
 

DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

 

 

 

 

DEVELOPING A COMPUTER-AIDED 

INSTRUCTION APPLICATION TARGETING 

UNIVERSITY STUDENTS 

 

 

 

 

 

 

 

by 

Meltem YILDIRIM 

 

 

 

 

 

 

 

 

April, 2013 

İZMİR



 

 

 

 

DEVELOPING A COMPUTER-AIDED 

INSTRUCTION APPLICATION TARGETING 

UNIVERSITY STUDENTS 

 

 

 

A Thesis Submitted to the 

Graduate School of Natural and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Doctor Philosophy 

in Computer Engineering, Computer Engineering Program 

 

 

 

 

 

by 

Meltem YILDIRIM 

 

 

 

 

 

 

 

April, 2013 

İZMİR 



ii 

 



iii 

 

 

ACKNOWLEDGEMENTS 

 

I would like to express my gratitude my advisor, Prof. Dr. Alp KUT for his 

guidance, support and friendship lead to the successful completion of my thesis. 

I extend my thanks to the members of my committee, Prof. Dr. Yalçın ÇEBİ, and 

Asst. Prof. Dr. Reyat YILMAZ for their useful comments and suggestions during my 

study. 

In addition, I would like to acknowledge the equipment support from the Dokuz 

Eylul University BAP with 2011.KB.FEN.34 project number for my doctoral study.  

Finally, I would like to thank to my all family; to my parents, Ayten and Mehmet 

YILDIRIM for their support to date, especially to my partner, Aytek EKİCİ for his 

contributions and his encouragement during my study and most special thank to my 

little friend, Deniz EKİCİ for pretty gaps during the writing thesis and her luck. 

Meltem YILDIRIM 



iv 

 

 DEVELOPING A COMPUTER-AIDED INSTRUCTION APPLICATION 

TARGETING UNIVERSITY STUDENTS 

ABSTRACT 

 

Over the years, many various studies realized in education to support learning-

teaching process. Learning algorithm and programming depending on mental 

concern is often complex and difficult to understand for students. In general, to 

overcome those difficulties and help students had better understand the subject 

several educational tools and methods have been developed.   

In this study, the introduced model assists students and instructors. Students can 

practice and assist themselves to learn algorithms and programming concepts. 

Instructors can use the tool during their teaching classes and get inspired by the data 

gathered. An educational tool named Algolyzer has been developed for this learner-

centered model. Algolyzer depends on finding a solution to implement an algorithm 

for a predefined algorithmic problem. Students can create algorithmic steps using 

visual interface that students do not face with programming language syntax issues 

but only focus on the possible solutions. In addition to this, Algolyzer is also a helper 

utility for the instructors with giving information about the miscomprehension parts 

in the teaching process. Instructors can have detailed information on where students 

need more help, what are the lacking parts using the detailed logs of student 

activities.  

The students of Dokuz Eylül University Computer Engineering and Computer 

Programming Department have used Algolyzer.  Usage data has been examined and 

evaluated at the end of the study and obtained results have been shared with the 

instructors. The surveys that targeted the users of Algolyzer and model and the 

feedbacks prove that support the learning process effectively. 

 

Keywords: Programming learning, educational tool, simplify algorithm learning, 

error detection, code generation. 



v 

 

ÜNİVERSİTE ÖĞRENCİLERİNİ HEDEF ALAN BİLGİSAYAR DESTEKLİ 

BİR ÖĞRETİM UYGULAMASI GELİŞTİRME 

ÖZ 

 

Öğrenme öğretme sürecini desteklemek üzere yıllar içinde birçok farklı çalışma 

gerçekleştirilmiştir. Öğrenciler için zihinsel işlerle ilişkili olan algoritma ve 

programlamanın öğrenilmesi çoğu kez karmaşık ve zor olmuştur. Genelde bu 

zorlukları aşmak ve öğrencilerin daha iyi anlayabilmesini sağlamak için farklı 

metotlar ve eğitim araçları geliştirilmiştir. 

Bu çalışmada, öğrencilere algoritma ve programlamanın öğrenilmesine yardımcı 

ve eğitmenlerin de kendi öğretim süreçlerinde yardımcı olacak ve toplanacak veri ile 

esin kaynağı oluşturabilecek bir model tanıtılmaktadır. Bu öğrenici merkezli model 

için Algolyzer adı verilen bir eğitim aracı  geliştirilmiştir. Geliştirilen yazılım aracı 

önceden tanımlanmış bir algoritmik problemin algoritmasını gerçekleştirerek 

çözümünün bulunmasına dayanmaktadır. Öğrenciler programalama dilinin 

sözdiziminden kaynaklanacak hata ve sorunlar ile karşılaşmadan görsel arayüzü 

kullanarak algoritmik basamakları oluşturabilirler. Aynı zamanda Algolyzer eğitim 

süreci içerisinde kavranamayan bölümlerle ilgili bilgi verdiği için, eğitmenler için 

yardımcı bir bileşendir. Sistemin öğrencilerin aktivitelerini kaydetmesi ile eğitmenler 

öğrencilerin daha fazla yardıma ihtiyaç duydukları ya da eksik kalan bölümleri 

hakkında detaylı bilgiye sahip olmaktadırlar.  

Dokuz Eylül Üniversitesi Bilgisayar Mühendisliği ve Bilgisayar Programcılığı 

Bölümlerinde bu uygulama kullanılmıştır. Çalışmanın sonunda öğrencilerin kullanım 

bigileri değerlendirilmiş ve elde edilen sonuçlar eğitmenlerle paylaşılmıştır. Model 

ve Algolyzer kullanıcılarına yönelik yapılan anketler ve alınan geri bildirimler 

öğrenme sürecine katkı sağladığını göstermektedir. 

Anahtar sözcükler : Programlamayı öğrenme, eğitim aracı, algoritma öğrenmeyi 

kolaylaştırma, hata bulma, kod üretimi. 



vi 

 

CONTENTS             

Page 

 

PhD. THESIS EXAMINATION RESULT FORM ..................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................ iii 

ABSTRACT ................................................................................................................ iv 

ÖZ ................................................................................................................................ v 

LIST OF FIGURES .................................................................................................... ix 

LIST OF TABLES ....................................................................................................... x  

 

CHAPTER ONE - INTRODUCTION ............................................................................ 1 

1.1 Problem Definition ...................................................................................................... 2 

1.2 Contributions of Thesis ............................................................................................... 3 

1.3 Aims and the Scope ..................................................................................................... 4 

1.4 Thesis Organization ..................................................................................................... 5 

CHAPTER TWO - LEARNING MODEL & RELATED WORKS ........................ 7 

2.1 Constructivism ............................................................................................................. 7 

2.2 Related Works .............................................................................................................. 8 

2.2.1 Introducing Algorithm and Programming with Didactic Scenarios .............. 9 

2.2.2 ELP- Environment for Learning to Program .................................................. 10 

2.2.3 Web-Based Environment Depending on Activities ....................................... 10 

2.2.4 Programming Teaching Tool with Filling Fields ........................................... 11 

2.2.5 Simplifying Algorithm Learning Using Serious Games ............................... 12 

CHAPTER THREE - EDUCATIONAL TOOLS ....................................................... 13 

3.1 Educational Tool for Program Tracing:ProTracer ................................................ 14 

3.2 Educational Software: CGRAPHIC ........................................................................ 15 

3.3 Educational Tool for Understanding Algorithm Building ................................... 16 

3.4 Tools for OOP ............................................................................................................ 17 

3.4.1 TeachingOOP: ObjectKarel .............................................................................. 17 

3.4.2 TeachingOOP: AEIOU ...................................................................................... 18 

3.5 Studies for Specific Algorithms ............................................................................... 18 

3.5.1 Learning of Sorting Algorithms ....................................................................... 19 



vii 

 

3.5.2 Learning Tool of Genetic Algorithm ............................................................... 19 

3.6 Evaluation and Comparison of Tools ...................................................................... 19 

CHAPTER FOUR - DESIGN AND IMPLEMENTATION OF NEW 

INTRODUCED EDUCATIONAL TOOL: ALGOLYZER ..................................... 22 

4.1 General System Design ............................................................................................. 22 

4.1.1 Operational Level of System............................................................................. 24 

4.1.2 Infrastructural Level of System ........................................................................ 24 

4.2 Library Module of Algolyzer ................................................................................... 25 

4.2.1 Processor .............................................................................................................. 25 

4.2.2 Services ................................................................................................................ 26 

4.2.3 Statements ............................................................................................................ 27 

4.3 Data Module ............................................................................................................... 28 

4.4 Code Generation ........................................................................................................ 29 

4.5 Statement Details ....................................................................................................... 30 

4.6 User Interface ............................................................................................................. 31 

CHAPTER FIVE - CAPABILITIES OF ALGOLYZER ......................................... 32 

5.1 Developed Tool Position in Learning Process ....................................................... 33 

5.2 Base Components of Interface ................................................................................. 34 

5.2.1 Problem Part of the Developed Tool................................................................ 35 

5.2.2 Operation Part of the Developed Tool ............................................................. 37 

5.2.3 Code Part of the Developed Tool ..................................................................... 38 

5.3 Multi Programming Language Support .................................................................. 38 

5.4 Language Support ...................................................................................................... 38 

5.5 Error Detection ........................................................................................................... 39 

5.6 The First Version of the Developed Tool ............................................................... 41 

CHAPTER SIX - RESULT AND EVALUATION OF ALGOLYZER USAGE. 43 

6.1 Engage Students to Use Algolyzer .......................................................................... 43 

6.2 General Statistics ....................................................................................................... 44 

6.3 Distributions of Students Errors During Programming ........................................ 46 

6.3.1 Error Distributions on Base Topics .................................................................. 46 

6.3.2 Error Distributions on Subfield Topics............................................................ 47 

6.4 Individual Evaluation & Distribution of Multiple Errors ..................................... 50 



viii 

 

6.4.1 Apriori Algorithm Result .................................................................................. 51 

6.5 Students Evaluation of Algolyzer ............................................................................ 54 

6.6 General Evaluation .................................................................................................... 58 

CHAPTER SEVEN - CONCLUSIONS ........................................................................ 60 

REFERENCES ................................................................................................................... 63 

APPENDICES ..................................................................................................................... 70 

A.List of Abbreviations ................................................................................................... 70 

B.Class Diagram Of Algolyzer ....................................................................................... 71 

C.Algolyzer Usage ........................................................................................................... 73 

D.Previous Version of The Study .................................................................................. 76 

 



ix 

 

LIST OF FIGURES         

Page 

Figure 2.1 General view of application. ..................................................................... 11 

Figure 3.1 Program tracing interface of ProTracer.. .................................................. 15 

Figure 4.1 Main operations of general system. .......................................................... 23 

Figure 4.2 General system views on operational level .............................................. 24 

Figure 4.2 General system frameworks ..................................................................... 25 

Figure 4.4 Class diagram of processor.. ..................................................................... 25 

Figure 4.5 Services of Algolyzer. .............................................................................. 27 

Figure 4.6 Statement classes.. .................................................................................... 28 

Figure 4.7 Data class diagram. ................................................................................... 29 

Figure 4.8 Generate code of processor.. ..................................................................... 30 

Figure 4.9 Statements and subfields........................................................................... 30 

Figure 4.10 General view of developed tool. ............................................................. 31 

Figure 5.1 Ratios of difficulties in programming....................................................... 32 

Figure 5.2 Developed tool position in learning process. ............................................ 34 

Figure 5.3 Workflow of the base components.. ......................................................... 34 

Figure 5.4 General view of GUI.. .............................................................................. 35 

Figure 5.5 Error detection mechanism.. ..................................................................... 39 

Figure 5.6 Sample screen of error detection.. ............................................................ 40 

Figure 5.7 An overview of previous version of application....................................... 42 

Figure 6.1 Error rates of base operations for Study A. .............................................. 46 

Figure 6.2 Error rates of base operations for Study B................................................ 47 

