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APPLICATION OF PROBABILISTIC MODELLING ANALYSIS AND 

FILTERING INTO IMAGE SEGMENTATION 

 

ABSTRACT 

 

     In the generation of volume rendered images, Transfer Function (TF) specification 

has an important role. The specification of an appropriate TF that allows intuitive 

control of the visual parameters is a very challenging task. In Magnetic Resonance 

Imaging (MRI), this process is even harder since certain types of volume data are not 

standardized in pre-defined range of data values. Based on the MRI sequence in use 

and depending on the acquisition parameters, data specific sub-ranges might be 

assigned to the same type of structure. To be able to work in all possible cases, 

automatic sub-range detection methods are required. In this study, a semi-automatic 

method for initial generation of TFs is introduced.  

 

     Our approach is based on Volume Histogram Stack (VHS) which is created by re-

generating the image slices of a dataset based on a user specified spline. VHS is 

obtained by aligning the histograms of the image slices of the MRI series. By 

considering the VHS structure, Gaussian basis functions provide a good 

approximation for fitting the lobes of the VHS. Approximating the VHS using 

Gaussian basis functions allows a coarse classification and enables an effective initial 

TF design. The developed technique employs hierarchical approximation of the VHS 

using Gaussians with multiple orientations and scales. Then, a finer classification 

step is carried out for refinement of the initial result. As a finer classification, which 

is based on spatial domain knowledge, such morphological operations as dilation, 

and erosion and region growing are applied. The proposed method is applied to 29 

(14 T1 DUAL+10 T1 WATS+5 THRIVE) MRI datasets for abdominal tissue/organ 

visualization. The results show that the proposed system provides a useful and 

intuitive initialization for TF design. Applications to several MRI datasets testify the 

success of the developed technique in accurate visualization of abdominal 

tissues/organs. 

Keywords: MRI, TF specifications, volume histogram stacks, volume rendering 



 

v 
 

RASSAL MODELLEME ANALİZ VE FİLTRELEMENİN GÖRÜNTÜ 

BÖLÜTLEMEYE UYGULANMASI 

ÖZ 

     Transfer Fonksiyon (TF) belirleme, hacimsel işlenmiş görüntüleri elde etmede 

önemli bir role sahiptir. Görsel parametreleri sezgisel olarak kontrol etmeye yarayan 

uygun bir TF belirleme oldukça zor bir iştir. Bu işlem Manyetik Rezonans 

Görüntüleme (MRG) için daha zordur çünkü türü belli olan hacim verileri önceden 

tanımlanmış bir aralıkta standardize edilmemiştir. Kullanılan MRG sekanslarına ve 

edinim parametrelerine göre belirli alt aralıklar aynı tip yapı olarak atanabilir. Bütün 

olası durumlarda çalışabilmesi için, otomatik alt aralık belirleme yöntemleri 

gereklidir. Bu çalışmada, ilk TF üretimi için yarı-otomatik bir yöntem 

tanıtılmaktadır.  

 

     Bizim yaklaşımımız kullanıcı tarafından belirlenen şeride göre yeni görüntü 

dilimleri üretmeye dayalı olan Hacim Histogram Yığını’nın (HHY) oluşturulması 

temel alınarak yapılmıştır. HHY, MRG serisinin görüntü dilimlerini sıralayarak elde 

edilir. HHY yapısını dikkate alırsak, Gauss fonksiyonları HHY loblarının 

belirlenmesinde iyi bir yaklaşık değer sağlar. Gauss fonksiyonlarını kullanarak 

HHY’ye yakınsamak, kabaca bir sınıflama yapmayı ve etkili bir ilk TF elde 

edilmesini sağlar. Geliştirilen teknik, Gauss temelli çoklu yönelim ve ölçekleme 

kullanarak sıradüzenli bir yaklaşım kullanmaktadır. Daha sonra, ilk sonuçları daha da 

iyileştirmek için detaya inen bir belirleme adımı geliştirilmiştir. Uzaysal etki alanı 

bilgisi temelli iyi sınıflama için genişletme ve erozyon gibi morfolojik operasyonlar 

ve bölge büyütme teknikleri uygulanmıştır. Önerilen yöntem, abdomen doku/organ 

gösterimi için 29 (14 T1 DUAL+10 T1 WATS+5 THRIVE) MRG veri setine 

uygulanmıştır. Sonuçlar, TF tasarımı için önerilen sistemin kullanışlı ve sezgisel bir 

başlatma sağladığını göstermektedir. Çeşitli MRG veri setlerine uygulanma 

sonuçları, önerilen yöntemin abdomen bölgeye ait dokuların/organların doğru 

gösterimlerini elde etmedeki başarısını göstermektedir. 

Anahtar Kelimeler: MRG, TF belirtimleri, hacimsel histogram yığınları, hacimsel 

imge oluşturma 
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CHAPTER ONE  

 INTRODUCTION 

 

     Volume rendering has a crucial role in scientific visualization of large amounts of 

data. Medical modalities such as Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI) create a volume data by acquiring a series of cross 

sections of the anatomy of interest. The visualization of this three dimensional (3-D) 

data can help many scientific disciplines in addition to slice-by-slice evaluation of 

two dimensional (2-D) data. Instead of dealing with 2-D data, physicians (i.e. 

surgeons, oncologists) prefer 3-D data, which provides more effective and intuitive 

visualizations for applications such as surgery planning, treatment follow-ups, and 

education. Thus, it can be clearly stated that, for visualizing the interior structure of 

the body, the volumetric data is becoming more and more preferable than viewing a 

series of images (Drebin, Carpenter, & Hanrahan, 1988). 

 

     During the recent decades, rendering and visualization systems have been 

developed to handle more complex problems. Besides these developments, one of the 

major goals of medical visualization is to express clear and informative images of a 

dataset. Identifying correct visual information of tissues and organs of interest still 

remains as a difficult and time-consuming task for many medical applications. This 

is also related to opacity and color assignments, which should be determined 

interactively to fulfill the expectations of the physician (Kindlman & Durkin, 1998). 

During the generation of volume rendered images, Transfer Function (TF) 

specification is the crucial step at which these visual parameters are defined (Levoy, 

1988; Sabella, 1988; Upson & Keeler, 1988). Therefore, determination of the optical 

parameters by using a TF is an important step to construct a valuable outcome in 

rendering. As a result, being an element of the rendering pipeline, specification of an 

appropriate TF is a tedious but also a crucial task to produce meaningful 3-D images 

(König & Gröller, 2001; Pfister et al., 2000; Pfister et al., 2001). 
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     One of the reasons behind the difficulty of TF design is the empirical structure of 

its domain. Extensive search spaces are available for TFs, but there are still ongoing 

research activities that are necessary for generating more effective domains. Usually, 

the domain of a TF enables its initial design, which provides a starting point prior to 

the optimization that is controlled by the user. To overcome the difficulty of initial 

TF generation, generally a number of predefined TF presets are used (Kniss, 

Kindlmann, & Hansen, 2002).  The main idea behind this approach is that certain 

types of volume data are standardized in the range of data values and special sub-

ranges are assigned to the same type of structure. Thus, predefined TFs can be 

adjusted according to these ranges (Lundström, Ljung, & Ynnerman, 2006a; 2006b). 

However, in MRI, volumetric data usually have varying characteristics due to 

acquisition parameters, artifacts, field inhomogeneity, and characteristics of different 

sequences. In those cases, a limited number of TFs is not enough and automatic sub-

range detection methods are needed. Accordingly, in this study, a semi-automatic 

method for initial generation of TFs is introduced.  

 

     In clinic, the segmented image series are labeled by using appropriate software 

tools under the control of an expert. Unfortunately, image series include a large 

number of slices making this task time consuming and burdensome. To ease the 

delineation of the images, some recent segmentation algorithms are introduced which 

consist of semi-automatic and automatic techniques. There are mainly two 

approaches for segmenting a series of medical images:  

 

1) 3-D approaches which use 3-D information provided by volumetric data 

constructed by integration of image slices (Bidaut, 2000). 

 

2) Slice-by-slice (or iterative 2-D) approaches which perform segmentation on a 

single image but use adjacent slice information in some manner (Koss, Newman, 

Johnson, & Kirch, 1999; Lee, Chung, & Tsai, 2003; Selver et al., 2008). 

 

     Although, organs of interest are 3-D in nature, the use of first approach (i.e. 3-D 

models and/or features) requires a large number of training shapes/data which are not 
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available for objects that can vary largely (i.e. most of the organs). Moreover, the 

high anisotropy of CT and MRI data makes intra-slice information more reliable than 

inter-slice features, which must be extracted after an interpolation process. 

Furthermore, the results of 3-D algorithms are also in 3-D, preventing easy transition 

to 2-D images which experts use to make final modifications on the segmentation 

result. 

 

     The second approach (i.e. slice-by-slice analysis) has the advantage of complete 

integration with the current manual segmentation schemes. These methods should 

combine 2-D segmentation with appropriate slice similarity features. If an effective 

similarity measure is used such methods can become computationally feasible even 

for a large number of slices. The drawbacks of 3-D approaches can also be avoided 

(Bidaut, 2000; Selver et al., 2008). 

 

     Segmentation has an important role in medical imaging for classification and 

visualization of similar tissues. Medical imaging such as CT and MRI can represent a 

part of the body by a large number of image slices with an inner thickness of each 

slice. Segmentation is a vital task because the grey-scales of different organs and 

non-object tissues are not identical and overlapping with each other. To obtain an 

efficient segmentation in the extraction of a considered tissue or organ from the 

body, both performance and computational complexity of the segmentation process 

must be taken into account, since there is an apparent trade-off between complexity 

and accuracy of any segmentation method (Bidaut, 2000). 

 

     As mentioned before, dealing with medical imaging has an important and 

beneficial role in facilitating the clinical field, although it also has some difficulties. 

By now, various recent studies have introduced new approaches about segmentation 

of organs which lie in different parts of the body. Abdomen region is one of the most 

challenging regions to segment in the body, because it contains many organs and has 

a complex structure with similar grey-levels of adjacent organs and the outer region.  

By far, segmentation in the abdomen region is generally considered for CT images 

(Bae, Giger, Chen, & Jr. Kahn, 1993). MRI is not preferred as much as CT. The 
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drawback of using the MRI is the fact that it is affected more by the complexity of 

the abdominal region and it has a low gradient response (Chen, Gu, Qian, & Xu, 

2009).  

 

     Here, it is worth to point out that there are many (semi) automatic segmentation 

techniques, which rely on segmenting the anatomy first, and then applying existing 

volume rendering to the segmented data for 3-D analysis. This is a very critical issue 

concerning the use of complicated TF techniques instead of performing 

segmentation. The reason behind preferring TF design instead of segmentation is the 

fact that in most of the cases, what is interesting from clinical point of view is usually 

not only an organ or tissue itself, but also its properties together with adjacent organs 

or related vessel systems that are coming into and going out of it. Thus, the limitation 

of the segmentation is that it results only with the object of interest. Even if the 

segmentation is perfectly done, it is not possible to render it together with the 

adjacent tissues/organs and/or incoming/outgoing vascular trees etc., unless another 

segmentation process is performed for each object of interest. On the other hand, TF 

specification has the advantage that the user can have all the volumetric data at all 

times. More informative renderings can produce multiple anatomical structures at the 

same time and that is why this thesis focuses on developing more advanced TF 

specification techniques instead of concentrating on segmentation. 

 

    Our approach in this thesis for segmentation is based on a Volume Histogram 

Stack (VHS) which is created by aligning the histograms of the image slices of MR 

series. However, VHS is not calculated directly using the acquired image slices. By 

considering the challenging structure of the MRI, a new interface is introduced which 

constructs new slices by using different planes of the 3-D image matrix. Before 

aligning the histograms, new slices are generated by the user. The user draws a 

certain shape (line, rectangle, ellipse, or spline) over the organ of interest (i.e. liver, 

spleen, right/left kidneys) by using our developed Multi Planar Reconstruction 

(MPR) interface (Selver, Özdemir, & Selvi, 2013).  
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     By this way, the approach in (Selver & Güzeliş, 2009) is further extended for 

abdominal organs by allowing the user to select an appropriate surface using our 

developed interface. Then, VHS is calculated on the user aligned axis (i.e. a slice 

plane with an arbitrary normal vector, not aligned with 𝑥, 𝑦,  or 𝑧 axes).  

 

     It is observed that VHS can roughly differentiate the organ of interest even when 

it has an overlapping intensity range with other tissues. Albeit requiring a refinement 

step, the lobes of the VHS allow visualizing the organ of interest for an initial 

rendering by assigning color and opacity values to the selected lobes. With the help 

of this interactive process, VHS becomes an effective new domain as a search space 

for TF specification on abdominal MRI data.  

 

     The selection of the lobes from VHS requires an approximation to the data since 

VHS: i) is non-smooth due to MRI intensity fluctuations, ii) has varying intensity 

ranges for the same organ due to the acquisition parameters, and iii) has limited 

sampling along 𝑧-axis due to high inter-slice distances. To overcome these 

difficulties, a hierarchical approximation model is proposed. Using a multi-scale and 

oriented Gaussian basis, VHS is modeled up to a desired accuracy level. This is 

achieved by systematically decreasing the scale of the Gaussian functions through 

iterations. Then, the lobes, which correspond to the intensity range of the organ of 

interest, are used to determine a threshold range between certain lower and upper 

values. Finally, a fine classification is performed using morphological operations of 

erosion and dilation and region growing. 

