user interactions with
enabling more validations rules. Adding more programming languages is another
mid-term plan. We plan to improve Algolyzer to make it a standard tool in starter-
level algorithms and programming courses. Drawing flowchart feature, which is in
desktop-based version of this study, will be added to the web-based version. Every
student - does not matter which discipline they are in - face different problems during
the learning process. Students on various disciplines at engineering can use the
developed tool and depending on their usage and logged errors; new inferences will
be obtained for next studies.

62

REFERENCES

Al-Imamy, S., Alizadeh, J, & Nour, M. A. (2006). On the development of a
programming teaching tool: The effect of teaching by templates on the learning

process. Journal of Information Technology Education, Vol. 5, p. 271-283.

Aispuro, E. E., Licea, G., Sus’rez, J., Sandoval, A., Carreno, M. A., & Estrada,
I. (2009). Supporting the development of interactive applications in
introductory programming courses. Computer Applications in Engineering
Education, 20, p.214-220.

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings
of the twenty-ninth SIGCSE technical symposium on computer science
education, p. 257-261.

Biggs, J. B. (2003). Teaching for quality learning at university. what the student
does. Maidenhead, United Kingdom: Open University Press, p. 13.

Bloom, B. S. (1956). Taxonomy of educational onjectives, handbookl: The

Cognitive Domain. White Plains, N.Y: Longman.

Byrnea, M. D, Catramboneb, R., & Staskoc, J. T. (1999). Evaluating animations as
student aids in learning computer algorithms. Computers & Education, Vol. 33,
p. 253-278.

Chou, C. Y., & Sun, P. F. (2010). An educational tool for visualizing students’
program tracing processes. Computer Applications in Engineering Education,
2010, doi:10.1002/cae.20488.

Chou, P. H. (2002). Algorithm education in Python. Proceedings of Python 10, p.
177-185.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
algorithms (3rd ed.). Cambridge: The MIT Press.

63

Costa, C. J., Aparicio, M. & Cordeiro C. (2012). Web-based graphic environment
to support programming in the beginning learning process. Proceedings of the
11th international conference on Entertainment Computing, LNCS Vol. 7522, p.
413-416.

Dagdilelis, V., Satratzemi, M., & Evangelidis, G. (2004). Introducing secondary
education students to algorithms and programming. Education and Information
Technologies, 9:2, 159-173.

Elgamal, A. F., & Abas, H. A., & Baladoh, E.. M. (2013). An interactive e-
learning system for improving web programming skills. Educational
Information Techonology, 18, p. 29-46.

Ferna'ndez, A. J., & Sa’'nchez, J. M. (2004). CGRAPHIC: Educational software
for learning the foundations of programming. Computer Applications in
Engineering Education, 11, p. 167-178.

Gomez-Albarra’n, M. (2005). The teaching and learning of programming: A
survey of supporting software tools. The Computer Journal, Vol. 48, p. 130-
144,

Holvikivi, J. (2010). Conditions for successful learning of programming skills.

Key Competencies in the Knowledge Society, Vol. 324 Springer, 155-164.

Hundhausen, C. D., & Brown, J. L. (2008). Designing, visualizing, and discussing
algorithms within a CS 1 studio experience: An empirical study. Computers &
Education, 50, p. 301-326.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002) .A meta-study of
algorithm visualization effectiveness. Journal of Visual Languages and
Computing, 13, p.259-290.

Hiibscher-Younger, T., & Narayanan, N. H. (2003). Constructive and
collaborative learning of algorithms. ACM Special Interest Group on Computer
Science Education (SIGCSE '03), p. 6-10.

64

Jain, A. K., Singhal, M., & Gupta, M. S. (2010). Educational tool for
understanding algorithm building and learning programming languages. World

Congress on Engineering and Computer Science, Vol. I, 292-295.

Jenkins, T., (1998). A nparticipative approach to teaching programming.
Proceedings of the 6th Annual Conference on the Teaching of Computing and
the 3rd Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (/ITICSE'98), p. 125-129.