Figure 6.3 Error distribution based on the subfields for Study A. ............................. 49 

Figure 6.4 Error distribution based on the subfields for Study B.. ............................ 50 

Figure 6.5 Multiple error rates for Study A.. ............................................................. 53 

Figure 6.6 Questionnaire of Algolyzer usage.. .......................................................... 54 

Figure 6.7 Students feedback on doing more practice.. ............................................. 56 

Figure 6.8 Students feedback on effectiveness of error messages.. ........................... 56 

Figure 6.9 Students feedback on support degree of dividing operations.. ................. 57 

Figure 6.10 Students feedback on support degree of independent of PL................... 57 

Figure 6.11 Students feedback on important feature of Algolyzer.. .......................... 58 



x 

 

LIST OF TABLES  

Page 

Table 3.1 Features of previous educational tools in literature. ............................... ...20 

Table 5.1 Problem repository of the system............................................................... 36 

Table 5.2 Operation table.. ......................................................................................... 37 

Table 5.3 Types of errors made by students during the programming.. .................... 39 

Table 6.1 Experimental groups of study assessment. ............................................. ...44 

Table 6.2 General Statistics of System Usage for Study A........................................ 45 

Table 6.3 General Statistics of System Usage for Study B. ................................... ....45 

Table 6.4 Subfield error rates of Study A.. ................................................................ 48 

Table 6.5 Subfield error rates of Study B. ............................................................. ....49 

Table 6.6 Relations of multi errors and rates for Study A.. ....................................... 51 

Table 6.7 Relations of multi errors and rates for Study B.. ....................................... 54 



 

 

1 

 

1. CHAPTER ONE 

INTRODUCTION 

Over the years many various studies realized to support learning-teaching process 

in imparting education. Studies on teaching algorithms, programming, and data 

structures related to mental task are one of those works. Algorithm and programming 

is the main course in computer science and computer engineering education. 

Learning algorithm and programming is often complex and difficult to understand 

for students and they often face difficulties on the main courses. Teaching and 

learning programming has never been an obvious process because of that 

programming is a skill and difficult for student due to needs on deeply 

comprehension. Therefore, studies on learning programming skills are important. 

There are some studies on motivation of learning programming skills (Jerez, Bueno, 

Molina, Urda, & Franco, 2012).  

 

Simplifying an algorithm learning process is quite significant for both students 

and instructors. To overcome the learning problem and help students better learn and 

understand algorithms, instructors are using different methods during education 

process. Educational tools are playing critical roles in education process (Jain, 

Singhal, & Gupta 2010). Visualizations can be used in teaching to support learners 

for understanding the abstract and structure (Taherkhani, Korhonen, & Malmi, 

2010). In imparting education, educational tools such as visualizations, charts, 

simulations, online tools and any other proved or experimental tool can be used to 

improve and create more effective teaching and learning sessions (Shabanah, & 

Chen, 2009; Sutinen, Tarhio, & Terasvirta, 2003; Kordaki, 2010). Even there are 

some studies on exploring these features effectiveness (Hundhausen, Douglas, & 

Stasko, 2002) with some questions (Hundhausen, & Brown, 2008). In addition, 

there are also some studies on difficulties of learning and teaching programming 

(Lahtinen, AlaMutka, & Järvinen, 2005; Milne, I., & Rowe G., 2002). 

 

In this thesis, the study has two phases, which will be explained in details. The 

first phase is new introduced educational tool-Algolyzer, which will help students to 



 

 

2 

 

better learn and understand algorithms and programming. The second phase of the 

study is an experimental usage of application by students, and evaluation of the 

records including user actions and errors data collected during the students’ usage.  

1.1 Problem Definition 

Learning programming has never been an obvious process associated with 

programming is a skill requires practice. Students need to realize more programming 

practice to enhance their programming knowledge (Ng, Choy, Kwan, & Chan, 

2005). 

Algorithm course tries to teach algorithmic thinking and basics of programming 

and affects the students directly during their education cycle. While trying to teach 

basics of programming, instructor must also be sure that students are motivated 

(Holvikivi, 2010). Selecting the methodology that teaches using a programming 

language often fails consequence of learning the syntax of the selected language, 

which is not the primary goal in the process. In this case, students will dive into 

programming language syntax rather than focusing on algorithmic thinking. 

Specially improving algorithmic thinking and passing to abstract reasoning is 

challenging process and this requires huge effort. With starting from the importance 

of this topic, various studies with Bachelor Computer Science and similar 

department’ students were realized on thinking like computer scientist’s skills and 

abstraction level of students (Perrenet, Groote, & Kaasenbrood, 2005). 

In this study, an inference done depending on the experience of algorithms and 

programming courses and an appropriate model produced with considering the 

referred points of the previous works. We approved that many students meet 

difficulties on learning algorithms and programming level and solving problems in 

an algorithmic way. Students have to compete with programming language syntax 

and development environments while they are working on improving the algorithmic 

logic. This conducts students away from the learning. Getting into the hang of 

writing programming code is complicated for students; if programming practices are 

insufficient. Another base point on this area is that focusing on understanding and 



 

3 

 

solving single problem is too important (Müldner, Shakshuki, & Kerren, 2008). 

Depending on the observations, this study should consider the difficulties in 

algorithms and programming courses and being a mental task for students. This study 

propose a new method with identifying the most important and ineffective parts of 

the existing process, which provide a supporting user-friendly interface to generate 

programming code independent from programming language syntax and focusing 

only the algorithmic thinking. 

1.2 Contributions of Thesis 

This study provides a specific application platform for students and instructors 

considering the problems mentioned below. A model, which can support students to 

comprehend main topics of programming and assist instructors during their teaching 

classes produced. Specialized learning tool, which named Algolyzer, developed to 

support basic concepts of learning algorithm and programming. Main contribution of 

the thesis is that this tool is independent of programming language, separates 

problems into smaller parts, and helps students do more practicing.   

By using developed visual interface, students can create algorithmic steps to find 

a solution for a predefined algorithmic question. Developed tool gives students a 

chance to write code without diving into syntax errors, students only focus on the 

possible solutions. This contribution summarized that this educational tool helps 

students to improve their algorithmic-thinking abilities focusing on the solution.  

Students consume their time and effort for PL syntax errors while developing 

programming codes. Creating the code in the selected programming language and 

displaying the whole code keep students more motivated with avoiding PL 

complexity. This is another advantage for students to achieve learning activity with a 

better environment.  

In addition to this, Algolyzer is also a helper utility for instructors while teaching 

algorithms and programming. Having every action logs of students, instructors can 

have detailed information on how students use it, where they need more help, what 



 

4 

 

are the lacking parts in the teaching process. Final contribution of the thesis is that, 

evaluation of students’ errors contributes instructors to explain misunderstanding 

parts more intensely in next the semesters within the related courses.  In summary, 

this is a new approach on learning-teaching process of programming that usage of 

this developed tool contributes students and instructors with mentioned features. 

1.3 Aims and the Scope 

Depending on the Cormen, Leiserson, Rivest, & Stein (2009) definition 

“algorithm is a sequence of computational steps that transform the input into the 

output" (p. 1), aim of this study is aided students to produce an algorithmic solution 

for a given problem by separating the operational concerns and using a 

programming-language and environment independent method. The implemented 

application provides a visual interface that includes elements required to create the 

algorithm for a predefined problem. Since students only use visual elements and not 

any line of specific programming code, a generic code for the algorithm is being 

prepared in the background, and the programming code can be created in any 

programming language from generic programming elements prepared in the 

background.   

The main idea of the study is to make studying algorithm and programming easier 

for the students. Being able to start an algorithmic solution for a problem without 

diving into programming language syntax helps starter-level students to be more 

effective and focused on the algorithmic thinking and solution domain. On the other 

hand, makes it easier to develop learning skills on basics of the programming.  

With this study, it is aimed that; 

 help students to understand basic algorithm and programming concepts 

 provide a programming-language-independent tool to find a solution for 

predefined algorithmic question 

 help students focus on implementing algorithmic steps with focusing only the 

program structure 



 

5 

 

 provide a solution for students so that they can do more practices with 

existing question repository 

 save the actions of the students during their sessions 

 get students usage statistics and evaluate students errors during programming 

 help instructors to get more effective in-class sessions on lacking topics 

obtained from the evaluation 

 create a platform and approach that can be used in both distance learning 

courses and in-class sessions 

The developed tool targeted a user friendly, assistive, programming-language-

independent, syntax free environment that helps students to focus on a single 

problem. Developed tool might have an important role for learning algorithm and 

programming with its features and contributions to overcome the mentioned 

difficulties. 

 

1.4 Thesis Organization  

In this chapter, we have stated that what we are trying to accomplish, what are our 

goals, and our contributions on this area. The rest of the thesis organized as follows.  

Chapter two involves related works. Initially, general situation on this area is 

mentioned and similar, previous studies are introduced. Programming teaching tool, 

web based environments and some similar studies are summarized.  

In chapter three, educational tools developed in the previous studies are explained 

and detailed. This chapter includes previous educational tools developed both on 

procedural programming paradigm and on object oriented programming paradigm. In 

addition to this, these mentioned solutions are brought together in a compared table. 

Chapter four presents the design and implementation of new developed tool. 

During the thesis, a new solution, named Algolyzer, has been developed.  General 

system of this developed tool and implementation details are introduced in this 



 

6 

 

chapter. The tool consists of various modules, which constitute the main body of the 

Algolyzer. These modules and structure details are in this chapter additively.  

Chapter five includes the capabilities of the developed application. Position of the 

application in education process is mentioned in this chapter. Basic components and 

functional features within the capabilities of the study are explained. Moreover, this 

chapter includes previous version of this tool, which developed at the beginning of 

the study.  

Chapter six focuses on the statistical results and evaluation of Algolyzer usage.  

Students’ usage of this tool is cited in this chapter. Beside the general usage 

statistics, error rates and evaluation method are explained. 

Chapter seven presents the conclusions, which includes the key contributions and 

fundamental findings of the thesis.   



 

7 

 

2. CHAPTER TWO 

LEARNING MODEL & RELATED WORKS 

Cognition and learning are main concepts in education. During years, many 

different researches have been achieved in this area. The literature identifies a variety 

of studies on learning theories and models as Bloom’s taxonomy, constructivism, etc. 

Bloom’s taxonomy is a method, which uses cognitive skills’ categorizing, depends 

on the complexity order and there are six levels (Bloom, 1956). Constructivist 

learning theory depends on that learners not passively wait, actively construct the 

knowledge. Today constructivist-learning theory is the predominant paradigm in 

education. Concurrently these learning models and theories have been used on 

algorithm and programming learning process. 

In general, studies started because of the importance and difficulties of teaching 

and learning algorithms in education process. Many studies with different models 

have been developed on teaching algorithms, programming, and data structures, 

which are not easy task for students. Some of these studies investigated the 

approaches in literature to teaching programming (Selby, 2011). Some of them 

suggest a new elementary programming education approach (Sajaniemi, & Hu, 

2006). Study of (Marcelino, Gomes, Dimitrov, & Mendes, 2004) proposed an 

educational tool in constructivist perspective to help students.  

2.1 Constructivism 

Constructivism is a learning theory asserts that students construct knowledge 

combining the experiential world with existing cognitive structures rather than 

receive and store knowledge transmitted by the teacher (Ben-Ari, 1998). Learning 

depends on the active behavior of the students with what the student does, not what 

the teacher does. Most modern teachers shared that idea this form of constructivism 

is the best way (Biggs, 2003). For constructivist based programming instruction there 

are variety of activities as code walkthroughs, code reading, code debugging, and 

code authoring. Addition, these instructions include the code method bodies from 



 

8 

 

header declarations, or the use of rich development environments to support students 

for learning to program (Ben-Ari, M., 1998; Van Gorp, & Grisson, 2001). The study 

of (Wulf, 2005) is the application of constructivist pedagogical approaches to 

teaching computer programming in undergraduate courses. 