 

     The rest of this thesis is organized as follows. Section 2 describes the MRI 

sequences and the datasets used in this study. Section 3 introduces the developed 

software and its graphical user interface (GUI), which can be interactively used to 

generate user aligned VHS. Section 4 describes the methodology in two steps. First, 

a coarse approximation to the user aligned VHS is performed by using a hierarchical 

multi-scale Gaussian approximation. Second, a finer classification is performed to 

the residual data by using spatial information. Section 5 presents the applications and 

the results. Finally, Section 6 includes the conclusions and the discussions. 
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CHAPTER TWO  

 MAGNETIC RESONANCE IMAGING AND MR DATASET 

 

2.1 Magnetic Resonance Imaging (MRI) 

 

     Radiologists utilize different types of medical imaging techniques to identify and 

remedy a particular disease or part of the body. The imaging techniques are chosen 

with respect to both the patient and the imaging method. The main goal of imaging 

systems, as related to the physics of their modality, is to produce accurate and useful 

images. To understand the key concepts, the following issues, should be considered 

(Prince & Links, 2006): 

i) Medical imaging relies on noninvasive techniques to image body structure 

and function. 

ii) Each technique or method is a different imaging modality. 

iii) The main imaging modalities are projection radiography, computed 

tomography, nuclear medicine, ultrasound imaging, and magnetic resonance 

imaging. 

iv) The signal of interest is defined by the modality and specific imaging 

parameters.  

v) Radiologists are trained to look for specific patterns, defined by the 

modality, specific imaging parameters, and differences in the expected 

signals between normal and abnormal (diseased) tissues. 

  

     MRI is an imaging technique that can generate high quality images of the interior 

of the body. MRI is based on the principles of nuclear magnetic resonance (NMR), a 

spectroscopic technique used by scientists to obtain microscopic chemical and 

physical information about molecules. In the beginning, MRI is defined as a 

tomographic imaging technique due to obtaining an image in a thin slice through the 

human body. Later, MRI has further moved into becoming a volumetric technique 

(Hornak, n.d.).  
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2.1.1 What is an MRI Scan? 

 

     MRI uses energy of magnetic field, radio wave pulses, and a computer to produce 

the images of organs and structures inside the body. The distinction of MRI is to 

provide different information about the structures of the body. It differs from other 

imaging systems such as X-ray, ultrasound, and CT scan. Images of an MRI scan 

can be visualized on a computer monitor and registered into a CD.  

 

     The MRI scanner is a unit which has a cylindrical shape surrounded by a circular 

magnet. The patient lies on a moveable examination bed that can slide into the 

magnet of the unit. The magnet creates a strong magnetic field that aligns the 

protons of hydrogen atoms, which are then exposed to a beam of radio waves. This 

spins the various protons of the body causing them to produce a faint signal that is 

detected by the receiver portion of the MRI scanner. The received information is 

processed by a computer and an image is produced. The magnetic field is produced 

by passing an electric current through wire coils in most MRI units. Figure 2.1 

shows an MRI system with magnetic field lines (McRobbie, Moore, Graves, & 

Prince, 2003). 

 

 

Figure 2.1 Extent of the 0.5 mTesla (mT) fringe field around a 1.5 Tesla (T); (Courtesy of Philips 

Medical Systems). 
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     Other coils, located in the machine, and in some cases, placed around the part of 

the body being imaged, send and receive radio waves, producing signals that are 

detected by the coils. A computer then processes the signals and generates a series 

of images, each of which shows a thin slice of the body. The images can then be 

studied from different angles by an interpreting radiologist. Frequently, the 

differentiation of abnormal (diseased) tissue from normal tissues is better with MRI 

than with other imaging modalities such as X-ray, CT, and ultrasound (Magnetic 

Resonance Imaging (MRI) - Body, 2013).  

 

2.2 MRI Sequences 

      

     The tissues of the body can be classified roughly by considering their basic 

appearances: 

 

i. Fluids – cerebrospinal fluid (CSF), synovial fluid, oedema, 

ii. Water-based tissues – muscle, brain, cartilage, cardiac muscle, 

iii. Fat-based tissues – fat, bone marrow. 

 

     The variation of the tissues causes a variation in signal intensities. As a result, this 

variation affects the brightness and contrast of MR images. These differences allow 

us to realize the boundaries between tissues. As an example, if a tumor is bright and 

the brain has darker grey-levels, then the tumor can be detected easily. By adjusting 

the timing of the sequences and utilizing dissimilar imaging techniques, MR images 

can be obtained with a large range in terms of contrast. Having a lighter grey-level 

for tumor is not related with changing the look up table (LUT) which adjusts 

brightness or darkness. Tumor could have darker grey levels thanks to the MRI 

structure. Figure 2.2 shows a tumor in a human brain (McRobbie et al., 2003). 
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Figure 2.2 (a) Coronal image of the brain showing a tumor. In this image, the tumor is bright against 

the darker grey of the normal brain tissue. (b) The same slice with a different pulse sequence, this time 

showing the tumor darker than the surrounding brain tissue. 

 

     All MR images are produced using a pulse sequence, which is stored in the 

scanner computer. The sequence contains radiofrequency (RF) pulses and gradient 

pulses which have carefully controlled durations and timing (McRobbie et al., 

2003). In addition to the importance of the radiofrequency and gradient pulses, the 

essential components for any imaging sequences are (Hoa, n.d.): 

 

i. An RF excitation pulse, required for the phenomenon of magnetic resonance. 

ii. Gradients for spatial encoding (2-D or 3-D), whose arrangement will 

determine how the frequency domain is filled. 

iii. A signal reading, combining one or a number of echo types (spin echo, 

gradient echo, Hahn echo, stimulated echo, etc.) determining the type of 

contrast. 

 

     Finally, the user must choose the following sequence parameters; Time of 

Repetition (shortly TR, the time between successive 90
0 

pulses), Time of Echo 

(shortly TE, the time from the 90
0
 pulse to the echo), flip angle, turbo factor, and 

field of view matrix to find the best compromise between contrast, spatial resolution, 

and speed.  
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2.2.1 MRI Sequences Process 

 

     MRI is based on natural magnetization that is induced in the human body when it 

is placed in the scanner. The strength of the magnetization depends on the proton 

density of the tissues. When a scanning sequence starts, the magnetization is knocked 

out of the alignment by one of the RF pulses and into the 𝑥 – 𝑦 or transverse plane. It 

creates a signal that can be manipulated by the rest of the gradient and RF pulses in 

the sequence. After the RF pulse, the magnetization goes back to its equilibrium 

position along the 𝑧 plane. The relaxation of the RF pulses is seen in Figure 2.3 

(McRobbie et al., 2003). 

 

 

Figure 2.3 The basics of MRI (a) The tissues have different proton densities and 90º pulse is applied. 

(b) A 90º pulse knocks both magnetizations into the transverse plane where they create a signal. (c) 

After some time signal has decayed to zero while Mz recovers. (d) When the second 90º pulse is 

applied after time TR, reduced signals are rotated into the transverse plane. (e) After another TR, both 

Mz have recovered to the same height as before. (f) The third 90º pulse creates the same T1-weighted 

signal in the transverse plane. 
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2.2.2 Classification of MRI Sequences 

 

     There are two main sequence families, depending on the type of echo recorded. 

The spin echo is the most common sequence that is characterized by the presence of 

the type of 180
0 

rephrasing RF pulse. The other one is the gradient echo which starts 

with a smaller RF pulse producing a flip angle (less than 90
0
). Figure 2.4 illustrates 

the other sequences that belong to these two families (Hoa, n.d.). 

 

 

Figure 2.4 The classification of echoes. 

 

The rest of this section introduces the MRI sequences (i.e. T2-SPIR, T1-DUAL, 

T1-WATS, and THRIVE) used in this study. Here, it is worth to point out that the 

names of the sequences are vendor dependent and in this thesis they are based on 

Philips abbreviations. 

 

SPIR is the abbreviation for “Spectral Pre-saturation Inversion Recovery”. It is 

used as a hybrid imaging sequence. The SPIR sequence uses a T2-weighted contrast 

mechanism for imaging. It relies on selective suppression of fat protons (Westbrook 
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& Kaut, 1998). The pre-saturation pulse is applied separately to each slice selection 

gradient. This sequence requires sensitive adjustment of calibration and a very 

homogenous magnetic field. The above mentioned features of SPIR makes it a 

preferred sequence to study liver, because the liver parenchyma can be analyzed very 

well with suppression of the fat content inside the parenchyma. Especially, mass 

lesions belonging to parenchyma are more visible in this sequence. Due to being T2-

weighted, it is possible to navigate the vessels within liver since they appear hyper-

intense. The liver border appearance gets visually clearer, because of the suppression 

of the fat tissue around the liver. The adjacent abdominal organs and tissues such as 

gall bladder, duodenum contents, pancreas, and the right kidney become more 

separable from the liver with their high-valued signal intensity. One more important 

contribution of the SPIR sequence is its low sensitivity to patient or respiratory 

motions. This feature provides minimization of the artifacts that adversely affect 

image quality. Figure 2.5 shows some sample images in a T2-SPIR sequence.  

 

 

Figure 2.5 Different image slices of T2-SPIR sequence 

 

T1-DUAL (in-phase and out-phase) is a fat suppression sequence, which uses the 

time differences in the 𝑧-axis recoveries of fat and water protons. The signal is 

acquired twice: first, when water and fat protons are in phase; and second, when they 

are out of phase (while excited protons are returning to their first position). For 1.5 T 

devices, the in-phase time, with water and fat protons in the same direction, is 4.6 ms 

and the out-phase time, with fat and water protons in the opposite directions, is 2.3 

ms. By determining TE value with this information, fat suppression is accomplished 

by subtracting corresponding frequencies of fat and water signals. This sequence is 

very useful to understand the fat content in lesions. Since T1-DUAL is a T1-

weighted sequence, it is very effective to identify blood and tissues that are rich in 
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protein. This sequence also helps in determining the level of liver lubrication. In out-

phase images, the borders of the organs appear to be black, due to the sudden change 

in the amount of fat and water at the organ boundaries that cancel the acquired 

signal. This property of T1-DUAL is sometimes used for border delineation 

algorithms (Kellberg, Karlsson, Stokland, Svensson, & Dahlgren, 2010). Figure 2.6 

shows some sample images in a T1-DUAL sequence. 

 

 

Figure 2.6 Different image slices of T1-DUAL sequence 

 

SSH refers to single shot imaging. It is a quite useful sequence for the abdominal 

analysis, which is affected by the motion caused by vessels, intestinal gas, and 

diaphragm. By using this sequence, steady liquids can be studied very well, which 

allows analysis of biliary tracts. Figure 2.7 shows some sample images in an SSH 

sequence. 

 

 

Figure 2.7 Different image slices of SSH sequence 

 

THRIVE is a fast imaging sequence that is obtained by scanning the liver 

consecutively in a short time with thin slices to obtain the response of a known lesion 

to a contrast agent. THRIVE provides observation of the signal increase originating 

from the contrast agent instead of image quality. Figure 2.8 shows some sample 

images in a THRIVE sequence. 
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Figure 2.8 Different image slices of THRIVE sequence 

 

2.3 Slice Thickness and Spacing 

 

   Slice thickness helps in obtaining high resolution and detailed images. By 

increasing the slice thickness, the energy of the noise decreases, but also the spatial 

resolution is reduced. Based on the changes in spatial resolution, the discernability of 

the tissues in the image series can be increased. This depends on a good coordination 

between slice thickness and spatial resolution. Slice thickness is one of the crucial 

factors for volumetric segmentation. Although it seems that small slice thickness is 

better for volume segmentation, it is known that this is not always the case 

(Hermoye, 2004). 

 

     Spacing or slice gap is the space between adjacent slices as measured in 

millimeters. It allows the technologist to control the size of the imaging volume by 

increasing and decreasing the space in between slices. Spacing provides a method to 

compensate for the imperfect radio frequency excitation pulse. Slice gap is the 

separation between two slices. It equals the difference between the slice thickness 

and slice interval (Westbrook, 2008). 

 

2.4 Datasets  

 

     The analyses in this thesis work are applied to several MRI series, which are 

obtained at the Radiology Department of Dokuz Eylül University. The datasets are 

acquired using a 1,5 T Philips MRI modality that produces 12 bit DICOM images 

each of which has a resolution of 256 x 256. The datasets were retrospectively 

collected from the Picture Archiving and Communication System of the same 
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department. Five different MRI sequences (i.e. T1-DUAL (in-phase), T2-SPIR, 

THRIVE, T1-WATS, SSH) are used to test our proposed method. As described 

before, each of these sequences are used to scan the same part of the body. They are 

obtained from different combinations of radiofrequency pulses and gradients (Brown 

& Semelka, 1999; Westbrook, 2002). 

 

     In this study, 21 MRI datasets, which are obtained from 21 different patients, are 

used. The details about the characteristics of these datasets are given in Table 2.1. 