Jerez J. M., Bueno D., Molina I., Urda, D. & Franco, L. (2012). Improving
motivation in learning programming skills for engineering students.

International Journal of Engineering Education, Vol.28, No.1, p. 202-208.

Jonassen, D. H. (1996). Computers in the classroom: Mind tools for critical
thinking. Columbus, OH: Merrill/Prentice-Hall.

Kordaki, M. (2010). A drawing and multi-representational computer environment
for beginners’ learning of programming using C: Design and pilot formative

evaluation. Computers & Education, 54, p.69-87.

Kordaki M., Miatidis, M., & Kapsampelis, G., (2008). A computer environment
for beginners’ learning of sorting algorithms: Design and pilot evaluation.

Computers & Education, 51, p.708-723.

Lahtinen, E., AlaMutka K., & Jérvinen, H. (2005). A study of the difficulties of
novice programmers. Proceedings of the 10th Annual SIGCSE conference on
Innovation and technology in computer science education (ITiCSE 05),
Portugal, p. 14-18.

Lazaridis, V., Samaras, N., & Sifaleras, A. (2010). An empirical study on factors
influencing the effectiveness of algorithm visualization. Computer Applications
in Engineering Education, DOI 10.1002/cae.20485.

65

Li, J., & Zhang, Z. (2010). A learning tool of genetic algorithm. Second
International Workshop on Education Technology and Computer Science
(ETCS), Vol.1, p. 443-446.

Li, J., & Liu, W. (2009). An educational tool for the ant colony optimization
algorithm. First International Workshop on Education Technology and
Computer Science (ETCS), Vol.1, p. 55-58.

Licea, G., Juarez, J. R., Marti'nez, L. G., & Aguilar, L. (2008). Developing
programming tools to reach a deeper understanding of advanced programming

concepts. Computer Applications in Engineering Education, 16, p. 305-314.

Licea, G., Juarez-Ramirez, R., Gaxiola, C., Aguilar, L., & Marti'nez L. G. (2011).
Teaching object-oriented programming with AEIOU. Computer Applications in
Engineering Education, doi:10.1002/cae.20556.

Marcelino, M., Gomes, A., Dimitrov, N. & Mendes, A., (2004), Using a computer
based interactive system for the development of basic algorithmic and
programming skills. Proceedings of International Conference on Computer

Systems and Technologies (CompSysTech’2004), p. 1-6.

Milne, 1., & Rowe G., (2002). Difficulties in learning and teaching programming -
Views of students and tutors. Education and Information Technologies, Vol.7,
p. 55-66.

Miildner, T., Shakshuki, E., & Kerren, A. (2008). Algorithm education using
structured hypermedia. Advances in Distance Education Technologies Series,
Chap. 5, IGI Global, 58-84.

Nardi, B. A. (1996). Studying context: A comparison of activity theory, situated
action models, and distributed cognition. In B. A. Nardi (Ed.), Context and
consciousness: Activity theory and human—computer interaction. Cambridge,
MA: MIT Press.

66

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392

Ng, S.C., Choy, S.O., Kwan, R., & Chan, S.F. (2005). A web-based environment
to improve teaching and learning of computer programming in distance
education. International Conference on Web-based Learning, Vol. 3583
Springer, p. 279-290.

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning

cultures and computers. Dordrecht: Kluwer Academic Publishers.

Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students’
understanding of the concept of algorithm: Levels of abstraction. 10th Annual
Conference on Innovation and Technology in Computer Science Education, p.
64-68.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education, Vol. 13,
No.2, p.137-172.

Sajaniemi, J., & Hu, C. (2006). Teaching programming: Going beyond “objects
first”. 18th Workshop of the Psychology of Programming Interest Group,
University of Sussex, p. 255-265.

Satratzemi, M., Dagdilelis, V., & Evagelidis, G. (2001). A system for program
visualization and problem-solving path assessment of novice programmers. 6th
Annual Conference on Innovation and Technology in Computer Science
Education, ACM, 137-140.

Satratzemi, M., Xinogalos, S., & Dagdilelis, V. (2003). An environment for
teaching object-oriented programming: ObjectKarel. The 3rd IEEE

International Conference on Advanced Learning Technologies, p. 342-343.