The essential concept of the learning subject in question is emphasized in 

constructivist design (Nardi, 1996; Vygotsky, 1978). The providing student with the 

ability to represent and organize their knowledge is base role in the context of 

constructivist design (Jonassen, 1996). With this design, the role of appropriately-

designed computer tools are crucial (Kordaki, 2010). Social learning theories 

emphasize the role of psychological tools and computer tools in the development of 

students’ higher mental functions (Noss & Hoyles, 1996). Computer tools have been 

accepted as mind-tools, which can engage and support cognitive processing and 

critical thinking of learners (Jonassen, 1996). Social and constructivism learning 

theories are used in the proposed learning environment. Individual learning activities 

are realized on this study.  

2.2 Related Works 

Students need to spend their time to do practical activities to have the 

programming techniques. Students at beginning phase usually face difficulty 

associated with installing and using integrated development environment (Ng, & et 

al., 2005). Some studies, which will be outline, propose new applications and 

identify support tools to overcome these learning obstacles. Some of these studies 

proposed program development environment (Ziegler, & Crews, 1999). After 

improving applications, studies engage students to use these applications and usage 

activities often were examined (Jenkins, 1998; Hübscher-Younger, & Narayanan, 

2003). Evaluation of some studies showed that support tools are effective (Costa , 

Aparicio, & Cordeiro, 2012). With these kinds of studies, there are some studies 

focused on the programming language selection in algorithm courses. For instance, 

the study (Chou, 2002) proposes students to use Python programming language in 

their classes for a significant time and detailed reports were generated. Beside studies 

on developing algorithm and programming skills, studies on different area such 



 

9 

 

improving web-programming skills were realized (Elgamal, & Abas, & Baladoh, 

2013). 

2.2.1 Introducing Algorithm and Programming with Didactic Scenarios 

There are many difficulties for students who are the novice programmer face 

many mental obstacles in comprehending process of algorithm construction and 

programming functioning. This previous study depends on didactic scenarios that 

educational material organized. Didactic scenarios in this study include educational 

software to teach base topics of programming introduce students to basic 

programming principles and overcome difficulties for Secondary education 

(Dagdilelis, Satratzemi, & Evangelidis, 2004). Main parts of these didactic 

scenarios are the tool usefulness and the richness of interactivity as working in 

groups. Researchers of this study emphasized that didactical and pedagogical training 

of teachers in secondary education is important. Each new concept as loop statement 

corresponds some kind of problems suggested by teachers in developed software. 

Appropriate problem selection is important to get success on teaching new concepts 

to students. 

With developing this educational tool and tool’ usage in imparting education, 

findings of this previous study can be listed as; 

 Formulating general rules associated with the significant didactic 

characteristics that should include in similar environment 

 Educational applications is efficient just applications has framework based 

on didactic scenarios produced by instructor and supported by the tool 

 Specific training, which give a chance to instructor for adaptation and 

usage in didactic scenarios,  is essential for usage of these kind of 

educational application 

 



 

10 

 

2.2.2 ELP- Environment for Learning to Program 

Study of Environment for Learning to Program (ELP) provides a web-based 

environment for teaching programming to students at Queensland University of 

Technology (Truong, Bancroft, & Roe, 2003). ELP depends on the “fill in the gap” 

style exercises. These exercises reduce the complexity for students in writing their 

programs. Students do programming exercises by “filling in the blanks” of a partial 

Java program in this previous study. The system compiles the completed program of 

students.  If compilation is successful, system returns the resulting class to students 

in Java Archive format, otherwise messages with compilation errors returned to 

students.  

2.2.3 Web-Based Environment Depending on Activities 

Study of Ng & et al. (2005) proposes a web-based tool, which is an interactive 

environment for students to learn programming and for instructors to teach 

programming at distance learning. Students realize the programming practice and 

coursework on system depending on the basic functions of the programming. 

Students work on their programming codes in Java programming language without 

the complete programming environment and IDE. System gives appropriate 

feedbacks to students related their programming practices. Instructors follow 

students learning processes and compilation error messages. For the programming 

activities on the system, instructors generate and upload programming materials. 

Activity materials contain description file, template file and hint files, which includes 

a sample, output of the required program. 



 

11 

 

 

Figure 2.1 General view of application 

 

In this related study; students work on the system depending on the activities 

uploaded by instructors and use template file shown in Figure2.1 to generate their 

programming code on text editor. Students edit, compile and test programming code, 

if there is a compilation error, an error message send to the student. Otherwise, 

system generate executable file to the students. Error messages do not save, only 

students code file saved (Ng, & et al., 2005). Future works of this previous study was 

included collecting students’ performance information to early detection of 

problems.  

2.2.4 Programming Teaching Tool with Filling Fields 

This previous study includes an experiment on development and testing a 

software tool for supporting of teaching introductory programming courses. Tool is a 

web-based application. Study depends on the spending time over on teaching the 

programming language syntax. When students make an effort for syntax, they throw 

other essential topics of programming as developing design skills (Al-Imamy, 

Alizadeh, & Nour, 2006). Features of this study were 



 

12 

 

 Templates generation depends on the main subjects, 

 Helps students have different backgrounds to reach on an equal level, 

 Allows passing different programming language, 

 Usage as a web-based self-learning tool 

 

Source file produced from instructor’s template, which contains outline of the 

program structure. Students can generate their copies from templates with filling the 

required fields. For filling operation, students can delete statements and add new 

statement. Tool show the possible valid statements for required fields. Statements 

contains declaration, if statement, for loop, while statement. After completing the 

missing part, students can save developed program as C++ file. 

For test’ phase students of their institution used this tool. Examination results 

compared. Result of the study indicated that tool was effective on acceleration of 

learning programming language syntax. 

2.2.5 Simplifying Algorithm Learning Using Serious Games 

The study which name is Algorithm Visualization using Serious Games (AVuSG) 

includes visualization approach (Shabanah, & et al., 2009). This related study uses 

computer games to teaching-learning process of an algorithm. A Visualization 

approach has three different options as a text form, a flowchart form, and a game 

form. Learning theories integrates with game design with applying three learning 

models as Bloom Based, Gagne Based, and Constructivist Models in this study. This 

application has the user interacting level and the developer creating level for 

visualizations. Some algorithm visualizations, includes text, flowchart, and algorithm 

games prototypes were developed to validate the approach in this previous study. 



 

13 

 

3. CHAPTER THREE 

EDUCATIONAL TOOLS 

Introduction to programming is difficult mental task for students (Gomez-

Albarra´n, 2005). Students face difficulties at beginning phase of the programming 

(Robins, Rountree, & Rountree, 2003). Various research studies performed on this 

area to support students for learning process. To compete with the difficulties of 

learning algorithms and to teach basic concepts of algorithm successfully, web-

based, different graphical user interface based (Lazardis, Samaras, & Sifaleras, 

2010; Shakshuki, Kerren, & Müldner, 2007), abstraction-based, a specific algorithm 

(White, Martinez, & Rudolph, 2012) intended educational software applications have 

been implemented in the past. Suggestion an educational tool is one method used to 

deal with these complications in previous studies. Some studies depend on the 

evaluation of the specific educational tools used in class-sessions (Lazaridis, 

Samaras, & Sifaleras, 2010). 

Graduate and under-graduate students in university education have used these 

developed tools and their experiences were followed in significant time. Study 

(Wang, Li, Feng, Jiang, & Liu, 2012) is one of these studies. Even, there have been 

some studies targeted secondary education students (Dagdilelis, & et al., 2004). 

These studies often are implemented as a web-based application. They provide 

students an editing, compiling, testing and debugging environment on the web for 

learning programming (Ng, & et al., 2005).  Even some studies facilitate to visualize 

for program tracing process. 

In general, to help students better understand and learn design and analysis of 

algorithms, algorithm courses include problems as programming assignments and 

exercises. Educational tool named AnimPascal study, tracks the actions of the 

students through a problem solution process (Satratzemi, Dagdilelis, & Evagelidis, 

2001).  Objective of these studies are to help students to understand the developing 

and other essential phases of programming and to aid teachers to discover the status 

of the students on the base of programming.  



 

14 

 

Studies, which support multiple programming languages, have been realized on 

the contrary studies based on the single programming language. That kind of studies 

assists students for improving their algorithms skills with using a base interface. In 

the same time, this gives a chance to implement their algorithms in various 

programming languages (Jain, & et al., 2010). There are some studies focused on 

teaching object oriented programming concepts. AEIOU is one of these studies 

which is software tool developed to support to understand of object oriented 

programming concepts (Licea, Juárez-Ramírez, Gaxiola, Aguilar, & Marti´nez, 

2011). ObjectKarel study is another study, which provides a structure editor, runtime 

error detection, program animation and recording of students' actions (Satratzemi, 

Xinogalos, & Dagdilelis, 2003). ProTracer is different study that for visualizing 

students’ program tracing processes (Chou, & Sun, 2010). 

This kind of educational tools not replace the traditional methods of teaching, 

only complements the learning processes. Especially these developed tools support to 

students in practice and they include the foundations of programming. In general, 

these developed software applications allows students to study intuitively, 

graphically, and gradually. To develop new software these features are programming 

essential principles (Ferna´ndez, & Sa´nchez, 2004).  

3.1 Educational Tool for Program Tracing:ProTracer 

Program tracing is significant factor at learning programming phase especially 

novice programmers. This study designed a system which name is ProTracer, 

includes program-tracing processes for students and allows teachers to indicate 

students’ errors in tracing execution. This study provides to students and teacher 

program tracing in view. Students can follow execution flow stepped and edit I/O 

display and variable values at each step and, they can modify tracing record. Tracing 

record indicates students’ possible errors and misunderstanding of students. This 

suggest to teacher for future teaching.  ProTracer has three interfaces; two of them 

for students which are trace programs and to preview their tracing records and 

another interface to correct students’ tracing for teacher.  



 

15 

 

 

Figure 3.1 Program tracing interface of ProTracer 

Engaging students to use ProTracer for program tracing in a Computer 

Programming II course and analyzing students’ tracing records is an assessment of 

this study. The tracing records of 44 students collected and analyzed in this study. 

ProTracer result indicated that tracing abilities of students as poor and students’ 

tracing errors were classified into execution step, variable, and I/O errors (Chou, & 

et al., 2010). 

ProTracer supported program codes of variables, array, selection and repetition 

structure and this did not support functions and object-oriented programming. This 

study used files to store program codes and students’ tracing records.  

3.2 Educational Software: CGRAPHIC 

CGRAPHIC is educational software, which was designed to learn the foundations 

of programming and C programming language. This study was developed in the Java 

programming language and executes on Internet or locally. CGRAPHIC provides 

theoretical and practical levels. There are several examples of the execution of 



 

16 

 

different exercises in the practical level and students can follow execution of 

program step-by-step or direct.  This software includes and various parts as; a 

debugger of the C programming language, a programming online textbook, and a 

virtual tutor. Virtual tutor part of CGRAPHIC inside a graphical environment offers 

to student theoretical and practical learning of the basic concepts of programming. 

They implemented a set of graphical objects to develop new interactive exercises. 

CGRAPHIC provides support for variable, one dimension array, two dimension 

array, function, pointer, memory map, file, and structure objects. 

This software involved main topics of a classical program in a first-year course in 

engineering studies and students in a first-year used this application.  The main 

purpose of this study was to supplement teacher role with completing the traditional 

methods of teaching and develop teaching performance at programming base. There 

was English and Spanish version of this study. Spanish version was used at the 

University of Ma´laga in separate subjects as Foundations of Computing of the 

school of engineering, and Elements of Programming, and Practical of Programming 

in the school of computer science and as virtual tutor of a programming course in the 

Computing Virtual Services (Ferna´ndez, & et al., 2004).  

3.3 Educational Tool for Understanding Algorithm Building 

This study compound algorithms, base coding and multi programming language 

syntax in a single interface for learning algorithm and programming languages. 