Four different sequences are acquired for each patient except one, who has 3 

different sequences. While T2-SPIR, SSH, and T1-DUAL sequences are common for 

all 21 patients, 20 patients have either THRIVE (i.e. 7) or T1-WATS (i.e. 13) 

sequences. For T2-SPIR, which is common for all 21 patients, slice thickness value 

changes between 7.7 mm and 9 mm and has an average value of 8.6 mm. Moreover, 

the 𝑥-𝑦 spacing in this sequence changes between 1.36 mm and 1.89 mm with an 

average of 1.53 mm. The number of slices for T2-SPIR sequence is 26 as minimum, 

36 as maximum, and 30 as average. On the other hand, T1-DUAL sequences include 

two different series mentioned above.  Each series has the same 𝑥-𝑦 spacing, slice 

thickness, and number of slices.  For T1-DUAL sequences, slice thickness has a 

value between 5.5 mm and 9 mm with an average of 7.84 mm. The 𝑥-𝑦 spacing 

value in this sequence is between 1.44 mm and 1.89 mm with an average value of 

1.61 mm. While the average number of slices is 32.8, the minimum number is 26 and 

the maximum number is 50. SHH sequence has a slice thickness between 5.5 mm 

and 9 mm with an average of 7.84 mm. For SSH sequences, 𝑥-𝑦 spacing changes 

between 1.34 mm and 1.82 mm with an average of 1.56 mm. While average number 

of slices is 32.2, it is 50 at most and 25 at least.  T1-WATS sequence, which is 

acquired for 13 patients, has a slice thickness value between 5.5 mm and 9 mm, just 

like T1-DUAL and SSH sequences, with an average of 7.9 mm. While 𝑥-𝑦 spacing 

in T1-WATS sequences changes between 1.36 mm and 1.67 mm, the average value 

of 𝑥-𝑦 spacing is 1.43 mm. Finally, THRIVE sequences, which only have 7 datasets, 

have differences compared to the other sequences. The slice thickness is smaller and 

does not change from patient to patient for THRIVE. All THRIVE series have 2.5 

mm slice thickness. Since the slice thickness is smaller, THRIVE sequence has more 



 

16 
 

number of slices in one series. Number of slices is 110 at most and 80 at least. 

Average number of slices is 92.9. For THRIVE, 𝑥-𝑦 spacing changes between 1.56 

mm and 1.97 mm with an average of 1.67 mm. Table 2.1 gives the list of the datasets 

and the MRI sequences which are used in this study. 

Table 2.1 The list of the datasets and the MRI sequences used in this study (mm). 

MRI 

Seq.
*
 

# of 

Datasets 

Slice Thickness x -y Spacing # of Slices 

Min Max Ave
* 

Min Max Ave Min Max Ave 

T2-SPIR 21 7.7 9 8.6 1.36 1.89 1.53 26 36 30 

T1-DUAL 21 5.5 9 7.84 1.44 1.89 1.61 26 50 32.8 

THRIVE 7 2.5 2.5 2.5 1.56 1.97 1.67 80 110 92.9 

T1-WATS 13 5.5 9 7.9 1.36 1.67 1.43 26 40 30.6 

SSH 21 5.5 9 8.1 1.34 1.82 1.56 25 50 32.2 

 

Ave
*
: Average  

Seq.
*
: Sequences 
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CHAPTER THREE  

 GENERATION OF ARBITRARILY ALIGNED  

VOLUME HISTOGRAM STACK (VHS) 

 

3.1 Anatomical Planes 

 

     In the field of human medicine, it often proves necessary to refer to the body in 

universally recognized ways. Anatomical planes are part of these standards, and are 

represented by imaginary cuts to section off anatomical portions. There are a number 

of different anatomical planes, each giving a unique look at the human body. Figure 

3.1 shows the planes of the human body. Figure 3.2 illustrates various images which 

are obtained from different anatomical planes. 

 

      

(a)                                                            (b) 

Figure 3.1 (a) Different anatomical planes of the human body, (b) imaging of different anatomical 

planes. 

 

3.1.1 Frontal (Coronal) Plane 

 

     One of the primary anatomical planes is known as the frontal plane. The frontal 

plane is represented by a vertical cut midway through the side of the body. To 
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visualize such a cut, one can imagine a vertical line passing through the middle of the 

side of the leg and continuing up and down the body. Using the frontal plane, doctors 

can separate the body into anterior or frontal, and posterior or rear portions. While 

this view provides a clear picture of the divide between front and rear, it gives no 

insight into the boundaries of the upper and lower portions of the body. 

 

3.1.2 Sagittal (Lateral) Plane 

 

     The lateral plane divides the body in a familiar fashion. Also called the sagittal 

plane, the lateral plane is seen as a vertical cut through the center of the body. Rather 

than being parallel to the surface of the chest, as the frontal plane is, the sagittal 

plane lies perpendicular to the chest. This allows the lateral plane to divide the body 

into both left and right regions. Again, though it provides a different perspective than 

the frontal plane, the sagittal plane gives no reference to the vertical positions of 

anatomical portions. 

 

 

Figure 3.2 General overview of the different planes (a) axial, (b) coronal, and (c) sagittal plane. 

 

3.1.3 Transverse (Axial) Plane 

 

     As mentioned previously, sagittal and frontal planes give no vertical reference 

points. Opposing these views of the body are transverse planes. Transverse planes 

are perpendicular to sagittal and frontal planes, representing horizontal cuts through 
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the body. The resulting upper and lower regions of the body can be useful for 

identifying the vertical positions of the relevant body parts. Of course, transverse 

cuts do not give consideration to horizontal positions, as sagittal and frontal cuts do. 

Figure 3.3 shows different slices from axial plane.   

 

   

Figure 3.3 Different slices from axial plane 

 

3.1.4 Oblique Planes 

 

     Though the types of planes previously described are the most common in medical 

practice, they do not represent the only planes used. Essentially, any plane not falling 

into the category of sagittal, frontal, or transverse can be thought of as an oblique 

plane. Oblique planes, therefore, are the amalgamation of multiple plane types. As a 

result, oblique planes can often give the most accurate vertical and lateral positions 

of the body parts in question. It should be noted that oblique planes are not at right 

angles to the body. 

 

     As often as they are used in medical applications, anatomical planes prove their 

worth every day. Frontal planes provide views of the anterior and posterior portions 

of the body, while sagittal planes provide divisions between sides of the body. Using 

a horizontal cut, transverse planes divide the body into upper and lower portions. 

However, neither horizontal nor vertical cuts can fully describe the position of body 

parts, hence both are equally important. Oblique planes provide a compromise 

between both types of cuts, and with knowledge of all planes described above, 

anatomical positions can be accurately described as in Figure 3.4. 
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Figure 3.4 Oblique plane selection obtained from other planes 

 

3.2 Developed Graphical User Interface (GUI) 

 

     Developed multi-planar reconstruction (MPR) software generates new 

reconstructed images using user inserted planes which are defined by the operator 

through a graphical user interface (GUI). The original pixel data from the series of 

slice images (original images) is assigned to a virtual voxel that is reconstructed 

according to the user inserted plane. The resulting images have the same slice 

thickness as the original image series. This provides a new volume of data that can 

represent the object of interest in a more focused way. To create the pixel values for 

the reconstructed image, volumetric information is used. When the dimensions of the 

scanned voxels (as set by slice thickness and in-plane resolution) are equal, the 

dataset is said to be isotropic. If the dimensions of the scanned voxel are not equal in 

all three planes, the dataset is said to be anisotropic. Isotropic data yields the best 

reconstructions.  

 

     In MRI data, using MPR images provides a wide perspective to the anatomy. 

They help in understanding and displaying tissues which are not well seen in the 

original images. MPR software typically uses an interactive GUI that allows the user 

to prescribe the reconstruction planes and parameters from simple reconstructed 

images, in a manner analogous to scanning the real patient. The user can select the 

orientation and thickness of the plane (typically equal or greater than the base scan 

thickness), and can indicate the number, location, and separation of reconstructed 

slices. Individual MPR programs have their own sets of rules and constraints for data 
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input, which can place limitations on the parameter choices in the original image 

series. Of greatest importance is the number of data points allowable 

(slices x number of rows x number of columns) which will, in the most part, be a 

function of computer memory. This limit is rarely reached, although it might be 

encountered in some sequence development applications.   

 

     The original scan data can be used to create images precisely aligned with 

anatomical planes and to create sets of slices with multiple orientations and slice 

thicknesses (at the same contrast weighting as the original scans). The MPR 

technique is an accessible tool that can replace or complement more conventional 

imaging approaches. 

 

     In MRI data, by using different anatomical reconstructions of various planes, 

MPR images provide a dynamic 3-D perspective of the organ of interest. Using a 

GUI for MPR imaging allows for the generation of multiple sequential sagittal and 

coronal images. Applying this reconstruction approach to MR abdomen images can 

shed light on a wide variety of pathological processes. The multi-planar MPR 

program can also expand the capacity of a radiologist to define a pathology.  

 

     In this thesis, this MPR approach is extended specifically for visualization of 

organs of abdomen (such as liver, spleen, right and left kidneys) by allowing the user 

to select a region by using an MPR GUI. In this thesis work, a new GUI is 

introduced. The aim of this GUI is to generate new images, which are re-generated 

based on the user inserted plane. This GUI supplies a new image series which is to be 

used together with a specialized algorithm.   

 

3.2.1 User Guide of the GUI 

      

    The first step of the GUI is to upload 8-bit and 16-bit axial MR images which 

belong to the upper abdomen. The first address path in the GUI shows the 

subdirectories of the original 8-bit data which is uploaded by the user. The second 

address path indicates 16-bit (DICOM) data. The reason for uploading both 8-bit and 
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16-bit original data is going to be explained in the next section. The last address path 

constitutes the binary images of four organs, which could be either liver, spleen, right 

kidney, or left kidney, as labeled by radiologists. The binary address path is indicated 

by the region of interest. If the organ of interest is determined as the liver, then the 

binary images of the liver must be uploaded to the GUI. The “Browse” button is 

clicked on to upload the respective addresses. After selecting the addresses, the 

“Open” button loads the related images to the related axes of the GUI as seen in 

Figure 3.5. 

 

 

Figure 3.5 Address selection of the GUI 

 

     Instead of using coronal or sagittal images which are obtained from other GUIs, 

we generate our own sagittal and coronal images using our own GUI. In the 

construction of the sagittal and coronal images from other GUIs, some interpolation 

techniques are utilized. This can cause some losses in the original data.  

 

     The first plot displays the axial images that are uploaded by the user. MRI images 

have a resolution of 256 x 256. They constitute a part of the body with a series of 2-

D images. These 2-D images are juxtaposed in the right order in order to construct a 

3-D VHS in the form of a 3-D volumetric matrix. The first and second parameters of 
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the 3-D matrix are the width and height of the 2-D images, respectively. The third 

parameter of the matrix indicates the number of slices. If the number of slices is 

assigned as 25, then the size of the 3-D matrix becomes 256 𝑥 256 𝑥 25.  

 

     The 3-D matrix is obtained by aligning the series in the right order. It can be 

easily obtained by using different images which belong to different planes. The 

important point is to change the matrix plane in the correct way. The coronal plane 

visualizes a cut as one can imagine a vertical line passing through the middle of the 

side of the leg and continuing up and down the body. This plane gives a frontal 

visualization of the organ of interest. In generating a coronal image, the first 

parameter becomes the number of slices and the other parameters constitute the size 

of the coronal image. Then, the size of the coronal image becomes 256 𝑥 25. The 

coronal image is displayed in the GUI in the second plot.  

 

     The third and last plane is the sagittal plane that cuts vertically through the center 

of the body. It allows a lateral plane to divide the body into both left and right 

regions. The second parameter of the 3-D matrix indicates the number of slices. The 

size of the sagittal images is 256 𝑥 25. Axial, coronal, and sagittal plane images are 

shown together in Figure 3.6. 

 

  

Figure 3.6 Axial, coronal, and sagittal plane images of the GUI 

 

     The sizes of the coronal and sagittal images are incompatible because of the 

difference in the width and height of images. To overcome this incompatibility, 

linear interpolation is applied to these images. We would like to stress that this 

interpolation is only used for the purpose of visualization. During processing, 
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original sizes are used to avoid any loss of original data. Each plot has its own sliders 

and by scrolling the sliders up and down individually, different slices are visualized. 

Each plot has its own pop-up menu on its left side and has its own “Select” and 

“Position” buttons at the bottom as seen in Figure 3.5.  

 

     The interaction mechanism enables the user to select an elliptical, a rectangular, 

or an arbitrary surface in any one of the three MPR constructions (i.e. axial, sagittal, 

and coronal planes). The area, which is selected by the user, is defined as the Region 

of Interest (ROI). The selection of the area should be consistent with the shape of the 

organ to be visualized. As an example, it can be stated that the geometrical structure 

of the kidney is circular. Therefore, applying a circular surface is more efficient than 

utilizing any other surface. As a second example, selecting a rectangular surface to 

construct MPR from liver is not logical. The main reason for this is the incompatible 

structure of the liver because liver is one of the largest organs in the abdominal 

region. Drawing a rectangle on the liver, which covers the liver at all slices, requires 

a rather large rectangular area. This means that instead of using a rectangular surface 

for the construction of liver, the information present on the left side of the body for 

the liver can be used.  

 

     By using this information in the selection of the cross section, an elliptical or a 

rectangular surface for kidneys is appropriate. Spline is suitable as a surface for large 

organs such as liver and spleen. The selection of the cross section constructs the 

width of the MPR image by using different methods. The height of the MPR image is 

defined by the user between the two left planes which are not selected during surface 

determination. Each pop-up menu includes line, ellipse, rectangle, and spline 

selections. 

  

I) Selecting a line for MPR construction: 

This step determines the height of the MPR image by using the “imline” 

command of the Image Processing Toolbox of MATLAB. The selection of the 

surface plane defines how the line must be used (vertical or horizontal)  in other 

planes. The height orientation is shown in Figure 3.7.  
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                        (a)                                        (b)                                                  (c) 

     

                      (d)                                                    (e)                                                       (f) 

Figure 3.7 Line selection with respect to selected surface plane. Surface selection is from axial plane.  

Line selection is in (a) coronal plane and (b) sagittal plane. Surface selection is from coronal plane. 

Line selection is in (c) axial plane and (d) sagittal plane. Surface selection is from sagittal plane. Line 

selection is in (e) axial plane and (f) coronal plane. 

 

II) Selecting an elliptical surface for MPR construction:  

This step determines the center and radius of the 3-D elliptical cylinder. The 

cylinder formula is given as 

  

                     
2 2

2 2
1

x y

a b
                                                  (3.1) 

 

where 𝑥 and 𝑦 are the coordinates of any point on the ellipse and 𝑎 and 𝑏 are the 

radii along the 𝑥 and 𝑦 axes, respectively.  