Selby, C., C., (2011). Four approaches to teaching programming. Learning, Media

and Technology: A doctoral research conference, London.

67

Shabanah, S., & Chen, J. X. (2009). Simplifying algorithm learning using serious
games. Proceedings of the 14th Western Canadian Conference on Computing
Education, ACM, p. 34-41.

Shakshuki, E., Kerren, A., & Miildner, T. (2007). Web-based structured
hypermedia algorithm explanation system. International Journal of Web
Information Systems, Vol.3, No.3, p 179-197.

Sutinen, E., Tarhio, J., & Terasvirta, T. (2003). Easy algorithm animation on the
web. Multimedia Tools and Applications, Vol.19, p. 179-194.

Taherkhani, A., Korhonen, A., & Malmi, L. (2010). Recognizing algorithms using
language constructs, software metrics and roles of variables: An experiment

with sorting algorithms. The Computer Journal, Vol. 54, No.7, p. 105-1066.

Truong, N., Bancroft, P., & Roe, P. (2003). A web based environment for learning
to program. ACSC '03 Proceedings of the 26th Australasian computer science
conference, Vol. 16, p. 255-264.

Van Gorp, M., J., & Grisson, S., (2001). An empirical evaluation of using
constructive classroom activities to teach itroductory programming. Computer
Science Education, Vol. 11, No. 3, p. 247-260.

Vygotsky, L. S. (1978). Mind and society: The development of higher mental

processes. Cambridge, MA: Harvard University Press.

Wang, Y., Li H., Feng, Y. Jiang, Y., & Liu, Y. (2012). Assessment of
programming language learning based on peer code review model:

Implementation and experience report. Computers & Education, 59, p. 412-422.

White, S., Martinez, T., & Rudolph, G. (2012). Automatic algorithm development
using new reinforcement programming techniques.Computainal Intelligence, Vol.
28, Issue 2, p. 176-208.

68

Winslow, L. E. (1996). Programming pedagogy — A psychological overview.
SIGCSE Bulletin, Vol. 28 Issue 3, p.17-22.

Wulf T. (2005). Constructivist approaches for teaching computer programming.
Proceedings of the 6th conference on Information technology education SIGITE
05, p.245-248.

Yildirrm, M., & Kut, A. (2010). An interactive education tool for
conventional/distance learning. The International Symposium on Open and
Distance Learning(IODL), Eskigehir, p. 903-908.

Ziegler, U., & Crews, T., (1999), An integrated program development tool for
teaching and learning how to program. Proceedings of the 30th SIGCSE Technical

Symposium on Computer science education, Vol. 31, p. 276-280.

69

APPENDICES

A. List of Abbreviations

EXE Executable

GUI Graphical User Interface

IDE Integrated Development Environment
10 Input Output

LHS Left Hand Sight

OOP Object Oriented Programming

PL Programming Language

RHS Right Hand Sight

RW Read Write

70

wnuz
A 2adAjs003

s=p
& Aumnsossaoid |

SSED
4] 4ossa0igoisegA |

SSED
4] Asopeyiossadold |

B. Class Diagram Of Algolyzer

0

J0ssa00igabenbueyp J

s3epmu

wnuz wnuz wnuz wnug
0] uoipauqdoo] 2] Jojesadoyien 2]) adAjuosuedwod) adAyr
wnuz wnu3 wnuz wnuz

4 esadoaumpeay 2) endojuawalels 4 adApuawalers 2 adAuorpuod
wnu3z

2) abenbueibunuweibold

SSER
X Jouzaapdwod J

Lo ma,is
2 Joaizsapdwod]

)

2 EvEu«Numui..Enuz

A/.\

«..u...uﬁ.mz
(

.__u...u.m.muzn:ﬁ

A(\.