Essential part of this study is that understanding of the main logic building and 

learning multi programming languages with a single interface. Tool was programmed 

in Python and contains script window, code generation module and sharing support. 

Sharing support part, which supports collaborative learning between students and 

teachers, realized with Remote Procedure Calls. At code generation drag-n-drop 

method used for image objects to learn programming languages majors. Each block 

images have text file depending on the programming language modules. When 

students select any block image, file content and necessary explanation related to 

selected programming language showed in script window (Jain, & et al., 2010). 



 

17 

 

3.4 Tools for OOP 

Students in introduction to programming phase mostly meet difficulties 

independent of the programming paradigm as procedural or object oriented 

programming. In general, method selected by the researchers is identical even though 

there are some special kind of difficulties depending on the programming paradigm. 

Research activities often include development of programming environment to assist 

students to overcome these complications. Particular of these studies realized on 

object-oriented programming as ObjectKarel, AEIOU that mentioned in the next 

headings.  

In the same time, there are also some studies, which developed for advanced 

programming concepts in object oriented programming courses. This developed tool 

support students to reach deeper level at programming knowledge (Licea, Juárez, 

Marti´nez, & Aguilar, 2008). 

3.4.1 TeachingOOP: ObjectKarel 

ObjectKarel is an integrated programming environment, which includes e-lessons 

series, special structure editor, and program animation to teach object-oriented 

programming paradigm. There were multiple ways to write program code in 

structure editor. Writing program realized in two ways. First is choosing the 

appropriate action like method declaration. Second is interacting with the system 

through dialog boxes. Students have three choices to execute program; running the 

program, tracing through the program and executing the program step-by-step 

(Satratzemi, et al., 2003). 

Runtime error detection and recording students' actions were other properties of 

this developed software. Trial use of objectKarel by undergraduate students saved. 

For this, 20 undergraduate students from the department of Applied Informatics in 

Greece were used this environment. Students’ programs and errors saved and 

evaluated in developed software concept. These give an idea to the teacher about 

students’ problem solving techniques and errors. Teacher can follow students’ 



 

18 

 

misunderstanding parts of object-oriented programming at beginning of the OOP 

learning.  

3.4.2 TeachingOOP: AEIOU 

In this study, development environment to help students for learning object-

oriented programming with Java, which name AEIOU, developed. This tool, 

facilitated to students for programs’ developments in programming courses. AEIOU 

includes three modules to support different type of students as novice, intermediate, 

and advanced (Licea, & et. al, 2011).  AEIOU presents the project view with the 

classes’ graphical representation and code view with the specific code. In the code 

view, students can edit, compile, and execute the class code. Environment gave class 

errors to the students during compilation. Displayed errors include translation in 

Spanish with more details. Base screen of AEIOU offers to the students various tabs 

to manage class operations for a deeper understanding of object-oriented 

programming concepts. AEIOU supplemented with ELVIA (Aispuro, & et al., 2012) 

Students in two Mexican engineering schools at University of Baja California and 

University of Sonora used this programming tool. Spending time of solving a 

problem, errors introduced by students and tool adaptation for other object-oriented 

programming languages are plans of this study. 

3.5 Studies for Specific Algorithms  

Some studies propose learning tools for teaching of specific algorithms such as 

genetic algorithm, ant colony optimization (Li, & Liu, 2009), etc. Some studies 

depend on the learning sorting algorithms (Kordaki, Miatidis, & Kapsampelis, 

2008). Certain of them depends on the new approaches such Reinforcement 

Programming that used to generate sorting algorithm (White, & et al., 2012). 

(Byrnea, Catramboneb, & Staskoc, 1999) conducted the using animation for depth 

first search algorithm for students learning. 

 

 



 

19 

 

3.5.1 Learning of Sorting Algorithms 

A web-based environment was designed to support secondary level education’s 

students for learning of sorting algorithms and pilot evaluation of environment was 

presented in this study. The environment design based on the modeling methodology, 

considering modern constructivist and social theories of learning. Developed sorting 

environment also give a chance to students for typical sorting algorithms’ learning as 

Bubble-sort, Quick-sort and Selection-sort. Data of pilot evaluation study of sorting 

environment was analyzed and these results are obtained: students used all the 

representation systems and they found environment attractive and easy to use 

(Kordaki, & etc., 2008) 

3.5.2 Learning Tool of Genetic Algorithm 

This study suggested a learning tool to teach and study the genetic algorithm. The 

user of the tool can study and manipulate the algorithm easily with friendly graphical 

user interfaces. This presents that the aim of the developed tool is supporting to teach 

the algorithm. Tool interface includes Genetic Algorithm parameters area, and 

computation processes area. Graduate students at Nanjing Agricultural University get 

a chance to use this tool to learn the genetic algorithm (Li, & Zhang, 2010). 

3.6 Evaluation and Comparison of Tools  

In this chapter, educational tools in literature are investigated and the general 

features mentioned in previous headings are summarized. Table 3.1 includes the 

properties of some educational tools used to algorithm and programming learning in 

previous studies. There are more similar studies in literature, this table not include all 

of these studies in this area. Studies are specially examined considering the error 

detection as saving students errors, giving appropriate feedbacks to students related 

to their errors. 



 

20 

 

Table 3.1 Features of previous educational tools in literature 

Name CGRAPHIC ProTracer ObjectKarel AEIOU AVuSG 

Multi PL 
Support 

Programming in 
C,but  can be 
adapted to 
another PL 

Only C++ Object 
Oriented 
Programming 

Java Non-
existence 

Students Usage Non-available 

usage value, the 

school of 

engineering, 
school of 
computer 
science 

in Computer 
Programmin
g II course 

Applied 
Informatics 
department 

in  two 

engineering 

schools 

No 
informatio
n 

Save Usage-
Errors 

No, only 
informing 

 Marked by 
instructor 

Only 
informing 

Non-existence Non-
existence 

Error Message Nothing  Tracing Error 
message 

Run time error 
detection 

Compile 
errors 

Absence 

Graphical 
Support 

Graphical 
objects for 
program 
execution 

Students 
tracing, 
teachers 
correctness 
interfaces 

Explanatory 
visualization, 
highlighted, 
show object 
messages 

Project view, 
code view  

Text, 
flowchart, 
game 
forms 

Application 
Type 

Web based Web based Not certain Desktop 
application 

Desktop 
application 

Topic 
Concept(main/
advanced) 

Base topics, 
advanced 
(arrays, 
function, 
memory map, 
etc.) 

Base topics Base topics  Object 
Oriented 
Programming 

Specific 
algorithm 
& data 
structure 

Process Type 
(tracing,code 
generation, 
show sample 
code) 

Follow exercises 
with graphical 
objects & code 
part 
programming 
content 

Program 
Tracing 

Editor with 
choices of 
class,object 
operations, 
execution of 
programs, e-
lessons 

Code 
generation 

Using 
games 

 

 



 

21 

 

 

 

Considering these general features of some previous educational tools, a new 

software solution can be developed for learning algorithm and programming. In this 

study, a new educational tool is proposed, which aids to students to learn basic 

concept of algorithm and programming in the first phase of the work. In the second 

phase of the study, graduate students at Dokuz Eylül University are engaged to use 

developed tool. The students’ usages of new developed tool–Algolyzer are 

investigated at the end of the study. 

 



 

22 

 

4. CHAPTER FOUR 

DESIGN AND IMPLEMENTATION OF NEW INTRODUCED 

EDUCATIONAL TOOL: ALGOLYZER 

In this study, a new educational support tool has been developed to help students 

for learning basics of programming and to assist instructors during teaching classes. 

An educational tool named Algolyzer -the visual interface tool created for this 

model- provides a programming-language-independent environment for students and 

gives information about the misconception topics in the teaching process for 

instructors. In this chapter, developed tool will be explained in details. During the 

study, an appropriate model for supporting programming learning produced, 

depending on the investigation of the previous studies and observation of the 

algorithm and programming courses in computer engineering department at Dokuz 

Eylul University (DEU).   

At implementation phase of the study, general system architecture designed firstly 

based on the requirements and plans. In second step sample problem repository has 

been created and the possible programming operations which should be in the 

application were determined. After all decisional process, implementation of the 

application was began and completed.  Completed application provides different 

opportunities for instructors and students. This software provides a web based access 

to both instructors and students. Students can create their own projects on the tool. 

During these activities, usage errors of students are saved automatically and can be 

analyzed for detecting the main topics of programming, which is not being 

understood properly.  

4.1 General System Design 

The tool developed as a web application. Tool interface provides multiple usage 

scenarios both in-class sessions and distance learning systems as the previous version 

of this study (Yıldırım, & Kut, 2010). General process of application depends on 



 

23 

 

focusing on understanding and solving a single problem. Programming can be 

divided into four steps (Winslow, 1996):  

 understanding of the problem  

 definition of the problem solution initially in any form, such as text-based 

or math-based and in a computer compatible form 

 create solution using selected programming language  

 testing and debugging of the solution program 

Students firstly try to understand problem given by the system, and work on 

problem and generate solution, then student passes to next problem. At the 

beginning, students determine main operations with solution separation. This method 

supports the students to improve an algorithm easily. The structure of the system can 

be summarized as giving problem to students and saving errors made by students in 

problem solving phase illustrated in figure 4.1. 

 

Figure 4.1 Main operations of general system  

After finalizing the first usable version, students of computer engineering 

department at DEU used the application. During this phase, we kept the system 

updated and made minor changes depending on the feedbacks to get experiences that 

are more efficient. In the last phase of the study, we investigated the system usage 

and evaluated the collected actions, operations and errors data, which will be 

mentioned in the next chapters. 

 



 

24 

 

4.1.1 Operational Level of System 

Algolyzer is a web-based application and has two parts, which are the user and 

system parts as demonstrated in Figure1. User sends code pieces of operations to the 

system part. Code generation is done using the selected programming language 

depending on the algorithm that user created using visual elements of the application.  

Error detection runs on system part. If there are any errors in user code part, 

appropriate messages send to the user. During the session, user actions and errors are 

saved to the application database and they are kept notified about any problems in 

the algorithmic rules. Saving every action and any possible errors to log database 

helps instructors and analyzers to investigate and determine the lack of topics. 

Briefly, the system side responsible for handing the requests from the users, keeping 

user logs and serving them as a shared compiler and giving user create and download 

code file options. 

 

Figure 4.2 General system views on operational level 

4.1.2 Infrastructural Level of System 

On infrastructural level, frontend application and test module are at the top of the 

layered model. Domain model and processing library are over the data access part. 

The last part that Algolyzer builds on, .NET Framework is bottom of the structural 

schema. All of these modules implemented in Algolyzer framework can be 

considered from Figure 4.2. 



 

25 

 

 

Figure 4.3 General system frameworks 

Overall classes associated with the infrastructure can be observed from Appendix 

A. These classes perform the various operations and statements of developed tool.    

4.2 Library Module of Algolyzer 

4.2.1 Processor 

Processor module includes classes presented as class diagram in figure 4.3. Two 

different programming language processors were created in this phase of the study 

and can be extended with more programming languages. 

 

Figure 4.4 Class diagram of processor 



 

26 

 

A generic base structure has been created and applied for multi programming 

languages support. To get appropriate operation a Processor factory class was 

developed. Code is generated depending on the selected language with responsible 

processor. 

Processor Factory 

Function Get Processor(programming language pl) 

 case pl of             

             ProgrammingLanguage.VBasic: return new VBasicProcessor() 

  ... 

  default: return new CSharpProcessor() 

 end case 

endfunction 

 

4.2.2 Services 

Services are the main contact points between user interface layer and data layer. 

Two most important services being used widely during the application are, error log 

service and error message service.  

Validators are based on the statements and control and validate the operations. 

They are  all implements a shared interface named IValidator and located in services 

section with other two service shown in Figure 4.4. 



 

27 

 

 

Figure 4.5 Services of Algolyzer  

 

4.2.3 Statements 

Statements developed depending on the main operations of programming. 