 

     2-D images are combined as a 3-D matrix and MPR images are obtained 

according to the drawn ellipse. To provide unity in terms of the sizes of the new 

images, long radius of the ellipse is chosen. The long radius indicates the width of 
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the new images. Then, using an MPR image, which is orthogonal to the MPR image 

used in the first step, the height of the cylinder is determined. Based on a defined 

thickness, new image slices, all of which have the same center position and size of (2 

x long radius x height), are generated. The angle resolution is defined as 100. Figure 

3.8 shows the construction of MPR image and Figure 3.9 shows ellipse selections in 

all planes.  

 
(a) 

  

               (b)                                                                            (c) 

Figure 3.8 (a) Reconstruction strategy inside the volume, (b) circular area selection from axial, (c) 

vertical height selection from sagittal (left kidney) 
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                           (a)                                                     (b)                                                 (c)  

Figure 3.9 Ellipse area selection from (a) axial, (b) coronal, and (c) sagittal plane 

 

III) Selecting a rectangular surface for MPR construction: 

 

     This step is similar to the ellipse selection. The only difference is to define a 

surface which is rectangular. This creates a 3-D rectangular prism instead of a 3-D 

cylinder. Then, using an MPR image, which is orthogonal to the MPR image used in 

the first step, the height of the prism is determined. To have compatibility in the 

construction, new image slices must be in the same size. Therefore, as a width 

parameter, the longer side of the rectangle is chosen. Finally, based on a defined 

thickness, new image slices, all of which have the same center position and size of (2 

x longer side x height), are generated. The angle resolution is defined as 100. Figure 

3.10 shows the construction of MPR image and Figure 3.11 shows rectangle 

selections in all planes.  

 

Figure 3.10 Reconstruction strategy inside the volume for rectangular area 
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                           (a)                                                     (b)                                                 (c)  

Figure 3.11 Rectangular area selection from (a) axial, (b) coronal, and (c) sagittal plane 

 

IV) Selecting an arbitrary surface by drawing a spline: 

 

     Spline algorithm is different from the other surface options. It is based on the 

“imfreehand” command of the Image Processing Toolbox of MATLAB. 

“imfreehand” starts the process of interactive placement of an arbitrary region of 

interest on the current plots. A freehand region of interest can be dragged 

interactively using the mouse and supports a context menu that controls aspects of its 

appearance and behavior. The first and last points of the spline must contain the 

pixels of the organ of interest in all images where the organ exists. The first and last 

points are known and spline is divided into certain intervals. The stepping of this 

interval is defined automatically. After drawing the spline, certain lines are created 

by the algorithm such that the midpoints of these lines pass through the specified 

points. These lines are perpendicular to the spline and all of them has the same 

default length as 100. The length of the lines is adjustable and can be controlled by 

the user. Figure 3.12 shows spline selections in all planes and Figure 3.13 shows 

MPR images with respect to all planes.  
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                                         (a)                                        (b)                                   (c) 

Figure 3.12 Spline selection on liver (a) axial plane, (b) coronal plane, (c) sagittal planes. 

 

(a)                                    (b) 

 

                                                                                   (c) 

Figure 3.13 MPR images which are obtained from (a) axial, (b) coronal, and (c) sagittal planes 

 

3.3 Computation of VHS 

 

     In CT datasets, the organs in the abdomen may have different gray value 

distributions due to environmental circumstances, injection of a contrast media, and 

certain modality parameters. Moreover, their location, orientation, and size may 

differ based on patient anatomy. Figure 3.14, Figure 3.15, and Figure 3.16 illustrate 

the gray levels and shape variations in abdominal organs. Although, there is a 

calibrated intensity scale in CT (i.e. Hounsfield Units – HU), the above mentioned 

diversity still exists. Moreover, volume rendering is not commonly used for MR 

datasets since there is no calibrated intensity scale. An MR dataset does not have a 

specific gray level range in contrast to a CT dataset, because MRI can easily be 
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affected by imaging artifacts. Many artifacts have a characteristic appearance and, 

with experience, they can be readily identified: MR hardware and room shielding, 

MR software, patient and physiologic motion, tissue heterogeneity, foreign bodies, 

Fourier transform and sampling (Gibbs artifact, zero-fill artifact, and aliasing artifact 

which occurs in the frequency domain). 

 

   

Figure 3.14 Gray levels and shape variations in the kidneys 

 

     

Figure 3.15 Gray levels and shape variations in the liver 

 

     

Figure 3.16 Gray levels and shape variations in the spleen 

      

     In the conventional approach, for both CT and MR datasets, the volume histogram 

is the main guide to find the tissues of interest. The characterization of the tissues 

would not be a crucial task if the tissues matched almost exactly with the visible 

peaks. Unfortunately this is not always the case. The peaks, which belong to the 

tissues, might be suppressed by more pronounced peaks of insignificant tissues. 

Especially in abdominal MR datasets, soft tissues and organs (i.e., liver, kidney, 
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spleen, aorta, muscle tissue, etc.) exist in a very narrow range of gray values. This 

makes working with MR datasets difficult in such regions as abdomen which is 

complicated. Besides, it renders the usage of the TF quite difficult for visualizing 

abdominal organs.  

 

     Medical datasets are formed by slices of the region of interest of the body. Thus, 

the typical appearance of an abdominal organ starts as a small object. By going 

forward through the slices, the organ appears larger. Around the middle of the image 

series, the organ of interest assumes its largest size. Then, the organ starts to look 

smaller again and slowly disappears in the continuing slices. It can be clearly stated 

that in the middle of the image series organs appear larger. At the beginning and end 

of the slices, organs look rather smaller. This causes a lobe-like histogram 

distribution for a tissue/organ which has usually a shape similar to a radially 

asymmetric (elliptical) Gaussian. The effect of having a lobe-like distribution is 

visible for most studies and cases, although not always. The four abdominal organs 

(liver, both kidneys, and spleen) successively appear and disappear in the image 

series. Also, they are large enough so that they can appear significantly in the dataset. 

This information can be exploited by using the 𝑧-dimension (orthogonal to the 

slices). Organs that are spatially separated in the 𝑧-dimension produce separate lobes. 

However, they produce intersecting lobes if they are spatially non-separated.  

 

     VHS is recently introduced in (Selver & Güzeliş, 2009) as a new domain which is 

created by aligning the histograms of the image slices of a CT/MR series. To 

generate a VHS, first, the histograms of the images in the dataset are calculated 

individually. Second, each histogram is aligned in the same order with images (i.e. 

from the first to the last). Ordering the histograms on the 𝑦-axis, which defines the 

number of slices, provides a 2-D histogram (i.e. VHS). In VHS, 𝑥  axis represents the 

gray levels, 𝑦 axis represents the number of slices, and 𝑧 axis shows the number of 

pixels. 

 

     Our GUI, which is introduced in the previous section, provides a new image 

series by using different anatomical planes. Our main goal in the GUI is to take 
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advantage of the visualization of the organ of interest in the right way. Traditional 

volume histograms include a lot of information which causes serious segmentation 

problems. Dealing with abdominal region and difficulties of MRI make the 

segmentation of the organ of interest challenging. The difficulty is caused by the 

similarity of the gray levels of the adjacent tissues and the complex structure of the 

abdominal region. Therefore, instead of the aligning the axial, coronal, or sagittal 

slice histograms, we align the histograms of the new images. Thanks to its desirable 

properties, VHS incorporates spatial domain knowledge with local distributions of 

the tissues and their intensities. Figure 3.17 shows the construction of a VHS.  

 

  
 

                                      (a)                                                                         (b) 

 

Figure 3.17 (a) Aligning the histograms of the image slices of an MR series, (b) an example of VHS. 

 

      

     The VHS data presents more information thanks to the usage of all slice 

histograms separately. Using all slice histograms creates an inter-slice spatial 

domain. This new domain demonstrates changes in the gray level values through the 

series of slices, thus includes information on local histogram distributions of the 

tissues of interest. The variability of the gray level is much more distinguishable than 

a volume histogram. The main reason for this diversity is exploitation of spatial 

information. The tissues which are at different slices but with similar gray level 

distributions can clearly be distinguished by using this spatial information. 
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     In this thesis, to improve the lobe like shape of an abdominal organ of interest, 

VHS is not calculated directly by MRI acquired image slices. Instead, a GUI is 

designed to provide a simple but effective interaction. 

 

3.3.1 The Interaction between the GUI and VHS 

 

     In Section 3.2, the construction of the MPR is expressed in detail. However, using 

the GUI is more beneficial for the segmentation process. Our main goal is to ease the 

segmentation of the tissue of interest from VHS. In this section, VHS tool of the GUI 

is introduced.  

 

     After indicating the parameters of MPR, new slices are obtained automatically. 

By clicking on “VHS” button, new images are constructed and saved in a folder 

which is in the same directory with MATLAB. After the registration process, VHS is 

obtained by using the new slices. It is already mentioned that the third address path 

belongs to the binary image labeled by radiologists. The purpose of using these 

images is to measure the accuracy of the algorithm. Binary images are composed of 

zeros and ones which represent the background and the organ of interest, 

respectively. To obtain a benchmark data, new slices are constructed with the help of 

the binary images. These new slices are constructed as MPR images with the 

difference that the background of these images are composed of zeros. Therefore, the 

VHS of these images forms the benchmark histogram for the algorithm since the 

unwanted components are eliminated by replacing the appropriate pixels with zeros. 

Figure 3.18 shows the MPR images and the new slices which generate the 

benchmark data. By clicking on “Real VHS” button, benchmark data is constructed 

by using the new slices. These slices are saved in a folder just as MPR is.  
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(a) 

 

(b) 

Figure 3.18 (a) MPR images obtained from the GUI, (b) the benchmark data of the reconstructed 

images  

 

     Figures 3.19 and 3.20 illustrate the GUI such that ellipse is selected from the axial 

plane and the height is selected from the coronal plane. Side and top views of the 

VHS are also seen. Figure 3.21 and 3.22 show that spline is selected from the axial 

plane and the height is selected from the coronal plane. 
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Figure 3.19 Ellipse is selected from the axial plane and the height is selected from the coronal plane 

 

 

Figure 3.20 Ellipse is selected from the axial plane and the height is selected from the coronal plane 

with a different VHS view 

 

     In the second row, the middle plot shows the new MPR images. The axial images 

are labeled by the radiologist. During the construction of the MPR image, the newly 

labeled images are generated and the boundary of the organ of interest is drawn with 

a red label. The button “Upload” sets newly labeled images. By scrolling sliders on 

the right, newly labeled images are displayed easily.  
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Figure 3.21 Spline is selected from the axial plane and the height is selected from the coronal plane 

 

 

Figure 3.22 Spline is selected from the axial plane and the height is selected from the coronal plane 

with a different VHS view 

      

     Such an approach enhances the histogram and increases the differentiability of the 

organ of interest via a thresholding operation. The threshold values can be 

determined by finding the valleys on the right and left sides of the lobe of interest. As 

seen in Figure 3.23, our desired VHS has a rotated and scaled Gaussian structure. It 
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can also be said, by considering the original data, that there is a valley between the 

desired histogram and the unwanted components.  

 

     Here, it should be noted that the gray value ranges for organs of interest have 

varying intensity values and characteristics even for the same organ in different MRI 

acquisitions. Therefore, a method should be developed to model the VHS and 

determine the two valleys so that upper and lower thresholds can be assigned 

correctly. We use DICOM image series, in order to supply large numbers of gray 

levels, which is necessary to obtain a compact desired histogram. 

 
           

 

       
                             (a)                                                                         (b) 

 

Figure 3.23 (a) VHS of MPR images which are obtained via splines, (b) desired histogram of the 

obtained MPR 
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CHAPTER FOUR  

 GAUSSIAN APPROXIMATION MODEL 

 

4.1 Gaussian Function 

 

     In scale space representations, Gaussian functions are used as smoothing kernels 

for generating multi-scale representations in computer vision (Chan & Vese, 2002) 

and image processing (Wink & Roerdink, 2004). Specifically, derivatives of 

Gaussians are used as a basis for defining various types of visual operations. 

Gaussian functions are also used to define certain types of artificial neural networks 

(Jain, Jianchang, & Mohiuddin, 1996). In signal processing, they serve to define 

Gaussian filters, such as in image processing where 2-D Gaussians are used for 

Gaussian blurs (Irani & Peleg, 1991). In digital signal processing, one uses a discrete 

Gaussian kernel which may be defined by sampling a continuous-time Gaussian 

function.  

     A one-dimensional Gaussian function is a curve of the form 

 

   𝑓(𝑥) = 𝐴𝑒
− 

(𝑥−𝜇𝑥)2

2𝜎𝑥
2                       (4.1) 

 

where the parameter 𝐴 represents the amplitude, 𝜇𝑥 is the position of the center of 

the peak, and 𝜎𝑥 controls the width of the curve.  

 

     In two dimensions, one can vary a Gaussian using more parameters. Not only may 

one vary a single width, but two separate widths. We can also rotate a 2-D Gaussian 

function. Thus, we can obtain both circular Gaussians and elliptical Gaussians, 

depending on the support regions which are either circles or ellipses. A particular 

example of a 2-D Gaussian function is defined as  

 

       𝑓(𝑥, 𝑦) = 𝐴𝑒
− [

(𝑥−𝜇𝑥)2

2𝜎𝑥
2  + 

(𝑦−𝜇𝑦)
2

2𝜎𝑦
2 ]

              (4.2) 
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where the coefficient 𝐴 is the amplitude, 𝜇𝑥 and 𝜇𝑦 are the centers, and 𝜎𝑥 and 𝜎𝑦 are 

the widths with respect to 𝑥 and 𝑦 axes, respectively. Figure 4.1 shows a 2-D 

Gaussian function with parameter values, 𝐴 = 1, 𝜇𝑥 = 0, 𝜇𝑦 = 0, 𝜎𝑥 = 𝜎𝑦 = 1.  