r\

a..uEu«Em._S__ES

g
-
o il
-
o meiniiy
g

2] uawaieIsjuaWUbISSY 7
-
Q

sepmu
mm a..u...uﬁ—mn

71

Figure A.1 Class Diagram of Algolyzer includes all classes

—
abenbueq -3
adAyuong W

sapadoud uogebiaey =
xa to.:wrﬂ

mem:m:m._@
qradA, totmm
sapdadold =

saadold

*

Bopasn W

adAuonz W

:onmm_>m: B

JasnAgxa 110113 N
qaradAjio13 h
qaibopasn =
aibopioi3 w

saadold =

bopony “o

S —
wsa|qoid B
abenbueq %
sanuadoud uonebiaen =
Taxa Lwa|qoid L
qarabenbueq =)
arwe|qoid g
saadold =

¥ pewelqod ‘b

—
wa|qoid e
sboporz W
saadold uonebirey =
apdwods 5o
alea ko
arwa|qoid Lo
auesn b
arbopasn m.u
saadold =

(¥ opesn £k
¥

%

o

PETTEN

&

-
58,

.\l|)

sxa 1 adA 110103 &

SIX3] Wa|qoid W_
sauadoud uonebinen =

8pod L

aweN Fﬂ

qarabenbueq my
sagiadold =

v obenbue] ‘.

V.

sxa Lwa|qoid
sbopasn =
uonesado T
sampadoid uonebiney =
qgruonesado h
aaibaquwalqold .,ﬂ
e 1wa|qoid L
arwe|qoid foa
sauadold =

2 wajqoid ‘b

sixajadA 110113 w.n_
uonesado W,
sbopowg 5
sauadoud uonebinen =
aalbagioig nﬂ
Qgruonesado h
walJou3 u.ﬂ
mEmZmn?Co:m%
qaradA1iou3 m
sapadold =

-
[sadAypon3 ®
5Wa|qoid fie
sauadoud uonebiaenN =
mn>._.coumhmnoh
qruonesado Mw

saJadold =

Figure A.2 Class Diagram of Data Module with Properties

72

C. Algolyzer Usage

In this section, one scenario was taken to show the usage of Algolyzer. Instance

screen shots illustrated in the following figures.

a3 Home Page x
WS

& - C # [agolyzer.cs.deu.edu.tr/Default.aspx?ang=2

Algolyzer Log in | Register Tarkge| English

Home About Help

WELCOME TO ALGORITHM EDUCATIONAL TOOL

Programming Language
@cs Oy 7 Is Friendly

Question Part

Select Question

"Variable | Read/Write | Condition | 17/Else || Loop || Assigment |

Defining variable

Type nt >
Name
Initial Value

Create variable

Code Part

Create File I Compile | Download code | Clear code

Figure B.1 Start Window of Tool

Students firstly try to understand problem given by the system, and work on
problem and generate solution, than student pass the next problem. Extensive
question repository can be constituted on algorithm and programming area for
students and instructors. At the beginning of the tool’ usage, students determine main
operations with solution separation task. This method supports the students for
improving a solution algorithm easily.

73

gay Home Page x

€« - C M [agolyzer.cs.deu.edu.tr/default.aspx v @ L g e Qj@ =

Algolyzer Welcome meltem! (Log out) Tirkce| English

About Help

WELCOME TO ALGORITHM EDUCATIONAL TOOL

Programming Language
@cx Cyp ¥ 15 Friendly

Question Part

Write days of week on the screen according to given number{1-monday,..)

Select Question

Variable || Read/Write || Condition H If/Else || Loop || Assigment

Defining varnable

Type Int -
Name
Initial value

Create variable

Code Part

Create File | Compile | Download code | Clear code

Figure B.2 View of Algolyzer with Selecting Problem after Login the Page

74

Lay Home Page x

& = C f [aigolyzer.cs.deu.edu.tr/defauit.aspx wl @ L & - Q}@ =

-

Algolyzel‘ Welcome meltem! (Log out) Turkge| English

About Help

WELCOME TO ALGORITHM EDUCATIONAL TOOL

Programming Language
@cs Cyp ¥ Is Friendly

Question Part

Write days of week on the screen according to given number(1-monday,..)