Statement classes correspond to the operations on the user interface in backend 

codebase. These are condition, read/write, if/else, assignment, loop, variable 

statements illustrated in Figure 4.5. All statements are derived from IStatement 

interface. 



 

28 

 

 

Figure 4.6 Statement classes 

 

4.3 Data Module 

Data module includes the database operations. General classes of data module 

illustrated in Figure 4.5. Operation, problem, error type, user log, error log, problem 

text, error text and language used are main types of data module. For a problem 

operation, which supports multilingualism, problem, text and language objects are 

referenced. 



 

29 

 

 

Figure 4.7 Data class diagram 

4.4 Code Generation 

A processor is created depending on the selected programming language primarily 

on code generation phase. Statement’s creation is implemented in the following 

phase. Figure 4.1 illustrates the creation of the statements in processors. Parts of code 

creation were implemented in the code generation method, which includes the 

generation methods of all statements. Statements are common for all languages. 

Nevertheless, the generation is different for each of the programming languages. 



 

30 

 

 

Figure 4.8 Generate code of processor 

4.5 Statement Details 

Read/write statement includes operation type and variable statement. If statement 

has if type, condition statement and inner statements as read/write, assignment, etc. 

For all language in code generation, every statement and its fields are common. 

Assignment statement includes the left sight variable, mathematical operator, first 

right sight variable and second right sight variable in the following code block. 

 

Figure 4.9 Statements and subfields 



 

31 

 

4.6 User Interface 

Developed tool functionalities mentioned previous headings, are being used by 

students through a visual interface. Figure 4.9 presents the general view of the 

interface. Detail screens of the application are in Appendix B. There is an instance of 

one scenario. 

 

Figure 4.10 General view of developed tool 



 

32 

 

5. CHAPTER FIVE 

CAPABILITIES OF ALGOLYZER 

An algorithm and programming course introduce students to programming. In this 

study when determining tool’s capabilities, computer-engineering students’ thoughts 

were considered. A survey on difficulties of algorithm and programming learning 

were prepared to get benefit during tool development phase. Students who are failed 

and face difficulties in algorithm and programming course participated to survey. 26 

first year students were selected randomly. Feedbacks of the students on difficulties 

of learning programming are evaluated. All 26 students marked at least one difficulty 

on programming learning process. Passing the abstract thinking had the highest 

value, difficulties caused by programming languages and understanding of the 

problem exactly are the substantial ratios detailed in Figure 5.1. 

 

Figure 5.1 Ratios of difficulties in programming  

 



 

33 

 

Students can use the developed tool with its feature set. Proposed tool has an easy 

to use visual interface and component based environment. During this study, various 

versions were improved. First version of this study was a desktop application. The 

next, web-based version of the developed tool consists of the following basic 

components and functional capabilities. 

 Problem part, operation part, and code part in user interface 

 Multi programming language support 

 Tool multilingualism support 

 Error detection and validation 

 

These capabilities of Algolyzer mentioned above will be explained in details in 

the following headings.  

5.1 Developed Tool Position in Learning Process 

In traditional education, instructors transmit knowledge to the students and 

students try to store knowledge in mind. When students are elements of the learning 

process as student-centered models, these proposed systems facilitate students to 

store knowledge. In Algolyzer, students can do more practices on programming with 

using developed tool and get feedbacks about errors in Figure 5.2.  

 



 

34 

 

 

Figure 5.2 Developed tool position in learning process 

5.2 Base Components of Interface 

The developed tool has three parts in its visual interface; problem, operation and 

code sections. The workflow of these base components illustrated in Figure 5.3.  

 

Figure 5.3 Workflow of the base components 

Firstly, problem part is coming to students; then student begin to create solution 

for the problem using the tool interface. In solution phase, the students navigate 

through related tabs of the tool to create operations. Each student should create 

 

 

Developed Tool/Algolyzer 

 

 

Students 

Get experiences 

 

Deal with 

PL syntax 

 

Develop 

programmin

g skills 

 

Feedback 

about errors 

 
 

 

Instructors 

  
  

  
  

S
ta

ti
st

ic
s 



 

35 

 

his/her own solution in a syntax free way. The tool depending on the user’s solutions 

in the code part will automatically generate program code of a given problem. The 

mentioned general workflow can be followed from graphical environment in Figure 

5.4. 

 

Figure 5.4 General view of GUI 

5.2.1 Problem Part of the Developed Tool 

Question/problem repository was created and problems were categorized 

depending on the subject groups (operations) and difficulty levels illustrated on the 

Table5.1 for problem component. Problems appear randomly from the repository to 

the student side when the student clicks select question button from the visual 

interface. Focusing on understanding and solving a single problem is important. At 

any time studying on understanding, solving and testing of a problem should 

completed by students then next question will take place (Müldner, & et al. 2008).  

PL Selection 

Problem/Question 

Operation Window 

Code Window 

Create File Compile Download 



 

36 

 

Table 5.1 Problem repository of the system 

ProblemID ProblemText Problem 
Degree 

Operation 
ID 

1 Write to screen welcome to progmamming 1 2 

2 Take user name and age then display this 
information on the screen 

1 1 

3 Find the total of given two numbers 1 1 

4 Multiply two given number and display result on 
the screen 

1 1 

5 Write days of week on the screen according to 
given number(1-monday,..) 

1 2 

6 Find the average of midterm and final grades given 
by user 

2 6 

7 Convert a measurement given in km to the 
equivalent number of m, cm and mm 

2 6 

8 Find triangle's surroundings given three numbers 2 6 

9 Find rectangular area depends on the a,b edge 
values 

2 6 

10 Find rectangular surroundings depends on the a,b 
edge values 

2 6 

11 Tell the given number is positive or negative 3 4 

12 Tell the given number is odd or even 3 4 

13 Print a given digit(0-9) in text (1-one,2-two,...) 3 4 

.... .............................................................................. .... ... 
 

26 Find the total of n numbers given by user 4 5 

27 Draw rectangular on the screen with # 4 5 

28 Draw diamond on the screen with * 4 5 

29 Read one character from user and display this 
character on the screen 

1 2 

30 Take two number from the user and display 
subtraction result on the screen 

1 6 

31 Take x,y from the user and calculate power(x,y) 
using loop and display result on the screen 

4 5 

32 Find the biggest number given two numbers taken 
by user 

3 4 

33 Calculate and display absolute value of number 
given by user 

3 4 

34 Take midterm,assignment and final grades from the 
user and calculate average of 
course(%20Ass,%30mid,%50final) 

2 6 

35 There is two nested circle,calculate the difference 
area of these two circles according to R1,R2 value 

2 6 

36 Take course grade from user and display passed or 
failed condition depends on the 70 point  

3 4 

37 Write a program that print the months of a given 
season 

3 4 



 

37 

 

Table 5.1 Problem repository of the system (cont.) 

38 Take number from the user between 1-1000 and 
adds all the digits in the number(562 - 13) 

2 6 

39 Write  numbers between 4 to 96 (4 10 16 22 ... ) 
using for loop 

4 5 

40 Write numbers muplications of 3 from 1- 100  4 5 

41 Find the second largest number of given 7 numbers 
by user 

4 5 

.... .................................................................................... .. ... 

 

5.2.2 Operation Part of the Developed Tool 

Achieving a well-planned learning path is important at teaching-learning process. 

In this study, interface separates problems into smaller parts as operations. 

Operations are determined depending on the main subjects of algorithms and 

programming. There are six statement types; variables, loop, if-else, read-write, 

assignment, and conditions as illustrated in Table 5.2.  

Table 5.2 Operation table 

OperationID Operation Name 

1 Variable 

2 ReadWrite 

3 Condition 

4 IfElse 

5 Loop 

6 Assignment 

 

 

Each operation has its own child fields, which explained in details in previous 

chapter. In this way, students can learn steps of operations during development 

phase. Thus, they also have a chance to do more practice on main and subfields of 

programming topics.  Programming-language-independent feature embedded in this 

part. Using operation parts to create solution algorithm is important for students since 

they generate a syntax-free code. Students can focus on algorithm design. Thus, they 

are more motivated and have more chance to improve their programming skills. 



 

38 

 

5.2.3 Code Part of the Developed Tool 

Algolyzer generates source code automatically depending on the actions of the 

students in operation part of environment after completing the error checks. At each 

step of the solution, students can follow their algorithm in code part of the interface 

on selected programming language. There is a “clear” option to clear all generated 

code and start the problem solution over again. 

In the code part, there are also three actions can be taken about the solution code. 

Students can create source code file and download this generated file wherever they 

want to save. In addition to this, students can compile their solution on the tool 

interface to get more realistic compiler warnings. 

5.3 Multi Programming Language Support 

When students make an effort for programming language syntax, they spend 

much time and there is a little time to improve their programming skills (Al-Imamy 

S., et al., 2006). Programming-language-independent code generation is important 

and this feature is one of the main study objectives.   

Generic algorithm elements developed in the backend, which allows generating 

code in any programming language. For multi-programming-language support, this 

generic structure is being used through Processor factory mentioned in previous 

chapter. Solution source code is generated in the selected languages depending on the 

operations and orders of student’s operations. 

5.4 Language Support 

Turkish language support on interface provided to students besides English. 

Especially, giving error messages in Turkish supports students to understand 

midpoints more clearly. Certain previous studies indicate that students at the 

beginning phase of programming have problems about understanding messages of 

IDE or any programming language compilers (Licea, & et al., 2011). Getting error 

messages in details and in native language is more beneficial for students. 



 

39 

 

5.5 Error Detection 

In general, compilers are designed for advance programmers, not for novices 

(Satratzemi, & et al., 2003). Students spend their much time for debugging 

operations, sometimes they do not understand error message while improving their 

algorithm solution. In this study, error detection is over the debugger shown in 

Figure 5.5.  

 

 

 

Figure 5.5 Error detection mechanisms 

Error detection of this system is processed before debugger. An appropriate 

warning and errors messages delivered to the students by the system depending on 

the operations of the student. Programming-language syntax errors and some logical 

errors that caught by the developed tool identified in Table 5.3.  Errors are separated 

with the operation type and error degree. Error degree indicates that if the error type 

is a syntax error or logical error. Third level states the certain logic errors. 

Table 5.3 Types of errors made by students during the programming 

Error 
Type ID 

Error Type Name Operation 
ID 

Error 
Degree 

1 VarIncomplete 1 1 

2 VarTypeMismatch 1 2 

3 VarNaming 1 3 

4 VarDefineAgain 1 2 

5 RWIncomplete 2 2 

6 RWConvert 2 2 

7 RWParameterMissing 2 1 

8 CondIncomplete 3 2 

9 CondIncompleteMulti 3 2 

10 CondTypeMismatch 3 2 

11 CondSameVariable 3 2 

Error Detection 

Debugger 



 

40 

 

Table 5.3 Types of errors made by students during the programming(cont.) 

12 CondSameConditionMulti 3 3 

13 CondBoolCtrl 3 3 

14 IfIncomplete 4 2 

15 IfIncompleteElse 4 2 

16 Command missing 4 3 

17 LoopVariableInitialMissing 5 2 

18 LoopConditionMissing 5 2 

19 LoopIncDecValueMissing 5 2 

20 LoopCommandMissing 5 2 

21 LoopLogicError 5 3 

22 AssignmentIncomplete 6 2 

23 AssignmentTypeMismatch 6 2 

24 AssignmentNumericTypeMismatch 6 3 

25 AssignmentWrongStringOperator 6 3 

System executes the error detection for students on each operation steps. If there 

is any error, understandable error messages are reported to the students as illustrated 

in Figure 5.6.  

 

Figure 5.6 Sample screen of error detection 



 

41 

 

The application saves these activities during sessions of the students.  The 

instructors can examine the usage reports and try to get more effective in-class 

sessions. Instructors investigate the logged actions and error logs. Thus, getting 

statistics from the students’ logs can provide a possibility to determine 

misconceptions. During algorithm and programming courses, instructors can 

consider errors on main topics and subfields, which shows misunderstanding parts 

for students.  