 

 

Figure 4.1 A 2-D Gaussian curve  

 

4.2 Approximation of VHS via Gaussian Functions 

 

     The gray values for organs of interest have varying intensity ranges and 

characteristics even for the same organ in different MRI acquisitions. However, by 

evaluating VHS with respect to different MR sequences, some common 

characteristic properties are observed in VHS. One of them is that VHS becomes 

narrower at the beginning or end slices and widens in the middle slices. It should be 

noted that the use of DICOM image series, which supply large numbers of gray 

levels, is necessary to obtain a compact desired histogram. The other important point 

is that the desired histogram should be distinguishable from the unwanted 

components/tissues. This distinction in VHS generates two valleys in both sides of 

the VHS. Figure 4.2 illustrates some resultant histograms, which are obtained using 

the developed GUI, along with their desired counterparts.  
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(a)                                                  (b)                                                (c) 

 

(d)                                                   (e)                                                (f) 

Figure 4.2 (a)-(c) Top view of resultant VHS of the GUI (d)-(f) Top view of their respective desired 

counterparts 

 

     The VHS should be modeled in order to determine the valleys in a robust manner. 

The selection of the lobes from the VHS requires an approximation to obtain the 

desired lobe. For modeling a VHS, some important issues must be taken into 

account. One of them is the non-smooth structure of VHS because of the intensity 

fluctuations of MRI. The second problem is the variability in the gray level range of 

the same organ among slices. In MRI imaging, an organ of interest might have a 

varying intensity range through the slices. The third problem is the slice thickness of 

the MRI data. This thickness causes a limited sampling in 𝑧-direction and results in a 

high inter-slice distance. 

 

The shape of the VHS is like a bell curve with a certain radius and intensity. In the 

center of the VHS, there exist a lot of pixels that create high amplitude bells, each of 

which is called a “lobe”.  Gaussian function is a good approximation for fitting the 

lobes of VHS. Besides, defining the VHS in terms of Gaussian functions provides an 

intuitive initial TF design employing the parameters of Gaussian function. 
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Representation of all the lobes in the VHS with Gaussian functions is a crucial step 

of the approximation process. As more lobes are fitted, a better approximation is 

obtained.  

 

     For fitting the lobes of the VHS, we utilize a special type of Gaussian function 

which is also known as 2-D Morlet wavelet function in the literature (Antoine & 

Murenzi, 1996). It is defined as 

 

                                        
1 2 21/2( )( , ) x yg x y e                                            (4.3) 

 

where   is called the elongation parameter. For 1  , modulus of ( , )g x y  is 

elongated along the x direction. In our calculations, we fixed the value of   as 15. 

By considering the general structure of the VHS, the above value of   is determined 

to be the most appropriate among other values.  

 

     For approximating the lobes of the VHS, rotation and axis scaling operations are 

applied to the elongated prototype Gaussian function in Equation 4.3. The applied 

rotation and axis scaling transformations can be defined together as 

 

                                       
' cos sin1

' sin cos

x x

y ya

 

 

    
    

    
                (4.4) 

 

where 'x  and 'y  are the rotated axes in the clockwise direction by  . The axes are 

scaled by the parameter, a , which directly affects the support region of the Gaussian 

function.  

 

4.2.1 Gaussian Parameters and Orientations 

 

     Various possible Gaussian basis functions can be created as a filter bank 

employing multiple orientation and scale values. As seen in Equation 4.4, variable 𝑎 

is the axis scaling parameter of the transformation. The rotation variable 𝜃 controls 
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the orientation and has a critical importance on finding the appropriate basis function 

that fits the corresponding lobe of the VHS. Figure 4.3 shows the top and side views 

of the Gaussian basis functions which have the same 𝑎 and 𝜀 parameters, but 

different 𝜃 parameter values. Figure 4.4 shows the filter bank of the Gaussian basis 

functions with respect to different scale and angle parameters.  

 

           

 (a)                                                  (b)                                                (c) 

 

 

                         (d)                                                   (e)                                                (f)  

Figure 4.3 2-D Gaussian functions with respect to different angles (a)-(c) Top view (d)-(f) Side view 
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Figure 4.4 Filterbank of Gaussian basis functions (each row corresponds to a certain scale and each 

column corresponds to a certain orientation) 

 

Using Equation 4.4, a rotated and axis scaled Gaussian basis function can be 

expressed with respect to given 𝑎, 𝜃, and 𝜀 parameters as follows; 

                      
1 2 2 2 21/2( ( ( 'cos 'sin ) ) ( 'sin 'cos ) )

, ( ', ') a x y a x y

ag x y e     


     .   (4.5) 

Note that the prototype Gaussian function in Equation 4.3 corresponds to the special 

case of 
1,0 ( , )g x y  which consists of no axis scaling and no rotation.  

 

     It has been already mentioned that VHS structure can be approximated by 

Gaussian basis functions. Therefore, using fixed scale and/or rotation parameters in 

the approximation causes losses in determining small or suppressed lobes in data. 

Especially, fitting only the major lobes results with losses in the beginning/end slices 

and fitting only the minor lobes causes over-fitting to the unwanted components. 

These drawbacks should be taken into careful consideration and an optimal set of 

parameters that would be useful for both major and minor lobes, which contain 

detailed information about the organ of interest, should be used.  
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     In this study, by considering the above mentioned criteria, a hierarchical and 

multi-scale modeling is proposed. In an iterative manner, the proposed model tries to 

find the best Gaussian basis to fit the corresponding lobe of the VHS. The developed 

algorithm provides a procedure for capturing all suppressed lobes of importance in a 

successive manner by associating the lobes with a suitable number of Gaussian basis 

functions. 

 

     Using different scales provides the user with the convenience of expressing 

different lobes in the right way. However, the characteristics of VHS demonstrate 

that lobes can have curvy structures. The best approximation for these curvy parts is 

to integrate the rotation parameter to the algorithm as an extra degree of freedom. For 

a fixed scale parameter, the best rotation parameter is determined through the 

calculation of correlation between the Gaussian basis functions and VHS. Correlation 

can be calculated in an easier way in the frequency domain by multiplying the 

Fourier transform of the VHS by the conjugate of the Fourier transform of the 

Gaussian basis function.  

 

     Let us denote our final approximated VHS as ( , )VHS x y  which is formed by 

combining all approximating Gaussian basis functions in an additive manner. 

However, before combining the suitable Gaussian basis functions, the best rotation 

angle among all possible choices of angles must be determined in an iterative 

manner. Here, each iteration corresponds to a different scale. Iterations start from the 

largest scale value and continue until the smallest scale value in a hierarchical 

manner. In our simulations, we used 8 different scale values. Thus, denoting the 

number of iterations by 𝑁, we have 𝑁 = 8. For each scale, 𝜃 is varied from 0 up to a 

maximum of 170 degrees with an increment of 10 degrees. Thus, 𝜃 = {0,10, … ,170} 

defines the vector of rotations. Denoting the length of the vector, 𝜃, by M , we have 

18M  . .Corr  is defined as the 2-D correlation operation between Gaussian basis 

function, , ( ', ')
i jag x y , and the VHS which is represented by ( , )VHS x y . For a 

fixed scale, the correlation is calculated for different rotations as: 
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                              , Corr ( ', '), ( , )
i jj aCorr g x y VHS x y                          (4.6) 

 

In Equation 4.7, we represent the best rotation angle as ̂  which corresponds to the 

maximum correlation between VHS and Gaussian basis functions.  

 

                                 ,
1

ˆ=arg max ( ', '), ( , )
i j

j

M

a
j

Corr g x y VHS x y





                (4.7) 

We can express our approximated ( , )VHS x y  as a weighted summation of the rotated 

and axis scaled Gaussian basis functions, , ( ', ')
i jag x y .  

                                ,

1 1

( , ) ( ', ')
i j

N M

j a

i j

VHS x y w g x y
 

                         (4.8) 

 

 where 
1 ;    max correlation for scale  among all possible  angles

0 ;   for the rest of the  angles 

i j

j

j

a
w






 


 

 

4.2.2 Implementation of Gaussian Approximation Model 

 

     The model associated with each feature includes a large number of intrinsic 

parameters (gray level intensities, position and orientation of the feature etc.). 

Having the approximation model that suitably describes our features of interest; we 

are now interested in applying this model to our data. Our problem is to find the best 

parameters that characterize the model and to make it fit as well as possible to the 

data at hand. Our approach provides a multi-scale procedure for capturing all lobes 

of the data.  

 

     It has already been noted that an MR series (such as T1-DUAL, T1-WATS, T2-

SPIR, except the THRIVE sequence) consist of approximately 25 images. By 

considering the gray levels of DICOM images, maximum value reaches up to 1600 

gray levels. Thus, VHS becomes a matrix whose width is 25 and height is 1600. 
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There is an incompatibility between the dimensions of the VHS. To overcome this 

incompatibility, simple linear interpolation is applied to the width of the VHS.  

 

     Our hierarchical multi-scale method decreases the scale of the approximating 

Gaussian basis functions at each iteration of the proposed algorithm. It is expected 

and aimed that first the larger lobes of the VHS are detected. However, a large scale 

Gaussian basis function also requires a larger support region. At each iteration, in 

parallel to the decrease of the scale, the support regions of the Gaussian basis 

functions also decrease proportionally. On the other hand, the DICOM images used 

in the study are 16-bit images causing a variation in the maximum gray level from 

256 up to 65536. This means that using a fixed support region is not suitable for all 

scales. Instead, different gray level value ranges or different dynamic ranges require 

different scales and support regions. By evaluating the dataset of each sequence used 

in this study, the gray level ranges are defined as follows: 

 

                                       1400 ≤ 𝑥 ≤ 1800     ⟹        𝑥 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛 1  

              1000 ≤ 𝑥 < 1400     ⟹         𝑥 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛 2 

                700 ≤ 𝑥 < 1000     ⟹         𝑥 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛 3 

                 400 ≤ 𝑥 < 700      ⟹         𝑥 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛 4 

     

     It is not suitable to fit Gaussian basis functions having the same scale parameter 

for different regions defined above. Therefore, for each separate region, the scale set 

is multiplied by a constant associated with the corresponding region. The support 

region of the Gaussian basis function is always less than the size of the VHS. 

Therefore, a matrix, which has the same size with the VHS, is constructed and the 

Gaussian function is placed in the middle of that matrix. Then, VHS and Gaussian 

function are transferred to the frequency domain using the Fourier transform. It is 

known that multiplying the Fourier transform of the image by the conjugate of the 

Fourier transform of Gaussian basis function in the frequency domain corresponds to 

correlation. Normalizing and getting the absolute value of the result give the 

normalized absolute correlation between the Gaussian basis function and the VHS.   
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     In the main algorithm, what is important is to find the maximum point of the VHS 

corresponding to a major lobe in the original data. However, the found maximum 

point may not define the major lobe of the VHS. To overcome this problem, when 

the Gaussian basis function is fitted to the VHS, it is checked whether the support 

region of the Gaussian basis function exceeds the border of the VHS. If the 

exceeding of the border of VHS occurs then the same algorithm is applied to the 

second maximum point of the VHS. This procedure repeats itself until all maximum 

points, which do not exceed the borders of the VHS data, are found.   

 

     After finding an appropriate maximum point or points, correlation results, which 

have already been calculated with respect to different rotations, are used to 

approximate the VHS. Based on the maximum point, the approximating Gaussian 

basis function is determined according to the correlation values among different 

rotations. At each scale, the support region of the approximating Gaussian basis 

function in VHS data is obtained. The values of the VHS corresponding to the 

support region of the Gaussian basis function are added. This summation defines the 

criterion for fitting more than one Gaussian basis functions in the same scale.  After 

finding the appropriate Gaussian basis function, the approximated Gaussian is 

removed from the VHS data. As removing operation, we set 0 to the VHS data where 

the support region of the approximating Gaussian basis function exists. In Equation 

4.9 below the residual data is defined as ( , )r x y ; 

 

                                     ˆ,
 ( , ) ( , ) - ( ', ')

ia
r x y VHS x y g x y


                           (4.9) 

 

     Until this step only one Gaussian basis function defines the original data. There is 

an 80% criterion for fitting multiple Gaussian functionsduring the same scale. For 

obtaining the support region of the Gaussian function, we define an operation called 

 SupReg ,
n nx y  . 

nx  and 
ny correspond to the mean values of the Gaussian basis 

function which is compared with the first Gaussian basis function. The mean values 

of the Gaussian define where the Gaussian is fitted in the VHS data. And also, by 

knowing the mean values, the support region of the Gaussian can be calculated and 
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compared with the first Gaussian basis function. The support region operation is 

defined as; 

                                , ˆ

1;    0.05
SupReg ,

0;    otherwise

ai
g

x y



 

  
  
  

                         (4.10) 

 

For representing summation operation we simply define the operation  sum which 

adds all the values in a matrix or vector. 

 

     The correlation operation is repeated again but this time the input becomes the 

residual data ( , )r x y  instead of ( , )VHS x y . Other Gaussian basis functions are 

obtained after they are compared with the given criterion. The Gaussian basis 

functions which comply with the given criterion are fitted to the VHS. If there is no 

Gaussians satisfying the criterion, then it can be stated that there is only one fitting 

Gaussian basis function at that particular scale. This criterion provides the user with 

the convenience of fitting more than one Gaussian functions in the same scale in 

order to express the lobes of the VHS whose heights are almost the same. The 

following pseudo code in the next page shows the iterative and hierarchical nature of 

the algorithm by paying attention to the approximation criteria with respect to 

different scale and rotation parameters. 