Select Question

Variable H Read/Write HVCondition HTf/iEE;H Loop I Assi

Defining variable

Type [int ~|
Name
Initial Value

Create variable

Code Part
1 using System;
2 using System.Text;
3 using System.IO;
4
5 namespace Test
6 {
b) class Program
8 {
£l static veid Main(string[] args)
10 {
11 int number = 0;
12
13 Console.ReadLine();
14 }
is }
16 }
Create File | Compile | Download code | Clear code —

Figure B.3 Beginning the Writing Code with Operations Support View

75

D. Previous Version of The Study

The first version of this study implemented as a desktop-based application. The
general features as problem, operation and code parts improved in this first

prototype. Welcome screen can be seen in Figure C.1.

-0l

Froblem |V‘anabla| Read/Wntel Condmonl ff-Else. I Loop I Assignment I

Select Problem |

Problem: Find the smallest number of given two numbers

Problem Degree: ‘3 -6

Figure C.1 Welcome screen of the application

Operation features are same with the last version of the application. Read/write

statement creation is shown in figure C.2.

76

-0l

Fmblanl Variables ~Read/Wite |Condmon| ff-Else. I Loop I Assignment I FlowChart
Variable definition
Retum with code

Operation (=" Read
I Line
 Wirite

Variable vl
Message ™ After variable

Create command | Clear command
Console WiiteLine("Enter a");

a=Convert Tolnt32({Console ReadLine();
Console WriteLine("Enter b");
b=Convert Tolnt32({Console ReadLine();

Add to Program
Code

Figure C.2 Sample screen of Read/Write statement creation

There are some different features at this version as flowchart. When creating code
part; flowchart of this algorithm was drawing simultaneously on the screen. Thus,

each step of algorithm can be followed on flowchart field.

Another sample screen illustrated in Figure C.3. There are three steps for if
statement. When creating if code block, system adds related shape in flowchart area

automatically.

77

=

Problem | Variables | Read/Wite | Condtion F-Else |Loop | Assigrment | FlowChart

L — Variable definition
i Retum with code
FType F
* Hse Delete Row Delete Al Read/Wirite operation

€ Hseif

Step 2
Condiion [Ireperation

Step 3

Commands when condition is occured

Add to Program
Code

inta=0;

int b=0;

Console.WriteLine("Enter a");
a=Canvert Tolnt32(Cansole ReadLine()):
Console.WriteLine("Enter b").
b=Convert Tolnt32(Console.ReadLine()):
if{a<b)

Console WriteLine("Smaller one is "+a);
else

{

Conscle WriteLine("Smaller one is "+b);

Figure C.3 If statement view with flowchart presentation

Realizing debug operation is another different feature from final version of the

application. Students can debug their generated code file.

Debug Infi ti =
Information WY E

Debug operation is done.Mow you can testFile0.exe
Filel.cs was created

[oc | -

Microsoft (R) Visual C# Compiler version 4.0,30319. 17329

for Microsoft (R) .MET Framework 4.5
Copyright (C) Microsoft Corporation. All rights reserved.

=1

Figure C.4 Create source file and debug operations

78

After debugging operation, students can run executable file created by the system
at user side. Students can obtain executable files from application path. On console
students enter input values and take output with running executable file illustrated in
Figure C.5 and Figure C.6.

.Pmb\eml Variables Read/Write ICond'rIionI lf-Else | Loop I Assignmeml FlawChart

Vanab\e definition

Retum with code

Operation = 1 ReadWrite upercmun

| Write operation

!

[D:\Meltem \Phd Codes\CodeTesterV3\CodeTester\bin\Debug\File0. = [5|

Console WriteLine("a:"

a= ConvertToIm32(Ccnso\e.ReadLiner‘
Console.ReadLine();

Console WriteLine(b);

b=Convert Tolnt32(Console ReadLine();
a=a+b;

Console.WriteLine("Total"+a);

Figure C.5 Run executable file view

[N D:\Meltem\Phd Codes\CodeTesterV3\CodeTester\bin|Debug\Fi

Figure C.6 Realize 10 operations on exe file

79