5.6 The First Version of the Developed Tool 

The previous version of this study implemented as a desktop application. There 

are some different features besides similar features. On operational level, application 

has the same capabilities as problem, operations and code parts while developing 

solution of the problem. Different capability of these features, there is a flowchart 

support capability. Students can follow operations on flowchart and when the 

students complete the problem solution, overall student’s solution workflow can be 

obtained in the application interface as illustrated in Figure 5.7. Creating executable 

file and running this created file option are other different parts of this version. These 

different capabilities actualized easily associated with the application type. In 

detailed, more instance screens of the previous version of application hold in 

Appendix C part. 



 

42 

 

 

Figure 5.7 An overview of previous version of application 



 

43 

 

6. CHAPTER SIX 

RESULT AND EVALUATION OF ALGOLYZER USAGE 

In imparting education, to have an idea on misunderstanding parts of the courses 

is essential for instructors. Particularly at mental and abstract courses as an algorithm 

and programming courses, learning is difficult for students. Students have 

misconceptions, related with facing problems on introduction phase of algorithm and 

programming. In our study, to have an idea related to these complications, developed 

tool tracks every action of students and collects the errors from the compilation 

results and higher-level application validation rules. In this way, instructors can 

follow the students' learning process and their misconceptions associated with 

programming topics.  

For study’s assessment, developed tool was published in 

http://algolyzer.cs.deu.edu.tr address and we engage students to use this educational 

tool. Students of computer engineering and computer programming department of 

Dokuz Eylül University were informed about Algolyzer and application published 

web site address. Students used developed tool within the scope of their algorithm 

and programming language courses. After students’ usage, application saved 

students’ activities and errors. Then we investigated and evaluated those knowledge 

concerns on the usage and errors made by students. In this chapter, this investigation 

and evaluation will be presented and explained in details. With this evaluation, the 

instructors have usage reports and they tried to get more effective in-class sessions 

during their algorithm and programming courses. 

6.1 Engage Students to Use Algolyzer 

Practices of courses are too important for students when mental concerns are 

matter of the learning process. Abstract knowledge can be followed in tangible forms 

with similar applications as our developed tool. In this way comprehension of those 

topics can be facilitated for students. Beginning from this point, we engage our 

students to use developed tool- Algolyzer. 



 

44 

 

The developed application was announced to our starter-level class students at 

computer engineering and computer programming department of Dokuz Eylül 

University. Students used developed tool published in http://algolyzer.cs.deu.edu.tr 

address during the one semester within the scope of their related courses.  There are 

two different experiment group illustrated in Table 6.1. Students in first study group 

used this tool in algorithm and programming course. Students at second study group 

used this tool in programming languages course. Each study was realized on separate 

semesters with different students. 

Table 6.1 Experimental groups of study assessment 

 

System saved students’ activities and errors during their sessions. At the end of 

the semester, logs obtained from the system database were investigated.  

6.2 General Statistics 

The login/registration, operations and errors made by the students were saved to 

system database when students use the application. This gives an idea related to 

students sessions, their usage and erroneous state while improving their solutions on 

the tool. Thus, erroneous statistics provide the opportunity for the instructors to 

determine lacks on topics.  

 Department Class Course name Code 

First study  Computer 

Engineering 

Starter-

level 

Algorithm 

&Programming I 

Study A 

Second study  Computer 

Programming 

Starter-

level 

Programming 

Languages I 

Study B 



 

45 

 

The data retrieved from the user experiments, values in Table 6.2 were obtained 

for study A group. Investigation can be summarized as; system collected 84 student’s 

registration and 950 sessions. Session corresponds to the students’ login and chooses 

a question. The questions have been chosen by students are randomly selected from 

database. In this group, not all students made an error at the problem solution phase 

and compiled their improved algorithm. Solution code compilation was not 

succeeded in general. Record of compilation means that students select one question 

and perform to complete his/her solution and then compile code file. 

Table 6.2 General Statistics of System Usage for Study A 

 

Record Name  Count 

Total number of students  84 

Total number of sessions  950 

Total number of erroneous sessions  80 

Number of questions  52 

Number of questions error(s) made on 32 

Number of error types in erroneous sessions  15 

Number of operand/statement types  6 

Number of compilation  39 

 

 

General statistics depending on the usage of the students in study B group were 

listed in Table 6.3. The 42 students used the tool related to their courses. Session 

number is a little low, when these values compared with study A group’s values. 

Another remarkable state is number of compilations is too few. This means that most 

of students cannot came to the end of their solution or not prefer to compile. 

Table 6.3 General Statistics of System Usage for Study B 

Record Name  Count 

Total number of students  42 

Total number of sessions  665 

Total number of erroneous sessions  29 

Number of questions  60 



 

46 

 

Table 6.3 General Statistics of System Usage for Study B (cont.) 

Number of questions error(s) made on 18 

Number of error types in erroneous sessions  9 

Number of operand/statement types  6 

Number of compilation  2 

 

6.3 Distributions of Students Errors During Programming 

In problem solving phase, students make an error associated with their algorithm 

and programming. System saved these errors during the students’ session. At the end 

of the semester, we worked on these errors data. In this part, types and distributions 

of errors made by students explained in details. With these distributions and 

evaluations, topics of algorithm and programming course, which not properly 

understood, can be determined. 

6.3.1 Error Distributions on Base Topics 

In study A, there are 80 errors made by students while generating algorithmic 

solution of the problem using the main operations. Error type and their distribution 

illustrated in Figure 6.1. 

 

Figure 6.1 Error rates of base operations for Study A 



 

47 

 

For Study B there are 29 errors made by students during their solutions. Figure 6.2 

shows the distribution of the main operation errors. Operation that has the highest 

distribution is the same in study A.  Other error types are changing on following 

rates. 

 

Figure 6.2 Error rates of base operations for Study B 

6.3.2 Error Distributions on Subfield Topics 

System saves errors associated with subfields of the main topics when students are 

working on the problem solution. For instance, student made an error on loop 

operation, error part as variable or condition parts of loop statement saved to 

database such as condition lacking or command missing in loop statement. Order of 

error distribution in subfield topics are changed a little when compared with the 

results of main operations in previous heading. On the contrary, in previous ratio, the 

most errors comes from “If” operation of all main subjects. This show that students 

made incomplete if/else statements while creating their algorithm. Some specific 

variable, loop and condition errors with the same ratio value pursues highest topic. 

Defining same variable, condition missing of loop, using same variable in condition 

are the second high-rated errors made by students. Other subfield errors are figured 

in Table 6.4 for study A.  

 



 

48 

 

Table 6.4 Subfield error rates of Study A 

 

ErrorType Operation Rates 

14 IfIncomplete 18,8 

4 VariableDefineAgain 11,3 

18 LoopConditionMissing 11,3 

11 CondSameVariable 11,3 

2 VariableTypeMismatch 10,0 

17 LoopVariableInitialMissing 8,8 

1 VariableIncomplete 8,8 

13 CondBoolControl 5,0 

5 RWIncomplete 3,8 

19 LoopIncDecValueMissing 3,8 

15 IfIncompleteElse 2,5 

7 RWParameterMissing 1,3 

8 CondIncomplete 1,3 

22 AssignmentIncomplete 1,3 

23 AssignmentTypeMismatch 1,3 

 

Distribution of the subfield errors for study A in Figure 6.3. Error type, which has 

the highest value based on the subfield different from the most intensity of error type 

one based on the main subjects. When we examine the different errors, main subject 

variable and loop subject have the highest intensity. 



 

49 

 

 

Figure 6.3 Error distribution based on the subfields for Study A 

For Study B group, first element of the error type distribution was changed 

associated with the errors separately depending on the subfields sighted in Table 6.5. 

Incomplete variable block is highest rate of this distribution. Defining same variable 

error followed the highest one that is the same order with study A. 

Table 6.5 Subfield error rates of Study B 

 

ErrorType Operation Rates 

1 VariableIncomplete 41,4 

4 VariableDefineAgain 20,7 

11 CondSameVariable 13,8 

5 RWIncomplete 6,9 

14 IfIncomplete 3,4 

17 LoopVariableInitialMissing 3,4 

15 IfIncompleteElse 3,4 

8 CondIncomplete 3,4 

22 AssignmentIncomplete 3,4 

 



 

50 

 

 

For study B, intensity of the error type is in Figure 6.5. Variable errors are 

differed from the other operation errors. 

 

 

Figure 6.4 Error distribution based on the subfields for Study B 

 

When we examine the errors made by students on generating their algorithm, 

main topic errors separated from the errors depending on subfields of these main 

topics. Consequently, the errors, which come from subfields topics, must be 

considered beside the base concepts rates. In this way child elements, which can be 

re-worked in an extra lecture with base concepts, can be specified associated with the 

students activity rates. 

6.4 Individual Evaluation & Distribution of Multiple Errors 

On comprehension phase, having the knowledge of details of errors is essential 

for instructors. Beside the errors depending parts as base or subfield, multiple errors 

made by same student may be important on evaluation. In this concept multiple 

errors data obtained and evaluated. Firstly, errors examined according to general title 

groups mentioned previous parts. In second phase, errors analyzed individually for 



 

51 

 

each students. To examine the multiple errors made by one student in details; firstly 

duo, trio errors made together determined and an Apriori algorithm, which is a 

classic algorithm for learning association rules, is used in this study. Shortly to find 

the relations of errors clearly at this step, data mining is applied. 

6.4.1 Apriori Algorithm Result 

Firstly, errors examined according to general title groups mentioned in previous 

parts. In second phase, errors analyzed individually for each students. To examine 

the multiple errors made by one student in details; firstly duo, trio errors made 

together determined and an Apriori algorithm, which is a classic algorithm 

for learning association rules, is used. Shortly to find the relations of errors clearly at 

this step, data mining is applied. Duo, trio and other combinations of errors for study 

A group’s students have been identified and values in Table6.6 were obtained. 

Table 6.6 Relations of multi errors and rates for Study A 

 

Error ID Rates Error Type(Base topic) 

8 13 17 18 11   2,7 Condition Condition Loop Loop Condition 

8 13 17 18   2,7 Condition Condition Loop Loop 

8 13 17 11   2,7 Condition Condition Loop Condition 

8 13 18 11   2,7 Condition Condition Loop Condition 

8 17 18 11   2,7 Condition Loop Loop Condition 

13 17 18 11   2,7 Condition Loop Loop Condition 

13 17 18   2,7 Condition Loop Loop 

13 17 11   2,7 Condition Loop Condition 

13 18 11   2,7 Condition Loop Condition 

13 11 14   2,7 Condition Condition IfElse 

8 13 17   2,7 Condition Condition Loop 

8 13 18   2,7 Condition Condition Loop 

8 13 11   2,7 Condition Condition Condition 

8 17 18   2,7 Condition Loop Loop 

8 17 11   2,7 Condition Loop Condition 

8 18 11   2,7 Condition Loop Condition 

19 18 11   2,7 Loop Loop Condition 

17 18 11   2,7 Loop Loop Condition 

23 11 14   2,7 Assignment condition IfElse 

1 18 11   2,7 Variable Loop Condition 

 

http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Association_rule_learning


 

52 

 

Table 6.6 Relations of multi errors and rates for Study A (cont.) 