 

     Our developed approach provides a multi-step procedure for capturing all 

suppressed lobes of importance in a successive manner by associating the lobes with 

appropriate number of Gaussian bases. At each iteration, the position and the angle 

of each Gaussian function is extracted. This means that these functions express the 

VHS data in an approximate fashion. After fitting Gaussian functions, the lobes 

which correspond to these functions, are set to zero. The next approximation 

considers the residual VHS found at the previous iteration as the new function to be 

approximated and the number of Gaussians and their parameters are calculated now 

for that residual. 
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     At each scale, more than one Gaussian function can be found to approximate the 

VHS data. Our main approach is first to catch the major lobes and then the minor 

lobes. Therefore, the scale parameter has its maximum value at the first iteration and 

starts to decrease as the iteration number increases. All Gaussian functions are 

combined in one matrix and thus the final approximation is obtained. Figure 4.5 

shows the approximation procedure step by step and the resultant final 

approximation.  
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     To approximate the VHS, this procedure continues for 8 iterations by default, 

since it is observed in the simulations that 8 iterations are sufficient in most cases. Of 

course, it can be further iterated if the generated Gaussian basis functions are not 

considered enough to construct an appropriate TF by the user and until a satisfactory 

number of units is obtained. The advantage of this coarse-to-fine fitting 

approximation is that it can be stopped at the desired level of accuracy without 

having to deal with any further fine details. 

 
 

 

   
                            (a)                                                  (b)                                                  (c) 

 

                            (d)                                                  (e)                                                (f) 

 

                            (g)                                                  (h)                                                (i)       

Figure 4.5 Each labeled part of (a-h) represents the residual correlation between VHS and the 

Gaussian kernel in different scales after fitting with an appropriate filter size and angle. (i) Final 

approximation with all Gaussian functions 
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4.2.3 The Thresholding Process 

 

     After approximating the VHS, a method should be used to threshold the 

approximated VHS by determining the two valleys so that upper and lower 

thresholds can be determined correctly. Our main goal is to determine the two 

threshold values which correspond to the valleys at the left and right sides of the 

corresponding lobe of the organ of interest. As stated before, the main idea behind 

the Gaussian modeling is to find the basis functions that best fit the desired lobes and 

then to determine a threshold range to express the region of interest in the VHS. 

Thus, after the Gaussian fitting step, as seen in Figure 4.5, the gray levels which 

belong to the organ of interest are grouped together as shown in Figure 4.6 (a). The 

center of the group is indicated by the mean of the gray levels, which are obtained 

via points through which the spline passes. The points, at which the tail of each 

Gaussian becomes zero, indicate the threshold range. As seen in Figure 4.6 (b), a 

varying threshold range can be obtained using the Gaussian bases which are found by 

the multi-scale hierarchical model. The flowchart of the proposed method is given in 

Figure 4.7. 

 

   

                                           (a)                                                                              (b) 

Figure 4.6 (a) The resultant approximating Gaussian functions (b) Top view of the resultant 

approximation of Gaussian functions with a varying threshold range represented by red lines 
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Figure 4.7 The flowchart of the Gaussian modeling process. 

 

4.2.4 Morphological Operations 

 

     Morphological operations in image processing are a collection of non-linear 

operations related to the shape or morphology of features in an image. Morphological 

operations rely only on the relative ordering of pixel values, not on their numerical 

values, and therefore are especially suited to the processing of binary images. 

Morphological operations can also be applied to grayscale images whose light 

transfer functions are unknown and therefore their absolute pixel values are of no or 

minor interest. 

 

     Morphological techniques probe an image with a small shape or template called 

a structuring element. The structuring element is positioned at all possible locations 
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in the image and compared with the corresponding neighborhood of pixels. Some 

operations test whether the element “fits” within the neighborhood, while others test 

whether it “hits” or intersects the neighborhood as seen in Figure 4.8 (Efford, 2000). 

 

Figure 4.8 Implementation of the structuring element in an image 

The structuring element is a small binary image, i.e. a small matrix of pixels, each 

with a value of zero or one: 

 

 The matrix dimensions specify the size of the structuring element. 

 The pattern of ones and zeros specifies the shape of the structuring element. 

 An origin of the structuring element is usually one of its pixels, although 

generally the origin can be outside the structuring element. 

 

4.2.4.1 Implementation of the Morphological Operations 

 

     One of the most challenging problems following approximation is that adjacent 

organs and tissues have quite similar gray level intensities with the liver. To 

overcome this problem, we decided to apply morphological operations to our dataset. 

Erosion, largest connected component, and dilation are utilized as morphological 

operations, respectively. Dilation adds pixels to the boundaries of objects in an 

image, while erosion removes pixels on object boundaries. The number of pixels 

added or removed in an image depends on the size and shape of the structuring 

element used to process the image. In the morphological dilation and erosion 

operations, the state of any given pixel in the resultant image is determined by 
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applying a rule to the corresponding pixel and its neighbors in the input image. The 

rule used to process the pixels defines the operation as dilation or erosion.  

 

     Indicating the order of morphological operations is a significant and critical step in 

morphology. The main reason of the importance of this ordering is that erosion and 

dilation operators could have some drawbacks when applied in an incorrect order. 

Considering our problem, which is gray level similarity between liver and adjacent 

organs such as kidney, the first operation is the erosion to break the connection 

between the lower part of the liver and the right kidney and between the upper part of 

the liver and the heart and/or any other tissue which have connections. At the first 

step, connections between the liver and any other tissue are broken. Each 

disconnection creates separate components from one combined component. The 

second step is finding the largest connected component in the image slice. In the 

middle slices of the dataset liver becomes the largest organ but in the 

beginning/ending slices the liver becomes smaller. Thus, applying 3-D largest 

connected component to the dataset is the best way to keep the liver as the largest 

organ in the dataset. The last step is the dilation step to get back the pixels of the 

liver which might have been lost during erosion operation.  

 

     Before these operations, determining the appropriate structuring element is one of 

the most crucial steps of the morphological operation. During determination of the 

appropriate structuring element, the smooth and oval structure of the liver should be 

taken into account. In light of this information and considering the shape of the liver, 

two structuring elements are defined. The first structuring element is a line whose 

length is 5 pixels and angle is 450 degrees from the horizontal axis. The second 

structuring element is a 3-D function of ln 𝑥 as shown in Figure 4.9. 
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Figure 4.9 3-D structuring element as observed from different angles 

 

     During the erosion step, the 2-D structuring element is applied to each 2-D image 

slice of the dataset. However, the 3-D structuring element is only applied to the 

lower part of the 3-D dataset to break the connections between the liver and the right 

kidney. Applying the 3-D ln 𝑥 function to the whole data causes large pixel losses in 

the dataset. During dilation step, the lower part of the dataset is dilated using 3-D 

ln 𝑥 function after the 2-D image slices of the dataset are dilated with a 2-D 

structuring element.  

 

4.2.5 Region Growing 

 

          Region growing is a simple region-based image segmentation method. It is 

also classified as a pixel-based image segmentation method since it involves the 

selection of initial seed points. This approach to segmentation examines neighboring 

pixels of initial seed points and determines whether the pixel neighbors should be 

added to the region. 

 

     After performing morphological operations, the pixels which belong to liver in 

each 2-D image slice of the dataset are defined as the initial seed points of the region 

growing segmentation method. The initial seed points might vary for each image 

slice in the same dataset. The region growing starts from a seed point by comparing 

it with neighboring pixels. Region grows starting from the seed pixel by adding the 

neighboring pixels that are similar, increasing the size of the region. Therefore, if 

http://en.wikipedia.org/w/index.php?title=Seed_point&action=edit&redlink=1
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neighboring pixels have similarity in grey level with the liver then the region keeps 

growing and it might exceed the boundaries of the liver. To overcome this problem, 

the pixels of the liver which express the information of the liver boundary are 

discarded from the seed point cluster.  
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CHAPTER FIVE  

 APPLICATION AND RESULTS 

 

     During the fitting of the Gaussian functions to the lobes of VHS, non-smooth 

characteristic structure of VHS and the difficulty of working with MRI must be taken 

into account. One of those difficulties is the irregular rising and falling of intensity in 

MR imaging preventing smoothness. The second problem is the variation of gray 

levels for the same organ among different sequences. Due to this fact, gray levels 

cannot be restricted to a certain range. Thus, the intensity range of the organ of 

interest can have completely different gray levels for different sequences. The third 

problem is the slice thickness of MRI dataset that causes a limited sampling in 𝑧-

direction and results in a high inter-slice distance.   

 

      Our segmentation results are evaluated using the average error rate (AER) (Seo, 

Ludeman, Park, & Park, 2004). AER is defined as the area difference between the 

region segmented by the algorithm (𝑅𝐴) and the region segmented manually (𝑅𝑀). 

Defining a union region 𝑅𝑈 as 𝑅𝐴 ∪ 𝑅𝑀 and an intersection region 𝑅𝐼 as 𝑅𝐴 ∩ 𝑅𝑀, 

volumetric overlap error (𝑉𝑂𝐸) is given in Equation 5.1. AER is similar to 𝑉𝑂𝐸 

criterion which is used in (Ginneken, Heimann, & Styner, 2007). In the evaluation, 0 

value of 𝑉𝑂𝐸 indicates perfect segmentation, with no limitation for any upper bound 

for the 𝑉𝑂𝐸 value.  

 

               𝑉𝑂𝐸 =
𝑅𝑈−𝑅𝐼

𝑅𝑈
𝑥 100                                                   (5.1) 

 

     Some examples of different sequences of MPR images are given in Figure 5.1. 

Red pixels show True Positive (TP) pixels after the thresholding process. This means 

that the red pixels are classified as the organ of interest and these pixels are actual 

organ pixels. Therefore, it can be stated that by using Gaussian approximations and 

the thresholding process, the segmentation of the organ is accomplished 

substantially. Green pixels of the images represent the organ pixels which are not 

found by our algorithm. And lastly, blue pixels are the pixels which belong to the 
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unwanted pixels/adjacent tissues but are found as belonging to the organ by our 

algorithm. Observing Figure 5.1, we see that there is not a direct relation among 

different sequences. However, if a number of slices of the image series are observed, 

it can be stated that using coarse approximation at the first and last slices is not 

enough for segmentation. In contrast to the first and last slices, in the middle of the 

image series our algorithm provides a better approximation. 

 

 

                 

 

 

 

 

                              (a)                                                               (b) 

                          

 

 

  

 

 

                             (c)                                                                  (d) 

Figure 5.1 MPR images belonging to T1 WATS with slice numbers (a) 3-11-21 and (b) 2-13-21. MPR 

images belonging to T1-DUAL with slice numbers (c) 12-18-24 and (d) 2-10-22. 

 

Our proposed algorithm is applied to 5 different MR sequences. SSH and T2-

SPIR sequences generally generate dark images which cannot be distinguished from 

the outer region and adjacent pixels. The organ of interest and non-object gray levels 

overlap each other and it is not possible to identify a threshold range on the 

overlapping region. Therefore, T1-DUAL, THRIVE, and T1-WATS sequences are 

chosen for the study.  

 

The numbers of analyzed datasets of sequences are given in Table 5.1. Firstly, the 

algorithm is applied to all images in the dataset. Secondly, the first and the last 5 
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images in the analyzed dataset are ignored. For the last approach, the first 8 and the 

last 2 images are ignored. In the evaluation, 0 value of 𝑉𝑂𝐸 indicates perfect 

segmentation and there is no limitation for the upper value of the 𝑉𝑂𝐸. At the 

beginning of the MR series, the organ of interest does not exist and by going forward 

in slices, organ starts to appear. In the middle of the image series, the organ takes its 

largest volume. At the end of the image series, the organ starts to disappear. 

Therefore, at the beginning and end of the series, VHS becomes narrow. In contrast, 

in the middle, VHS takes a larger part and the grey level information of the organ of 

interest from VHS can be expressed in an accurate way by using Gaussian 

approximations. 

 

Because of the structure of VHS, our algorithm gives better results in the middle 

slices. Therefore, the other images are ignored in the calculation of 𝑉𝑂𝐸. For the 

initial and final images, refinement algorithm can be developed to capture pixels 

which have low amplitudes and are spread in VHS. As seen in Table 5.1, T1-WATS 

and THRIVE sequences have lowest overlapping error. THRIVE and T1-WATS 

sequences are obtained by scanning liver consecutively in a short time with thin 

slices to get response of a known lesion to a contrast matter. That is why these 

sequences provide a signal increase caused by contrast matter instead of image 

quality. This fact decreases 𝑉𝑂𝐸 and creates a distinguishable grey level difference 

between the organ of interest and non-object pixels in VHS.  
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Table 5.1 VOE results with respect to MR sequences 

Sequences 
Number of 

dataset 
Volumetric Overlap Error (VOE) 

  All Dataset 
First 5 

Last 5 ignored 

First 8 

Last 2 ignored 

T1-DUAL 5 37.18 26.89 24.28 

THRIVE 2 32.41 23.72 19.16 

T1-WATS 6 36.55 23.85 18.97 

 

     By using Gaussian approximations and the thresholding process, we have 

significant improvements on MPR images in the middle slices of the dataset. 