   7 1 14   2,7 ReadWrite Variable IfElse 

4 2 14   2,7 Variable Variable IfElse 

2 11 14   2,7 Variable Condition IfElse 

18 11   8,1 Loop Condition 

11 14  8,1 Condition IfElse 

13 11  5,4 Condition Condition 

2 14  5,4 Variable IfElse 

15 14   2,7 IfElse IfElse 

23 11  2,7 Assignment condition 

23 14   2,7 Assignment IfElse 

7 1   2,7 RW Variable 

7 14  2,7 RW IfElse 

8 13  2,7 Condition Condition 

8 17   2,7 Condition Loop 

8 18   2,7 Condition Loop 

8 11   2,7 Condition Condition 

19 17   2,7 Loop Loop 

19 18   2,7 Loop Loop 

19 11   2,7 Loop Condition 

4 2   2,7 Variable Variable 

4 14   2,7 Variable IfElse 

1 2   2,7 Variable Variable 

1 18   2,7 Variable Loop 

1 11   2,7 Variable Condition 

1 14   2,7 Variable IfElse 

13 17   2,7 Condition Loop 

13 2   2,7 Condition Variable 

13 18   2,7 Condition Loop 

13 14   2,7 Condition IfElse 

17 2   2,7 Loop Variable 

17 18   2,7 Loop Loop 

17 11   2,7 Loop Condition 

2 11   2,7 Variable Condition 
 

 

During examining multiple errors, one of the observations is that any student 

made maximum five errors together. At the same time, duo errors are high density in 

multiple errors. The highest pair error value is 8.1 and these are belongs to loop-

condition and condition-if/else errors.  We obtained the inference that if students 

make an error about the loop or if-else statement, there is an error also in condition 



 

53 

 

part. Duo errors, which have the second highest value, were condition-condition and 

variable-if/else errors. We observed that student who has an error on creating 

condition, repeated this situation when solving a different problem. This indicates 

that there is miscomprehension for students about condition topics. Another error 

status was that student who made an error on creating variable, also could not 

complete if/else part. Depending on the general analysis of multiple errors, condition 

errors are the highest value. This evaluation also was attained from the multiple 

errors rates depending on the main topics in Figure 6.5. Numbers on vertical 

coordinate show the error types and error 3, condition has the highest value. 

 

Figure 6.5 Multiple error distribution for Study A 

When we examine the errors made by students in study B group, Table 6.7 is 

obtained for multiple errors. Variable error’s rate is the highest value. Variable’s 

operation errors is the highest rates based on the evaluation of main operation’s error 

in previous headings. This is the same in multiple error evaluation.  

 



 

54 

 

Table 6.7 Relations of multi errors and rates for Study B 

 

Error ID Rates Error Type(Base topic) 

22 17 11 6,7 Assignment Loop Condition 

8 5 1 6,7 Condition ReadWrite Variable 

22 17 6,7 Assignment Loop 

22 11 6,7 Assignment Condition 

8 5 6,7 Condition RW 

8 1 6,7 Condition Variable 

5 1 6,7 RW Variable 

17 11 6,7 Loop Condition 

17 4 6,7 Loop Variable 

11 1 6,7 Condition Variable 

4 1 13,3 Variable Variable 

 

6.5 Students Evaluation of Algolyzer  

A questionnaire is prepared to obtain the feedbacks from the students after they 

use Algolyzer and this model. This questionnaire includes ten questions related to 

beneficial rates on learning process of algorithm and programming and essential 

features of Algolyzer. Students were asked to evaluate the support level of Algolyzer 

from no benefit to very beneficial shown in Figure 6.6. 

 
1. Did you use Algolyzer educational tool? 

 Yes   No 

     

2. How was Algolyzer beneficial for you? 

 

1  2  3  4  5* 

 

3. Did you have a chance for more practice? 

 Yes   No 

 

4. How beneficial  were the error messages? 

 

1  2  3  4  5 

 



 

55 

 

5. How do you think dividing problems in operations was beneficial? 

 

1  2  3  4  5 

 

6. How beneficial was writing the programming code independent of PL? 

 

1  2  3  4  5 

 

7. How do you think Algolyzer helped you  to develop problem solving skills? 

 

1  2  3  4  5 

 

8. How do you think Algolyzer helped you  to improve abstract thinking? 

 

1  2  3  4  5 

 

9. Please check appropriate box(es) which are the most important features of Algolyzer for 

you? 

 Generate programming  source code independent of PL  

 Give error messages 

 Have problem repository 

 Focus on single problem 

 Divide solution in operations 

 

10. Please add any other feedback on Algolyzer. 

 

 

* 1 Almost no benefit ....... 5 Very beneficial 

Figure 6.6 Questionnaire of Algolyzer usage 

Even though 40 students participated in the questionnaire, only 24 students 

completed the questionnaire forms. All the students reported that they had a chance 

for more practice with Algolyzer shown in Figure 6.7. 

 



 

56 

 

 

Figure 6.7 Students feedback on doing more practice 

 

Feedbacks on effectiveness of error messages are illustrated in Figure 6.8. 

According to students, error messages support them in average level.  

 

 

Figure 6.8 Students feedback on effectiveness of error messages 



 

57 

 

 

Figure 6.9 Students feedback on support degree of dividing operations 

Dividing operations which is the another main feature of the developed tool has 

been identified as beneficial for participants shown in Figure 6.9. Independent of 

programming language feature has the same result with dividing operations in Figure 

6.10. Students register that writing syntax free code supports them for learning 

programming process. 

 

 

Figure 6.10 Students feedback on support degree of independent of PL 



 

58 

 

The last rating question’s result, which aims to get students opinion on the most 

important features of Algolyzer is shown in figure 6.11. Giving error message, 

dividing solution in operations and having problem repository features are the 

highest and the same percentage.  

 

 

Figure 6.11 Students feedback on important feature of Algolyzer 

Some participants responded with their own opinions by answering the question 

number 10 of the questionnaire; “You may add more new programming language 

support”, “Dividing operations is excellent”, “This is perfect for starting level 

students”... 

6.6 General Evaluation 

Making errors means that there is a misconception or a problem in the learning 

process. From this point, analyzing the errors of students in details becomes 

important. As far as obtained result can be summarized as; 

 Subfield errors are diversity from main topic errors,  

 Multiple errors give information about individual evaluation of students 

 Some topics can be depended on the other topic. 

 



 

59 

 

The above all general results shared in details with the instructors.  The instructors 

on teaching process can consider these evaluations. In this way, misunderstanding 

parts can be re-worked in more lectures. At the same time instructor have a chance to 

form their courses related to miscomprehension parts on the next semesters.  

Another important evaluation depends on the survey results. The surveys related 

to the usage of Algolyzer and its model and the feedbacks prove that Algolyzer 

supports the students on learning process. The survey results of participants can be 

summarized as; 

 Algolyzer was beneficial for students  

 Feature set of the tool is important on learning process  

 they had a chance to do more practice which is necessary for improving 

programming skills 



 

60 

 

7. CHAPTER SEVEN 

CONCLUSIONS 

Teaching and learning programming has never been an obvious process because 

of the programming is a skill requires practicing and wide effort. Learning design 

and analysis of algorithms is important for students. Students in computer science 

disciplines often face difficulties on the related courses. To date, various studies on 

learning algorithm, programming and data structures have been realized.  

 

In this study, a new method proposed with considering the most important and 

ineffective parts of the algorithm and programming learning process. Constructivism, 

which is a learner-centered pedagogy, is used in this study. In this concept, user-

friendly, visual interface tool has been developed to support learning process of 

students. Developed tool, named Algolyzer, provides a programming-language-

independent environment for students to create an algorithm solution for predefined 

algorithmic problem. With this feature, students get a chance to focus on the possible 

solutions more without facing with programming language syntax issues. This 

feature helps them in several points as; they understand the importance of main logic 

of creating an algorithm and decrease time spent on the syntax of the programming 

language. Another point is that Algolyzer affects the student’s motivation and 

confidence in writing correct programs in a positive way. Thus, students can improve 

their algorithmic thinking abilities independent from the programming languages.  

In the same time, students can work on program codes in different programming 

languages using multiple language support of Algolyzer. This feature of tool gives a 

chance to students to do more practice on improving algorithm and programming 

design skill. By using Algolyzer, students can create algorithmic steps of their 

solution using visual interface operations. Students can comprehend topics better 

with separated operations associated with basic concepts of programming.  

 



 

61 

 

In addition to this, Algolyzer is also an assistant for instructors. While teaching 

algorithms and programming, instructors can use this developed tool. Algolyzer 

saves errors of students occurred during solving the given problems. With having all 

activities log of each students, instructors can have detailed information on how 

students use it, where they need more help, what are the lacking parts in the teaching 

process. In this way, misunderstanding topics can be determined and re-worked in 

more lectures.  

The students of Dokuz Eylül University Computer Engineering and Computer 

Programming Department have used Algolyzer. At the end of the semester, their 

usage data has been evaluated. General statistics obtained from the activities and 

errors of students. The highest error topic was determined. In detail investigation, 

multiple errors were examined. Selected data mining method applied on collected 

data and the base problems that happen during designing an algorithm phase were 

defined. When examining multiple errors we observed that pair’s errors are high 

density in multiple errors. Another result is that, highest error type in evaluation on 

multiple errors is different from highest one in evaluation based on general error type 

definition.  

Another point of this study is that, in verbal form we attained the feedback from 

the students that they used the tool and benefited from the problem repository for 

preparing the algorithm and programming exams.  

 

In summary, in this thesis during the study a tool has been developed on learning 

algorithms and programming area to support students to learn basics of programming 

and to assist instructors during their teaching classes. The developed tool has been 

developed as a web based application and can be used in both distance learning 

courses and in-class sessions. This developed tool provides instant repeat chance to 

students if used in distance learning sessions.  

 

The most significant contributions of this study can be summarized as 

 Developed tool can bridge the gap between the learning process and 

learning complications. 



 

62 

 

 Attain knowledge of errors of students related with comprehension while 

developing a program 

 Give a chance to enhance success rate with repeating misunderstanding 

parts and increasing student’s motivation.  

 

Some surveys related to usage of Algolyzer and its model has been applied to 

students. The feedbacks of students prove that Algolyzer supports the students during 

algorithm and programming learning process effectively. 

 

In the future, adding new features will help catching more logic errors to be used 

for the study and will result with better-analyzed problems on improving algorithmic 

thinking phase. Collecting more data will always be in our plans to create results that 

are more sensible and help to propose new models. Another primary goal in this 

study will be improving real time notifications and improving user interactions with 

enabling more validations rules. Adding more programming languages is another 

mid-term plan. We plan to improve Algolyzer to make it a standard tool in starter-

level algorithms and programming courses. Drawing flowchart feature, which is in 

desktop-based version of this study, will be added to the web-based version. Every 

student - does not matter which discipline they are in - face different problems during 

the learning process. Students on various disciplines at engineering can use the 

developed tool and depending on their usage and logged errors; new inferences will 

be obtained for next studies.  



 

 

63 

 

REFERENCES 

 

Al-Imamy, S., Alizadeh, J, & Nour, M. A. (2006). On the development of a 

programming teaching tool: The effect of teaching by templates on the learning 

process. Journal of Information Technology Education, Vol. 5, p. 271-283. 

Aispuro, E. E., Licea, G. ,  Sus´rez, J.,  Sandoval, A., Carren˜o, M. A., & Estrada, 

I. (2009). Supporting the development of ınteractive applications in 

ıntroductory programming courses. Computer Applications in Engineering 

Education, 20, p.214-220. 

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings 

of the twenty-ninth SIGCSE technical symposium on computer science 

education, p. 257-261. 

Biggs, J. B. (2003). Teaching for quality learning at university. what the student 

does. Maidenhead, United Kingdom: Open University Press, p. 13. 

Bloom, B. S. (1956). Taxonomy of educational onjectives, handbook1: The 

Cognitive Domain. White Plains, N.Y: Longman. 

Byrnea, M. D, Catramboneb, R., & Staskoc, J. T. (1999). Evaluating animations as 

student aids in learning computer algorithms. Computers & Education, Vol. 33, 

p. 253-278. 

Chou, C. Y., & Sun, P. F. (2010). An educational tool for visualizing students’ 

program tracing processes. Computer Applications in Engineering Education, 

2010, doi:10.1002/cae.20488.  

Chou, P. H. (2002). Algorithm education in Python. Proceedings of Python 10, p. 

177-185. 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to 

algorithms (3rd ed.). Cambridge: The MIT Press. 



 

 

64 

 

Costa, C. J., Aparicio, M. & Cordeiro C. (2012). Web-based graphic environment 

to support programming in the beginning learning process. Proceedings of the 

11th international conference on Entertainment Computing, LNCS Vol. 7522, p. 

413–416. 

Dagdilelis, V., Satratzemi, M., & Evangelidis, G. (2004). Introducing secondary 

education students to algorithms and programming. Education and Information 

Technologies, 9:2, 159-173. 

Elgamal, A. F.,  & Abas, H. A., & Baladoh, E.. M. (2013). An interactive e-

learning system for improving web programming skills. Educational 

Information Techonology, 18, p. 29-46. 

Ferna´ndez, A. J., & Sa´nchez, J. M. (2004). CGRAPHIC: Educational software 

for learning the foundations of programming. Computer Applications in 

Engineering Education, 11, p. 167-178. 

Gomez-Albarra´n, M. (2005). The teaching and learning of programming: A 

survey of supporting software tools. The Computer Journal, Vol. 48, p. 130-

144. 

Holvikivi, J. (2010). Conditions for successful learning of programming skills. 

Key Competencies in the Knowledge Society, Vol. 324 Springer , 155-164. 

Hundhausen, C. D., & Brown, J. L. (2008). Designing, visualizing, and discussing 

algorithms within a CS 1 studio experience: An empirical study. Computers & 

Education, 50, p. 301-326. 

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002) .A meta-study of 

algorithm visualization effectiveness. Journal of Visual Languages and 

Computing, 13, p.259-290. 

Hübscher-Younger, T., & Narayanan, N. H. (2003). Constructive and 

collaborative learning of algorithms. ACM Special Interest Group on Computer 

Science Education (SIGCSE’03), p. 6-10. 



 

 

65 

 

Jain, A. K., Singhal, M., & Gupta, M. S. (2010). Educational tool for 

understanding algorithm building and learning programming languages. World 

Congress on Engineering and Computer Science, Vol. I, 292-295. 

Jenkins, T., (1998). A participative approach to teaching programming. 

Proceedings of the 6th Annual Conference on the Teaching of Computing and 

the 3rd Annual SIGCSE Conference on Innovation and Technology in 

Computer Science Education (ITICSE’98), p. 125-129. 

Jerez J. M., Bueno D., Molina I., Urda, D. & Franco, L. (2012). Improving 

motivation in learning programming skills for engineering students. 

International Journal of Engineering Education, Vol.28, No.1, p. 202-208. 

Jonassen, D. H. (1996). Computers in the classroom: Mind tools for critical 

thinking. Columbus, OH: Merrill/Prentice-Hall. 

Kordaki, M. (2010). A drawing and multi-representational computer environment 

for beginners’ learning of programming using C: Design and pilot formative 

evaluation. Computers & Education, 54,  p.69-87. 

Kordaki M.,  Miatidis, M., & Kapsampelis, G., (2008). A computer environment 

for beginners’ learning of sorting algorithms: Design and pilot evaluation. 

Computers & Education, 51, p.708-723. 

Lahtinen, E., AlaMutka K., & Järvinen, H. (2005). A study of the difficulties of 

novice programmers. Proceedings of the 10th Annual SIGCSE conference on 

Innovation and technology in computer science education (ITiCSE 05), 

Portugal, p. 14-18. 

Lazaridis, V. , Samaras, N., & Sifaleras, A. (2010). An empirical study on factors 

ınfluencing the effectiveness of algorithm visualization. Computer Applications 

in Engineering Education, DOI 10.1002/cae.20485. 



 

 

66 

 

Li, J., & Zhang, Z. (2010). A learning tool of genetic algorithm. Second 

International Workshop on Education Technology and Computer Science 

(ETCS), Vol.1, p. 443-446. 

Li, J., & Liu, W. (2009). An educational tool for the ant colony optimization 

algorithm. First International Workshop on Education Technology and 

Computer Science (ETCS), Vol.1, p. 55-58. 

Licea, G., Juárez, J. R., Marti´nez, L. G., & Aguilar, L. (2008). Developing 

programming tools to reach a deeper understanding of advanced programming 

concepts. Computer Applications in Engineering Education, 16, p. 305-314. 

Licea, G., Juárez-Ramírez, R., Gaxiola, C., Aguilar, L., & Marti´nez L. G. (2011). 

Teaching object-oriented programming with AEIOU. Computer Applications in 

Engineering Education, doi:10.1002/cae.20556. 

Marcelino, M., Gomes, A., Dimitrov, N. & Mendes, A., (2004), Using a computer 

based interactive system for the development of basic algorithmic and 

programming skills. Proceedings of International Conference on Computer 

Systems and Technologies (CompSysTech’2004), p. 1-6. 

Milne, I., & Rowe G., (2002). Difficulties in learning and teaching programming - 

Views of students and tutors. Education and Information Technologies, Vol.7, 

p. 55-66. 

Müldner, T., Shakshuki, E., & Kerren, A. (2008). Algorithm education using  

structured hypermedia. Advances in Distance Education Technologies Series, 

Chap. 5, IGI Global, 58-84. 

Nardi, B. A. (1996). Studying context: A comparison of activity theory, situated 

action models, and distributed cognition. In B. A. Nardi (Ed.), Context and 

consciousness: Activity theory and human–computer interaction. Cambridge, 

MA: MIT Press. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5458392


 

 

67 

 

Ng, S.C., Choy, S.O., Kwan, R., & Chan, S.F. (2005). A web-based environment 

to improve teaching and learning of computer programming in distance 

education. International Conference on Web-based Learning, Vol. 3583 

Springer, p. 279-290. 

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning 

cultures and computers. Dordrecht: Kluwer Academic Publishers. 

Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students’ 

understanding of the concept of algorithm: Levels of abstraction. 10th Annual 

Conference on Innovation and Technology in Computer Science Education , p. 

64-68. 

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching 

programming: A review and discussion. Computer Science Education, Vol. 13, 

No.2, p.137-172. 

Sajaniemi, J., & Hu, C. (2006). Teaching programming: Going beyond “objects 

first”. 18th Workshop of the Psychology of Programming Interest Group, 

University of Sussex, p. 255-265. 

Satratzemi, M., Dagdilelis, V., & Evagelidis, G. (2001). A system for program 

visualization and problem-solving path assessment of novice programmers. 6th 

Annual Conference on Innovation and Technology in Computer Science 

Education, ACM, 137-140. 

Satratzemi, M., Xinogalos, S., & Dagdilelis, V. (2003). An environment for 

teaching object-oriented programming: ObjectKarel. The 3rd IEEE 

International Conference on Advanced Learning Technologies, p. 342-343. 

Selby, C., C., (2011). Four approaches to teaching programming. Learning, Media 

and Technology: A doctoral research conference, London. 



 

 

68 

 

Shabanah, S., & Chen, J. X. (2009). Simplifying algorithm learning using serious 

games. Proceedings of the 14th Western Canadian Conference on Computing 

Education, ACM, p. 34-41. 

Shakshuki, E., Kerren, A., & Müldner, T. (2007). Web-based structured 

hypermedia algorithm explanation system. International Journal of Web 

Information Systems, Vol.3, No.3, p 179-197. 

Sutinen, E., Tarhio, J., & Terasvirta, T. (2003). Easy algorithm animation on the 

web. Multimedia Tools and Applications, Vol.19, p. 179-194. 

Taherkhani, A., Korhonen, A., & Malmi, L. (2010). Recognizing algorithms using 

language constructs, software metrics and roles of variables: An experiment 

with sorting algorithms. The Computer Journal, Vol. 54, No.7, p. 105-1066. 

Truong, N., Bancroft, P., & Roe, P. (2003). A web based environment for learning 

to program. ACSC '03 Proceedings of the 26th Australasian computer science 

conference, Vol. 16, p. 255-264. 

Van Gorp, M., J., & Grisson, S., (2001). An empirical evaluation of using 

constructive classroom activities to teach ıntroductory programming. Computer 

Science Education, Vol. 11, No. 3, p. 247-260. 

Vygotsky, L. S. (1978). Mind and society: The development of higher mental 

processes. Cambridge, MA: Harvard University Press. 

Wang, Y., Li H., Feng, Y., Jiang, Y., & Liu, Y. (2012). Assessment of 

programming language learning based on peer code review model: 

Implementation and experience report. Computers & Education, 59, p. 412-422. 

White, S., Martinez, T., & Rudolph, G. (2012). Automatic algorithm development 

using new  reinforcement programming techniques.Computainal Intelligence, Vol. 

28, Issue 2, p. 176-208. 



 

 

69 

 

Winslow, L. E. (1996). Programming pedagogy – A psychological overview. 

SIGCSE Bulletin, Vol. 28 Issue 3, p.17–22. 

Wulf T. (2005). Constructivist approaches for teaching computer programming. 

Proceedings of the 6th conference on Information technology education SIGITE 

05,  p.245-248. 

Yıldırım, M., & Kut, A. (2010). An interactive education tool for 

conventional/distance learning. The International Symposium on Open and 

Distance Learning(IODL), Eskişehir, p. 903-908. 

Ziegler, U., & Crews, T., (1999), An integrated program development tool for 

teaching and learning how to program. Proceedings of the 30th SIGCSE Technical 

Symposium on Computer science education, Vol. 31, p. 276-280. 

 



 

 

70 

 

APPENDICES 

 

A. List of Abbreviations 

 

EXE Executable  

GUI Graphical User Interface 

IDE Integrated Development Environment 

IO Input Output 

LHS Left Hand Sight 

OOP Object Oriented Programming 

PL Programming Language 

RHS  Right Hand Sight 

RW Read Write 

 



 

 

71 

 

B. Class Diagram Of Algolyzer 

 

Figure A.1 Class Diagram of Algolyzer includes all classes 



 

 

72 

 

 

Figure A.2 Class Diagram of Data Module with Properties 

 
 



 

 

73 

 

C. Algolyzer Usage 

In this section, one scenario was taken to show the usage of Algolyzer. Instance 

screen shots illustrated in the following figures. 

 

Figure B.1 Start Window of Tool 

Students firstly try to understand problem given by the system, and work on 

problem and generate solution, than student pass the next problem. Extensive 

question repository can be constituted on algorithm and programming area for 

students and instructors. At the beginning of the tool’ usage, students determine main 

operations with solution separation task. This method supports the students for 

improving a solution algorithm easily. 

 



 

 

74 

 

 

Figure B.2 View of Algolyzer with Selecting Problem after Login the Page 



 

 

75 

 

 

Figure B.3 Beginning the Writing Code with Operations Support View 



 

 

76 

 

D. Previous Version of The Study 

The first version of this study implemented as a desktop-based application. The 

general features as problem, operation and code parts improved in this first 

prototype. Welcome screen can be seen in Figure C.1.  

 

Figure C.1 Welcome screen of the application 

Operation features are same with the last version of the application. Read/write 

statement creation is shown in figure C.2. 



 

 

77 

 

 

Figure C.2 Sample screen of Read/Write statement creation 

There are some different features at this version as flowchart. When creating code 

part; flowchart of this algorithm was drawing simultaneously on the screen. Thus, 

each step of algorithm can be followed on flowchart field. 

Another sample screen illustrated in Figure C.3. There are three steps for if 

statement. When creating if code block, system adds related shape in flowchart area 

automatically. 



 

 

78 

 

 

Figure C.3 If statement view with flowchart presentation 

Realizing debug operation is another different feature from final version of the 

application. Students can debug their generated code file. 

 

 

 

 

 

 

  

Figure C.4 Create source file and debug operations 

 



 

 

79 

 

After debugging operation, students can run executable file created by the system 

at user side. Students can obtain executable files from application path. On console 

students enter input values and take output with running executable file illustrated in 

Figure C.5 and Figure C.6. 

 

Figure C.5 Run executable file view  

 

 

Figure C.6 Realize IO operations on exe file 

 