However, beginning and end image slices give important information about 3-D 

volumetric data. To enhance the approximation and obtain meaningful information 

from beginning and end slices, morphological operations and region growing 

segmentation methods are applied to the images as described in Sections 4.2.4 and 

4.2.5, respectively. Section 2.4 describes all datasets used. However, some of the 

datasets are eliminated which are not suitable for our algorithm. Therefore, after the 

enhancement procedure, the algorithm is applied to 29 (14 T1 DUAL+10 T1 

WATS+5 THRIVE) MRI datasets in this thesis work. For visualization, instead of 

using MPR images, we utilized the axial images to observe the achievement of our 

algorithm. Figures 5.2 and 5.3 show the axial image slices with respect to different 

sequences before morphological operations. Tables 5.2 through 5.4 show metric 

results with respect to different sequences before morphological operations.  

 

 

Figure 5.2 Different axial image slices belonging to T1 DUAL before morphological operations. 
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Figure 5.3 Different axial image slices belonging to T1 WATS before morphological operations. 

 

 

Figure 5.4 Different axial image slices belonging to THRIVE before morphological operations. 

 

Table 5.2 Metric results of T1 DUAL sequence with respect to the dataset 

Dataset CC FP FN SE SP PPV NPV 

2 91.79 4.25 71.71 28.29 95.85 30.38 95.43 

3 93.49 4.17 54.07 45.93 95.90 36.30 97.21 

4 95.97 1.89 58.47 41.53 98.12 46.60 97.70 

5 93.78 3.52 57.53 42.47 96.52 39.51 96.91 

6 94.82 3.50 48.55 51.45 96.55 37.32 98.03 

7 93.71 4.07 54.80 45.20 96.00 34.83 97.37 

10 97.70 1.14 39.84 60.16 98.85 61.64 98.78 

11 94.27 4.78 42.36 57.64 95.36 27.09 98.69 

12 94.09 4.64 56.61 43.39 95.51 21.31 98.37 

13 93.83 4.96 54.08 45.92 95.21 21.59 98.39 

16 95.30 2.89 48.85 51.15 97.13 42.52 97.95 

17 93.21 5.03 41.51 58.49 95.06 38.73 97.72 

18 92.70 6.11 57.71 42.29 94.17 17.42 98.25 

19 95.23 2.23 48.16 51.84 97.76 57.41 97.21 

20 91.58 7.53 48.06 51.94 92.88 19.31 98.33 

21 93.02 5.85 53.21 46.79 94.39 19.82 98.36 

Ave* 94.03 4.16 52.22 47.78 95.95 34.49 97.79 
Ave*: Average 
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Table 5.3 Metric results of T1 WATS sequence with respect to the dataset 

Dataset CC FP FN SE SP PPV NPV 

2 93.81 2.95 65.92 34.08 97.08 39.08 96.41 

3 96.53 1.24 56.60 43.40 98.76 59.37 97.66 

7 95.49 1.63 71.43 28.57 98.38 43.19 96.96 

10 96.01 1.10 54.92 45.08 98.88 69.46 96.96 

16 96.43 1.42 53.46 46.54 98.57 58.24 97.73 

17 96.15 1.38 51.42 48.58 98.60 64.14 97.38 

18 96.48 2.07 78.82 21.18 97.97 17.00 98.44 

19 95.01 2.02 62.57 37.43 97.98 48.94 96.81 

20 94.89 2.58 72.75 27.25 97.46 28.97 97.24 

21 95.65 2.32 77.58 22.42 97.72 21.71 97.81 

Ave* 95.65 1.87 64.55 35.45 98.14 45.01 97.34 
 

Table 5.4 Metric results of THRIVE sequence with respect to the dataset 

Dataset CC FP FN SE SP PPV NPV 

4 95.39 2.13 56.16 43.84 97.87 49.78 97.31 

5 93.89 3.03 59.27 40.73 96.99 44.04 96.57 

6 96.30 1.05 63.41 36.59 98.95 60.66 97.24 

11 95.96 2.09 53.31 46.69 97.91 46.98 97.89 

12 93.48 5.36 54.47 45.53 94.85 20.06 98.39 
 

     Figure 5.5 through 5.7 show the axial image slices with respect to different 

sequences after morphological operations. T1 DUAL and THRIVE sequences give 

better results after morphological operations. However, erosion step causes quite 

many losses in the pixels of the liver. Therefore, only the connected component is 

used as a morphological operation in T1 WATS sequences. Tables 5.5, 5.6, and 5.7 

give the Symmetric Surface Distance (SSD) metric results after morphological 

operations (Heimann et al., 2009). 
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Figure 5.5 Different axial image slices belonging to T1 DUAL after morphological operations. 

 

Figure 5.6 Different axial image slices belonging to T1 WATS after morphological operations. 

 

Figure 5.7 Different axial image slices belonging to THRIVE after morphological operations. 

 

     In the evaluation of the results, besides the difference in volume values, 

conformational characteristics of the obtained segmentation results are also 

important. For this purpose, SSD, which is a widely used metric, is also used for 

performance evaluations. SSD metric allows the comparison of segmented 3-D organ 

with the reference 3-D organ by using surface voxels of a 3-D object. The voxels 

which are known as surface voxels are defined according to at least one voxel that 

does not belong to the object in 18 possible neighboring. For each surface voxel in 

the reference organ (𝑉𝑅), the distance to the surface voxel in the segmented organ is 

calculated according to the Euclidean Distance Metric. The smallest distance among 
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the measured distances is determined by the nearest neighbor rule. If surface voxels 

of the segmented organ (𝑉𝑆) are defined as 𝑆(𝑉𝑆), the distance of any voxel (𝑣𝑟) in 

the 𝑉𝑅  to 𝑆(𝑉𝑆) is calculated as: 

 

𝑑(𝑣𝑟 , 𝑆(𝑉𝑆)) = min 𝑣∈𝑆(𝑉𝑅)
                    
∀𝑞∈𝑆(𝑉𝑆)

(‖𝑣𝑟 − 𝑞‖)                    (5.2) 

To obtain the symmetry characteristic, the same procedure is repeated for any 

surface voxel (𝑣𝑠) of the segmented organ and the surface voxels which belong to 𝑉𝑅 

(𝑑(𝑣𝑠, 𝑆(𝑉𝑅))). Three SSD metrics are calculated as: 

 

Average Symmetric Surface Distance (ASSD): 

𝐴𝑆𝑆𝐷(𝑉𝑅 , 𝑉𝑠) =

1

|𝑆(𝑉𝑆)|+|𝑆(𝑉𝑅)|
(∑ 𝑑(𝑣𝑟 , 𝑆(𝑉𝑆)) +𝑣𝑟∈𝑆(𝑉𝑅) ∑ 𝑑(𝑣𝑠 , 𝑆(𝑉𝑅))𝑣𝑠∈𝑆(𝑉𝑆) )(𝑚𝑚)                 (5.3) 

 

RMS Symmetric Surface Distance (RSSD): 

𝑅𝑆𝑆𝐷(𝑉𝑅, 𝑉𝑠) =

1

|𝑆(𝑉𝑆)|+|𝑆(𝑉𝑅)|
(∑ 𝑑2(𝑣𝑟 , 𝑆(𝑉𝑆)) +𝑣𝑟∈𝑆(𝑉𝑅) ∑ 𝑑2(𝑣𝑠, 𝑆(𝑉𝑅))𝑣𝑠∈𝑆(𝑉𝑆) )(𝑚𝑚)             (5.4) 

    

     Maximum Symmetric Surface Distance (MSSD): 

𝑀𝑆𝑆𝐷(𝑉𝑅, 𝑉𝑠) =

max{𝑚𝑎𝑥𝑣𝑟∈𝑆(𝑉𝑅){𝑑(𝑣𝑟 , 𝑆(𝑉𝑆))}, 𝑚𝑎𝑥𝑣𝑠∈𝑆(𝑉𝑆){𝑑(𝑣𝑠, 𝑆(𝑉𝑅))}} (𝑚𝑚)                 (5.5) 

 

|𝑆(𝑉𝑆)| and |𝑆(𝑉𝑅)| give the number of voxels which are in 𝑉𝑆 and 𝑉𝑅, respectively. 
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Table 5.5 Metric results of T1 DUAL sequence after morphological operations with respect to the 

dataset 

Dataset ASSD RSSD MSSD AHO VHO 

3 3.86 7.48 36.07 35.51 36.82 

4 4.26 7.06 30.13 55.62 57.30 

5 2.33 3.20 15.56 40.86 35.99 

6 2.81 4.06 19.24 68.08 54.72 

7 4.58 10.13 57.74 57.00 43.69 

10 2.72 4.43 24.45 27.25 26.39 

11 2.88 5.64 33.75 57.12 43.53 

12 3.83 8.21 39.17 34.73 34.12 

13 4.30 8.06 43.87 60.06 53.42 

16 2.54 3.85 22.65 52.34 43.16 

18 2.73 3.95 20.69 77.82 54.99 

19 5.09 11.10 54.12 42.34 38.00 

21 5.98 10.22 48.51 91.80 58.83 

Ave 3.69 6.72 34.30 53.89 44.69 
 

Table 5.6 Metric results of T1 WATS sequence after morphological operations with respect to the 

dataset 

Dataset ASSD RSSD MSSD AHO VHO 

2 1.78 4.04 28.18 21.26 20.65 

3 4.65 9.93 49.41 34.82 38.24 

7 7.02 12.10 49.30 64.99 60.79 

10 17.39 22.60 63.17 105.61 97.38 

16 3.80 7.12 36.28 37.86 37.74 

17 3.02 5.70 36.41 43.27 41.64 

18 9.16 14.08 47.19 74.19 73.06 

19 5.87 12.11 59.14 39.22 39.33 

20 4.02 9.42 48.21 33.51 31.29 

21 12.78 16.59 47.42 85.70 84.51 

Ave 6.95 11.37 46.47 54.04 52.46 
 

Table 5.7 Metric results of THRIVE sequence after morphological operations with respect to the 

dataset 

Dataset ASSD RSSD MSSD AHO VHO 

4 3.99 5.42 22.56 36.46 36.49 

5 7.42 13.25 57.14 43.13 45.62 

6 6.16 8.82 32.16 51.28 52.84 

11 4.67 7.29 35.89 40.19 38.42 

12 8.43 16.30 65.27 43.03 46.94 

Ave 6.13 10.22 42.60 42.82 44.06 
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     Figures 5.8 through 5.10 show the axial image slices with respect to different 

sequences after region growing segmentation method. Tables 5.8 through 5.10 give 

the SSD metric results after region growing segmentation method. The results seem 

to be successful, especially in terms of values of ASSD, RSSD, MSSD compared 

with the literature. Considering the challenges of collecting the image series from 

daily routine, it is a noteworthy achievement to use these image slices in this study. 

 

 

Figure 5.8 Different axial image slices belonging to T1 DUAL after region growing. 

 

 

Figure 5.9 Different axial image slices belonging to T1 WATS after region growing. 

 

 

Figure 5.10 Different axial image slices belonging to THRIVE after region growing. 
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Table 5.8 Metric results of T1 DUAL sequence after region growing with respect to the dataset 

Dataset ASSD RSSD MSSD AHO VHO 

3 0.88 1.44 12.25 19.04 18.35 

4 1.69 2.41 13.08 38.63 35.18 

5 1.09 1.70 10.86 22.37 19.19 

6 1.31 1.94 9.27 35.61 28.82 

7 2.34 3.12 14.04 65.35 47.63 

10 1.30 1.76 10.39 19.24 17.60 

11 10.10 20.74 84.37 75.33 60.98 

12 3.12 7.44 47.48 24.89 23.24 

13 1.40 2.12 27.75 34.23 30.86 

16 1.21 1.56 8.54 34.61 27.99 

18 16.29 29.12 109.75 130.34 83.42 

19 1.74 3.61 39.22 39.51 23.75 

20 7.01 11.97 76.64 193.42 107.15 

21 4.82 6.83 29.27 106.46 64.28 

Ave 3.88 6.84 35.21 59.93 42.03 

 

Table 5.9 Metric results of T1 WATS sequence after region growing with respect to the dataset 

Dataset ASSD RSSD MSSD AHO VHO 

2 1.27 1.81 14.87 35.21 25.71 

3 1.27 1.76 11.75 29.82 26.90 

7 1.71 2.26 12.65 50.03 36.67 

10 2.92 3.80 14.90 33.99 33.31 

16 1.49 2.03 13.45 33.82 30.29 

17 1.46 2.29 19.00 34.01 28.99 

18 1.25 2.01 13.00 25.58 24.94 

19 0.78 1.62 19.44 13.87 11.66 

20 2.56 4.59 49.46 49.32 40.94 

21 2.61 3.92 18.97 30.43 27.55 

Ave 1.73 2.61 18.75 33.61 28.70 

 

Table 5.10 Metric results of THRIVE Sequence after region growing with respect to the dataset 

Dataset ASSD RSSD MSSD AHO VHO 

4 2.97 3.76 14.14 31.15 29.75 

5 3.75 5.23 22.09 35.95 34.06 

6 3.78 4.69 15.56 37.81 36.53 

11 2.45 3.02 15.07 27.29 26.10 

12 1.91 3.16 21.59 15.91 16.13 

Ave 2.97 3.97 17.69 29.62 28.51 
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A general comparison of average metric results obtained after region growing for all 

the datasets used is given in Table 5.11. 

 

Table 5.11 Comparison of the average metric results of all sequences after region growing  

Dataset ASSD RSSD MSSD AHO VHO 

T1 DUAL 3.88 6.84 35.21 59.93 42.03 

T1 WATS 1.73 2.61 18.75 33.61 28.70 

THRIVE 2.97 3.97 17.69 29.62 28.51 

 

5.1 General Overview 

 

     As described in detail in Chapter 4, our proposed method and the Transfer 

Function (TF) techniques which are discussed in the literature section share the same 

strategy (coarse + fine approximation). The proposed new two-step strategy for the 

TF design implements user defined VHS approximation initially by using multi-scale 

hierarchical model and the ensuing refinement by using local tissue information. We 

have the following observations: 

 

1) Our study introduces a new intuitive multi-dimensional TF domain. With the help 

of the user defined MPR GUI, new image slices are constructed by determining the 

major axis/region. By aligning the histograms of the new image slices of MR series, 

VHS can be obtained.  

 

2) The application of multi-scale and hierarchical Gaussian Mixture Model strategy 

is improved. Our model can fit and classify the organ of interest automatically and in 

real time. 

 

3) Based on spatial and morphological operations, the performance metrics of the 

organ of interest are increased.  

 

4) The performance measurement of our approach is performed by applying it to 

various and multiple clinical abdominal MRI datasets with different sequence 

protocols. 
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CHAPTER SIX  

 CONCLUSION 

 

     MRI acquisitions create volumetric data which is usually in the form of a series of 

cross sections of the anatomy of interest. The visualization of this volumetric medical 

data has several benefits such as surgery planning and treatment follow-ups. 

Therefore, it is more preferable for applications that require more effective and 

intuitive visualizations. The visualization of 3-D data along with slice-by-slice 

evaluation can help many scientific disciplines. Convenience and effectiveness of 

dealing with 3-D data comes at the expense of some complexity in the visualization. 

Some recent studies are interested in dealing with the complexity of rendering and 

visualization. One of the most important points is to give accurate and clear 

information in medical visualization. Therefore, defining a transfer function (TF) is 

one of the most important and complex steps in the generation of volume rendered 

medical visualizations. Optical parameters such as opacity and color must be 

determined as a crucial step to construct a valuable outcome in rendering.  

 

     The difficulty of TF design can be significantly reduced with effective initial 

designs, which provide a starting point prior to the optimization that is controlled by 

the user. To overcome the difficulty of initial TF generation, a semi-automatic 

method is introduced in this thesis work. Our approach is based on a volume 

histogram stack (VHS), which is created by aligning the histograms of the image 

slices of MR series. Thanks to the VHS, the organ of interest can be distinguishable 

by using inter-slice spatial domain knowledge. The change in the gray levels can be 

revealed through the series of slices.  

 

     Before aligning slices, we present a new graphical user interface (GUI) which 

constructs new images using different anatomical planes. By using this GUI, we can 

understand and display tissues which are not seen well in the original images. The 

multi-planar reconstruction (MPR) technique is an accessible tool that can replace or 

complement more conventional imaging approaches. Evaluating this reconstruction 

approach in abdominal MR images serves a wide variety of pathological processes. 
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The multi-planar reconstruction programs can also expand a radiologist’s capacity to 

define pathologies.  

 

     Dealing with different surfaces in the construction of an MPR image allows us to 

gather information about lobes, which are suppressed by any other unwanted 

components. Working with one axis only cannot segment the desired lobe if it is a 

minor lobe in the VHS. The main reason of constructing VHS is to differentiate gray 

levels of the organ of interest. By changing the perspective of volumetric data, any 

desired part of the VHS can be emphasized and segmented by different 

approximations. In our study, we use different anatomical planes with the help of our 

GUI and obtain new slices which form the input data of the VHS.    

 

     The resultant VHS, which is produced by the GUI, and their desired (labeled by 

an expert) counterparts are compared in the previous sections. Considering the 

general VHS structure and comparing the actual VHS with the desired VHS shows 

that Gaussian functions could be good approximations.  MRI has a challenging 

structure so that its intensity fluctuations cause a non-smooth structure in the VHS. 

The major problem is the variety in the gray level of the same organ among slices 

which causes discontinuities in the VHS. Another problem is the slice thickness 

between two slices which is wide enough to cause a limited sampling in 𝑧-direction. 

This problem causes an incompatibility in the size of VHS in the form that 

dimensions along 𝑥 and 𝑦 axes are considerably different. By taking these problems 

into account, Gaussian functions are considered to be good candidates which can 

provide an approximation of the TF. In this study, by considering these criteria, a 

hierarchical and multi-scale modeling is proposed. In an iterative manner, the 

proposed model tries to find the best Gaussian basis to fit the corresponding part of 

the VHS. The developed algorithm provides a procedure for capturing all suppressed 

lobes of importance in a successive manner by associating the lobes with a suitable 

number of Gaussian bases.  

 

     The desired histogram is separated from the unwanted components/tissues after 

fitting Gaussian functions with two valleys in both sides of it. In our study, by taking 
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an advantage of this distinction, we use a thresholding method. Our main aim is to 

determine two threshold values which correspond to the valleys at the left and right 

side of the corresponding lobes of the organ of interest. The important point is the 

adjustable structure of this thresholding method. The threshold ranges are determined 

through the VHS, which corresponds to all images and extends toward the tails of the 

Gaussian functions. The variety in the shape and size of the organ of interest could 

affect VHS directly. The special appearance of VHS dictates employment of a 

dynamic threshold rather than a fixed one. Considering the error rates, in the middle 

slices of the image series, we can obtain sufficiently high success in the segmentation 

of the desired lobe from the VHS.  

 

     This approximation is even further optimized using morphological operations of 

erosion and dilation and region growing.  The obtained final classification results 

fulfil our aim of segmenting the organs of interest via the MR sequences belonging 

to the challenging abdominal region of the body.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

72 
 

REFERENCES 

 

Antoine, J. – P. & Murenzi, R. (1996). Two-dimensional directional wavelets and the 

scale-angle representation. Signal Processing, 52, 259-281. 

 

Bae, K. T., Giger, M. L., Chen, C. T., & Jr. Kahn, C. E. (1993). Automatic 

segmentation of liver structure in CT images. Medical Physics, 20, 71-78. 

 

Bidaut, L. (2000). Data and image processing for abdominal imaging. Abdominal 

Imaging, 25, 341–360. 

 

Brown, M. A. & Semelka, R.-C. (1999). MR imaging abbreviations, definitions, and 

descriptions: A review. Radiology, 213, 647-662.  

 

Castro, S., König, A., Löffelmann, H., & Gröller, E. (1998). Transfer function 

specification for the visualization of medical data. Austria Vienna University of 

Technology Technical Report. 

 

Chan, T. F. & Vese, L. A. (2002). Active contours without edges. IEEE Transactions 

Medical Imaging, 10, 266-277. 

 

Chen, G., Gu, L., Qian, L., & Xu, J. (2009). An improved level set for liver 

segmentation and perfusion analysis in MRIs. IEEE Transactions on Information 

Technology in Biomedicine, 13, 94-103. 

 

Drebin, R. A., Carpenter, L., & Hanrahan P. (1988). Volume rendering. Computer 

Graphics, 22, 65-74. 

 

Efford, N. (1st edt.) (2000). Digital imaging processing: A practical introduction 

using Java
TM

 . Pearson.  

 



 

73 
 

Flohr, T. G., Schaller, S., Stierstorfer, K., H. Bruder, H., Ohnesorge, B. M., & 

Schoepf, U. J. (2005). Multi detector row CT systems and image reconstruction 

techniques, Radiology, 235, 756–773. 

 

Ginneken, B. V., Heiman, T., & Styner, M. (2007). 3-D segmentation in the clinic: A 

grand challenge. MICCAI Workshop Proceedings, 7-15. 

 

Heimann. T., van Ginneken. B., Styner. M. A., Arzhaeva. Y., Aurich. V., Bauer, 

C.,et al. (2009). Comparison and evaluation of methods for liver segmentation 

from CT datasets. IEEE Transactions on Medical Imaging, 28, 1251-1265. 

 

Hermoye, L., Azjal, I. L., Cao, Z., Annet, L., Lerut, J., Dawant, B. M., et. al. (2005). 

Liver segmentation in living liver transplant donors: Comparison of 

semiautomatic and manual methods. Radiology, 23, 171-178. 

 

Hoa, D. (n.d.). Characteristics of an MRI Sequence, Retrieved April, 2014 from 

http://www.imaios.com/en/e-Courses/e-MRI/MRI-Sequences/sequence 

characteristics 

 

Hornak, J. P. (n.d.). The basics of MRI, Retrieved June, 2014 from 

http://www.cis.rit.edu/htbooks/mri/inside.htm 

 

Irani, M. & Peleg, S. (1991). Improving resolution by image registration. CVGIP: 

Graphical Models and Image Processing, 53, 231-239. 

 

Jain, A. K., Jianchang, M., & Mohiuddin K. M. (1996). Artifical neural networks: A 

tutorial. IEEE Computer Society, 29, 31-44.  

 

Kellberg, J., Karlsson A.-K., Stokland E., Svensson P.-A., & Dahlgren J. (2010). 

Adipose tissue distribution in children: Automated quantification using water and 

fat MRI. Journal of Magnetic Resonance Imaging, 32, 204-210.  

 



 

74 
 

Kindlman, G. & Durkin, J. W. (1998). Semi-automatic generation of transfer 

functions for direct volume rendering. VVS '98 Proceedings of the 1998 IEEE 

Symposium on Volume Visualization, 79-86. 

 

Kniss, J., Kindlmann, G., & Hansen, C. (2002). Multidimensional transfer functions 

for interactive volume rendering. Visualization and Computer Graphics, 8, 270–

285. 

 

Koss, J. E., Newman, F. D., Johnson, T. K., & Kirch, D. L. (1999). Abdominal organ 

segmentation using texture transforms and a Hopfield neural network. IEEE 

Transaction Medical Imaging, 18, 640–648. 

 

König, A. H. & Gröller, E. M. (2001). Mastering function specification by using 

VolumePro technology. Spring Conference on Computer Graphics, 17, 279-286. 

 

Lee, C. C., Chung, P. C., & Tsai, H. M. (2003). Identifying multiple abdominal 

organs from CT image series using a multi-module contextual neural network and 

spatial fuzzy rules. IEEE Transactions on Information Technology in 

Biomedicine, 7, 208–217. 

 

Levoy, M. (1988). Display of surfaces of volume data. IEEE Computer Graphics & 

Applications, 8, 29-37. 

 

Lundström, C., Ljung, P., & Ynnerman, A., (2006a). Extending and simplifying 

transfer function design in medical volume rendering using local histograms. 

Proceedings Eurographics/IEEE-VGTC Symposium, 227-234.  

 

Lundström, C., Ljung, P., & Ynnerman, A., (2006b). Local histograms for design of 

transfer functions in direct volume rendering. IEEE Transactions Visualization 

and Computer Graphics, 12, 1570-1579. 

 



 

75 
 

Magnetic Resonance Imaging (MRI) – Body. (May 9, 2013). Retrieved June, 2014 

from http://www.radiologyinfo.org/en/pdf/bodymr.pdf 

 

McRobbie, D. W., Moore, E. A., Graves, M. J., & Prince, M. R. (2003). MRI: From 

picture to proton. (2nd edt.). Cambridge: Prince.  

 

Pfister, H., Lorensen, B., Bajaj, C., Kindlmann G., Schroeder, W., Avila, L. S., et al. 

(2001). Visualization viewpoints: The transfer function bake-off. IEEE Computer 

Graphics & Applications, 21, 16-22. 

 

Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder W., & Machiraju R. 

(2000). The transfer function bake-off. Proceedings 11th IEEE Visualization 

Conference, 11, 523-526. 

 

Prince, J. P., & Links, J. M. (1st edt.). (2006). Medical imaging signals and systems. 

New Jersey: Pearson.  

 

Sabella, P. (1988). A rendering algorithm for visualizing 3D scalar fields. Computer 

Graphics, 22, 51-58. 

 

Selver, M. A., & Güzeliş, C. (2009). Semiautomatic transfer function initialization 

for abdominal visualization using self-generating hierarchical radial basis function 

networks. IEEE Transactions on Visualization and Computer Graphics, 15, 395-

409.  

 

Selver, M. A., Kocaoğlu, A., Demir, G., Doğan, H., Dicle, O., & Güzeliş, C. (2008). 

Patient oriented and robust automatic liver segmentation for pre-evaluation of 

liver transplantation. Computers in Biology and Medicine, 38, 765-784. 

 

Selver, M. A., Özdemir, M., & Selvi, E. (2013). Interactive radial volume histogram 

stacks for visualization of kidneys from CT and MRI. International Conference in 



 

76 
 

Central Europe on Computer Graphics Visualization and Computer Vision, 21, 

233-242. 

 

Seo, K. S., Kim, H.-B., Park, T., Kim, P.-K., & Park, J.-A. (2005). Automatic liver 

segmentation of contrast enhanced CT images based on histogram processing. 

Advances in Natural Computation Lecture Notes in Computer Science, 3610, 

1027-1030. 

 

Seo, K. S., Ludeman, L. C., Park, S. J., & Park, J. A. (2004). Efficient liver 

segmentation based on the spine. Lecture Notes in Computer Science, 3261, 400-

409.  

 

Upson, C., & Keeler, M. (1988). V-buffer: Visible volume rendering. SIGGRAPH’88    

Proceeding of the 15
th

 Annual Conference on Computer Graphics and Interactive 

Techniques, 59-64. 

 

Westbrook, C. (2008). Handbook of MRI technique. (3rd edt.). Oxford, United 

Kingdom: Wiley-Blackwell 

 

Westbrook, C. (2002). MRI at a glance. (1st edt.)., England: Blackwell Science. 

 

Westbrook, C. & Kaut, C. (1998). MRI in practice. (4th edt.)., England: Blackwell 

Science. 

 

Wink, A. M. & Roerdink, J. B. T. M. (2004). Denoising functional MR images: A 

comparison of wavelet denoising and Gaussian smoothing. IEEE Transaction 

Medical Imaging, 23, 374-387. 

 


	S22C-6e15030219160_0001
	Tez total merve_v4_son

